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Abstract: It has been shown that in human-robot interaction, the effectiveness of a robot varies inversely with the 
operator engagement in the task. Given the importance of maintaining optimal task engagement when working 
with a robot, it would be immensely useful to have a robotic system that can detect the level of operator 
engagement and modify its behavior if required. This paper presents a framework for human-robot interaction 
that allows inference of operator’s engagement level through the analysis of his/her physiological signals, and 
adaptation of robot behavior as a function of the operator’s engagement level. Peripheral physiological signals 
were measured through wearable biofeedback sensors and a control architecture inspired by Riley’s original 
information-flow model was developed to implement such human-robot interaction. The results from affect-
elicitation tasks for human participants showed that it was possible to detect engagement through physiological 
sensing in real-time. An open-loop teleoperation-based robotic experiment was also conducted where the recorded 
physiological signals were transmitted to the robot in real-time speed to demonstrate that the presented control 
architecture allowed the robot to adapt its behavior based on operator engagement level. 
Keywords: operator engagement, situation awareness, physiological sensing, human-robot interaction 

 
1. Introduction 
 
Robotic technology has made commendable progress in 
recent years, which has ushered in many new areas of 
application (e.g., battlefield, space, personal assistance 
etc.). However, one of the major stumbling blocks in 
deploying completely autonomous robots in these 
complex and unstructured task domains is that the 
current robots are not fully reliable and smart enough to 
do such complex jobs without any human help. For 
instance, Project Alpha, a U.S. Joint Forces Command 
rapid idea analysis group, suggests that it may not be 
before the year 2025 that robots would be capable of 
completely replacing humans on the battlefield (Schafer, 
R., 2003). Thus, there is a real need in foreseeable future 
to synergistically combine various capabilities of robotic 
systems with the human’s intelligence and cognitive task 
understanding so that together they can address many of 
the current goals of various applications. 
When a human works with a robot (either as a peer or as a 
supervisor) the role of human error becomes significant 
towards the performance of the task. Human error is an 
important contributing factor in some of the most 
disastrous accidents in history where humans and 
machines work together (Reason, J., 1990). For example, a 
detailed analysis of road safety (Treat, J. R. et al, 1977) 
found that human error was the sole cause in 57% of all 
accidents and was a contributing factor in over 90% of 
these cases. Surprisingly, only 2.4% of these accidents were 
due exclusively to mechanical fault and only 4.7% of them 

were caused only by environmental factors. Many other 
studies have reported similar results. Humans, due to the 
inherent limitation of their information processing ability 
make mistakes; therefore, it is not shocking to know that 
human error has also been implicated in a variety of day-
to-day occupational accidents, including 70% to 80% of 
those in civil and military aviation (O’Hare, D. et al, 1994)0. 
There is no systematic study found in the literature that 
investigated human error in the context of human-robot 
operations. However, studies in other disciplines such as 
aviation where human and machine work together have 
found that over the past 40 years the number of aviation 
accidents that were exclusively due to mechanical failure 
has decreased significantly, even though the decline of 
human error related accidents has been noticeably slower 
(Shapell, S. & Wiegmann, D., 1996) 
It has been stressed in a number of studies including 
those that involved human-robot interactions (Drury, J. L. 
et al, 2003) that maintaining situation awareness is the 
key to reducing human errors. Situation awareness can be 
defined as “the perception of the elements in the 
environment within a volume of time and space, the 
comprehension of their meaning, and the projection of 
their status in the near future (Endsley, M. R., 1988) .” 
There are three main components that constitute situation 
awareness. These are: perception, engagement and 
memory. While perception and memory are more 
difficult to control and manipulate, it may be possible to 
capture and retain the attention or engagement of a 
person in a given task for a given time. 
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In the context of human-robot interaction, it is important 
to monitor the attentional state of the human by the robot 
in order to detect the level of engagement as well as take 
meaningful actions when necessary. There could be many 
situations in a human-robot mission where the human as 
a supervisor issues a command and observes a primarily 
autonomous execution of the task by the robot. He/she 
intervenes only in exceptional cases (e.g., when the robot 
fails to resolve the situation by itself). All other times 
he/she remains as an observer. Such a sequence of short 
activity followed by a long inactivity on the part of the 
operator may cause lack of attention or engagement that 
may be detrimental. We believe that if robots could detect 
engagement/attention of the operator and alert him/her 
when there is a loss of engagement, we would be a step 
closer towards realizing truly interactive, human-like 
robots. 
In this paper, we present our work on measuring 
operator task engagement though physiological feedback 
and integrating engagement-sensing capability in a 
robotic architecture. We present a teleoperation based 
robotic experiment in which the robot behavior adapts to 
the change in operator attention/engagement using 
recorded physiological signals. Teleoperation was chosen 
as an example to demonstrate such a capability because it 
is a classic example of “Human as controller” problems, 
where the lack of engagement on the part of the operator 
can be detrimental to the robot and the task at hand. 
(Fong, T. W., 2001) While significant work has been done 
to deal with the problems of communication delay, 
intermittency, and efficiency of human–robot interaction, 
to our knowledge our work is the first of its kind that 
targets behaviors adaptation of a teleoperated robot 
based on operator engagement level. In the context of this 
paper, the terms engagement and attention have been 
used synonymously since the term engagement 
essentially means “employment of attention” 
(www.biology-online.org). 
The paper is organized as follows: Section II describes 
some selected research done in the past in the field of 
psychophysiology and human-robot interaction in 
teleoperation tasks. Section III describes the objective of 
the paper and gives details of the problem statement. 
Section IV describes various aspects of engagement 
detection – cognitive task design, measurement and 
processing of physiological signals, and use of regression 
trees for engagement recognition. Section V discusses 
engagement-based teleoperation - the control architecture 
for the present work and teleoperation-based task design. 
The experimental results are given in Section VI. Finally, 
Section VII summarizes the contribution of the paper and 
provides conclusions and future work plans. 
 
2. Related Research 
 
In this section we present a brief overview of the work 
done in two major areas that encompass the scope of this 
paper, namely, research in psychophysiology aimed at 

detecting mental state of an operator, and the human 
robot interaction related research in teleoperation. 
There is a rich history in the human factors and 
psychophysiology literature to understand occupational 
stress, operator workload (Kramer, A. F., 1987)0, 
operator, mental effort and other similar mental states 
based on physiological measures such as those derived 
from electromyography (EMG), electroencephalography 
(EEG), and heart rate variability (HRV). Multiple 
psychophysiological measures such as HRV, EEG, blink 
rates and others have been used together in recent years 
to assess pilots’ and drivers’ workload (Wilson, G. F., 
2002). Heart period variability (HPV) has been shown to 
be an important parameter for mental workload relevant 
for human-computer interface (HCI) (Iszo, L. et al, 1999). 
Motivated by the progress in affective computing (Picard, 
R., 1997), significant research is being done on developing 
computer interfaces that can detect user affective states 
through measurement of physiology. In our previous 
work (Rani, P. et al, 2004) we have shown the relationship 
between anxiety and several physiological parameters 
like HRV, facial EMG, skin conductance, blood pulse 
volume, and peripheral temperature. Prinzel et al. 
(Prinzel, L. J. et al 2003) have studied the effect of an EEG 
based adaptive automation on tracking performance and 
workload. The engagement index calculated in their work 
is based on the P300 component of the Even-Related 
Potential (ERP). Kulic et al. discussed their approach to 
estimate intent for human-robot interaction (Kulic, D., & 
Croft, E., 2003). They focused on the two aspects of intent 
namely attention and approval, where attention was 
measured through gesture recognition and eye gaze 
tracking and approval was measured through facial 
expressions and physiological signals. Operator 
physiological response was also studied by Hanajima et 
al to investigate the impact of robot motion on operator’s 
HRV and electrodermal activity (Hanajima, N. et al, 
2005). 
Teleoperation has been the focus of research for many 
years (Sheridan, T. B., 1992), as researchers have been 
striving to find ways of dealing with autonomy issues, 
problems of delays, dexterity and sensory information 
retrieval. A lot of emphasis has been placed in the design 
and development of multimodal user interfaces that 
provide visual and tactile feedback to the operator in 
order to give a real-life feel. Some researchers have 
focused on methods aimed at reducing operator 
workload. For instance Arkin and Ali’s work (Ali, K. S., & 
Arkin, R. C., 2000) deals with behavior-based design of 
robots that can interact with humans to lessen their 
workload. Fong et al. in (Fong, T. W. et al, 2001) use 
collaboration, human-robot dialogue and waypoint-based 
driving for vehicle teleoperation. These techniques are 
expected to enable a single operator effectively control 
multiple mobile robots with his/her limited cognitive 
resources. However, relatively little work has been done 
to provide the operator feedback to the robot regarding 
workload/fatigue/loss of attention. Crandall et al. have 
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experimentally shown that in teleoperation, robot 
effectiveness is inversely proportional to neglect 
(Crandall, J. W. & Goodrich, M. A., 2002). That is, the 
lesser attention an operator gives to the robot during a 
teleoperation task, the worse will be the robot’s 
performance. 
 
3. Objectives 
 
The main objectives of the paper are to demonstrate: 1) 
real-time detection of engagement level of an operator 
can be achieved based on physiological signals; and 2) a 
teleoperated mobile robot can adapt its behavior 
according to the level of engagement that it receives from 
the operator controlling it. 
Due to practical difficulties in eliciting loss of 
engagement with robots in a laboratory environment 
with limited resources, the experiment to prove the 
above-mentioned objectives was done in two parts. First, 
participants who volunteered for the study were engaged 
in a carefully designed experiment that involved 
participation in the game of Pong and an Anagram 
solving task. These tasks were designed to elicit various 
levels of engagement, boredom, frustration, anger and 
anxiety from them. The purpose of generating multiple 
affective states was to allow us to design analysis tools 
that could detect engagement from a variety of affective 
states. Second, a teleoperation experiment with the 
mobile robot, named Oracle (www.arrickrobotics.com), 
was performed where the physiological data collected in 
the previous experiment was streamed in continuously to 
the robot as if it were coming in real-time from the 
operator. The robot was expected to adapt its behavior to 
the various levels of operator engagement. 
 The two-part experiment described above is open loop. It 
is expected to serve as a proof-of-concept experiment 
demonstrating the use of physiological feedback to adapt 
robot behavior. There were several reasons as to why the 
physiological monitoring and teleoperation were not 
space and time collocated. 
1. Eliciting engagement, frustration and other affective 

states mentioned earlier through computer tasks is 
less resource consuming (e.g., each participant was 
made to play 6 hours of computer games in order to 
get training and testing data. Doing the same with 
mobile robots would require longer hours, work area 
and equipment). 

2. Eliciting low engagement in a teleoperation task 
would require hours of operation as our participants 
are generally excited about operating a robot and do 
not show loss of engagement until several sessions of 
repetitive work. 

3. Training participants to operate mobile robots would 
take additional resources. 

However, it is expected that in the future, better 
availability of resources would enable us to perform field 
experiments with professional teleoperators. These 
experiments would be closed-loop, where both the 

physiological state of the operator working with a robot 
will be monitored in real-time and the operator responses 
to change in robot behaviors will be evaluated. 
 
4. Engagement Detection 
 
Two PC based cognitive tasks were designed to elicit 
several affective states including engagement (or the lack 
of it) in the participants. Physiological data from 
participants were collected during the experiment. A part 
of this data was employed to train the regression-tree 
based engagement detection system (described in Section 
4.3) and the other part to run experiments with the 
mobile robot, Oracle. A regression tree based prediction 
system (Rani, P. et al, 2004) was developed to predict the 
probable level of operator engagement 
 
4.1 Cognitive Tasks 
The aim of the tasks was to invoke in the participants the 
following five affective states: engagement, anxiety, 
boredom, frustration and anger. The tasks chosen were 
solving anagrams and playing Pong. The anagram-
solving task has been previously employed to explore 
relationships between both electrodermal and 
cardiovascular activity with mental anxiety (Pecchinenda, 
A., & Smith, C. A., 1996). Emotional responses were 
manipulated in this task by presenting the participant 
with anagrams of varying difficulty levels, as established 
through pilot work. A long series of trivially easy 
anagrams caused boredom, an optimal mix of solvable 
and difficult anagrams caused engagement, unsolvable or 
extremely difficult anagrams elicited frustration and 
giving time deadlines generated anxiety. All these 
conditions were well tested during the development 
stage of the task design and piloting. 
The Pong task consisted of a series of trials each lasting 
up to four minutes, in which the participant played a 
variant of the early, classic video game “Pong”. This 
game has been used in the past by researchers to study 
anxiety, performance, and gender differences (Brown, R. 
M. et al, 1997). Various parameters of the game were 
manipulated to elicit the required affective responses. 
These included: ball speed and size, paddle speed and 
size, sluggish or over-responsive keyboard and random 
keyboard response. Low speeds and large sizes of ball 
and paddle made games boring after a while, whereas 
high speed ball and paddle along with smaller sizes of 
the two made the game engaging. Very high speeds 
caused anxiety at times. Sluggish or over-responsive 
keyboard induced frustration and anger. The relative 
difficulties of various trial configurations were 
established through pilot work. 
During the experiment, participants were presented with 
cognitive computer tasks that elicited a variety of 
affective responses. Six participants (four women and 
two men) took part in the experiment. Their age range 
was from 24 to 45 years. After initial briefing regarding 
the computer tasks, sensors were attached to the 
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participant’s body. Each participant took part in six 
sessions of the above two tasks – three one hour sessions 
of solving anagrams and three one hour sessions of 
playing Pong. These tasks spanned a period of one 
month. In each session, before starting the actual tasks 
baseline recording was done which was used later to 
offset day-variability. Each session consisted of 3 minute 
epochs followed by a questionnaire for self-reporting. 
During the tasks, the participant’s physiology was 
monitored with the help of wearable biofeedback sensors 
and Biopac data acquisition system (www.biopac.com). 
The Biopac sensors are small, easy to wear and 
unobtrusive during the tasks. The digitally sampled 
sensor information was sent serially to the computer 
using an Ethernet cable. The signals monitored consisted 
of electrocardiogram, bio-impedance, electromyogram 
(from the corrugator, zygomaticus and upper trapezius 
muscles), galvanic skin response, peripheral temperature, 
blood volume pulse, and heart sound. 
During the tasks, the participants periodically reported 
their perceived subjective emotional states. This 
information was collected using a battery of five self-
report questions (regarding their perceived anxiety, 
engagement, anger, frustration and boredom) rated on a 
nine-point Likert scale. Self-reports were used as 
reference points to link the objective physiological data to 
participants’ subjective affective state. Each task sequence 
was subdivided into a series of discrete epochs that were 
bounded by the self-reported affective state assessments. 
These assessments occurred every three minutes for the 
anagram task and every 2-4 minutes for the Pong task. 
The participants reported their affective state on a scale of 
1-9 where 1 indicated the lowest level and 9 indicated the 
maximum level. 
 
4.2 Physiological Basis and Signal Measurement 
There is good evidence that the physiological activity 
associated with affective state can be differentiated and 
systematically organized (Bradley, M. M., 2000). The 
transition from one emotional state to another is 
generally accompanied by dynamic shifts in indicators of 
Autonomic Nervous System (ANS) activity. The 
physiological signals we examined were: various features 
of cardiovascular activity, including interbeat interval, 
relative pulse volume, pulse transit time, heart sound, 
and pre-ejection period; electrodermal activity (tonic and 
phasic response from skin conductance) and 
electromyogram (EMG) activity (from corrugator 
supercilii, zygomaticus, and upper trapezius muscles). 
These signals were selected because they were likely to 
demonstrate variability as a function of our targeted 
affective states as well as they could be measured non-
invasively and were relatively resistant to movement 
artifact. A detailed description of the physiological 
signals and features can be found in our previous work 
(Rani, P. et al, 2004). Multiple features as shown in Table 
1 were derived for each physiological measure. “Sym” is 
the power associated with the sympathetic nervous 

system activity of the heart (in the frequency band 0.04-
0.15 Hz.). “Para” is the power associated with the heart’s 
parasympathetic nervous system activity (in the 
frequency band 0.15-0.4 Hz.). InterBeat Interval (IBI) is 
the time interval in milliseconds between two “R” waves 
in the ECG waveform in millisecond. IBI ECGmean and 
IBI ECGstd are the mean and standard deviation of the 
IBI. Photoplethysmograph signal (PPG) measures 
changes in the volume of blood in the fingertip associated 
with the pulse cycle, and it provides an index of the 
relative constriction versus dilation of the blood vessels in 
the periphery. Pulse transit time (PTT) is the time it takes 
for the pulse pressure wave to travel from the heart to the 
periphery, and it is estimated by computing the time 
between systole at the heart (as indicated by the R-wave 
of the ECG) and the peak of the pulse wave reaching the 
peripheral site where PPG is being measured. Heart 
Sound signal measures sounds generated during each 
heartbeat. These sounds are produced by blood 
turbulence primarily due to the closing of the valves 
within the heart. The features extracted from the heart 
sound signal consisted of the mean and standard 
deviation of the 3rd, 4th, and 5th level coefficients of the 
Daubechies wavelet transform. Bioelectrical impedance 
analysis (BIA) measures the impedance or opposition to 
the flow of an electric current through the body fluids 
contained mainly in the lean and fat tissue. A common 
variable in recent psychophysiology research, pre-
ejection period (PEP) derived from impedance 
cardiogram (ICG) and ECG measures the latency between 
the onset of electromechanical systole, and the onset of 
left-ventricular ejection and is most heavily influenced by 
sympathetic innervation of the heart. Electrodermal 
activity consists of two main components – Tonic 
response and Phasic skin conductance response. Tonic 
skin conductance refers to the ongoing or the baseline 
level of skin conductance in the absence of any particular 
discrete environmental events. Phasic skin conductance 
refers to the event related changes that occur, caused by a 
momentary increase in skin conductance (resembling a 
peak). The EMG signal from Corrugator Supercilii muscle 
(eyebrow) captures a person’s frown and detects the 
tension in that region. It is also a valuable source of blink 
information and helps us determine the blink rate. The 
EMG signal from the Zygomaticus Major muscle captures 
the muscle movements while smiling. Upper Trapezius 
muscle activity measures the tension in the shoulders, 
one of the most common sites in the body for developing 
stress. The useful features derived from EMG activity 
were: mean, slope, standard deviation, mean frequency 
and median frequency. Blink movement could be 
detected from the Corrugator Supercilii activity. Mean 
amplitude of blink activity and mean interblink interval 
were also calculated from Corrugator EMG. 
Various signal processing techniques such as Fourier 
transform, wavelet transform, thresholding, and peak 
detection, were used to derive relevant features from 
the physiological signals. All these features mentioned 
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above are powerful indicators of the underlying 
affective state of the person showing this response. We 
have exploited this dependence of a person’s 
physiological response on affect to detect and identify 
engagement in real-time 
Some of the above-mentioned physiological signals and a 
few others have been used by researchers in the past to 
study attention/engagement in people (Fredriskon, M. et 
al 1986, Pope, A. T. et al, 1995). Spontaneous skin 
conductance activity has been shown to be associated 
with task engagement (Pecchinenda, A., & Smith, C. A., 
1996). It was also shown in a later work by Kirby and 
Smith that increased effort and increased memory load 
caused an increase in skin conductance responses (SCRs) 
within a trial; on the other hand, increased vigilance was 
associated with fewer SCRs (Kirby, L. D., & Smith, C. A., 
1997). Fairclough and Venables examined a range of 
psychophysiological responses – electroencephalogram 
(EEG), electrocardiogram (ECG), Skin Conductance (SC), 
electro-oculogram (EOG), and respiratory rate and found 
that psychophysiology predicted a significant proportion 
of the variance for task engagement (Fairclough, S. H. & 
Venables L., 2005). Iani et al. found a significant 
difference in blood pulse volume amplitude between rest 
and task periods, suggesting that the measure reflected 
changes in sympathetic activity due to task engagement 
(Iani, C. et al, 2004). 
Their results also indicated that reduced pulse wave 
amplitude, signaling vasoconstriction, resulted when 
participants spent effort. Many of these studies provide a 
basis for our investigation. However, unlike our work, 
none of the above-mentioned studies attempts to infer the 
underlying psychological state in real-time. Furthermore, 
none of these works is in the field of human-robot 
interaction. 
Various methods of extracting physiological features exist 
but efforts to identify the exact markers related to 
emotions, such as anger, fear, or sadness have not been 
successful chiefly due to person-stereotypy and situation-
stereotypy 
(Lacey, J. L. & Lacey, B. C., 1958). That is, within a given 
context, different individuals express the same emotion 
with different characteristic response patterns (person-
stereotypy). In a similar manner, across contexts the same 
individual may express the same emotion differentially, 
with different contexts causing characteristic responses 
(situation-stereotypy). The novelty of the presented 
affect-recognition system is that it is both individual- and 
context-specific in order to accommodate the differences 
encountered in emotion expression. It is expected that in 
the future with enough data and understanding, affect 
recognizers for a class of people can be developed. 
The participants periodically reported their perceived 
subjective emotional states. This self-report was collected 
using a battery of fourteen questions rated on nine-point 
Likert scales. These questions asked them to report their 
emotions such as anxiety, challenge, and engagement as 
related to the task that they just performed. An 

engagement index was determined from the rating that 
the participants provided regarding their engagement 
during the task. 
 
4.3. Engagement Prediction based on Regression Tree 
In the previous research works in emotion recognition, 
change in emotion has been considered either along a 
continuous dimension (e.g., valence or arousal) or 
among discrete states. Various machine learning and 
pattern recognition methods have been applied for 
determining the underlying affective state from cues 
such as facial expressions, vocal intonations, and 
physiology. Fuzzy logic has been employed for 
emotion recognition from facial expression (Moriyama, 
T. et al 1999). Fuzzy logic has also been used to detect 
anxiety from physiological signals by our research 
group 0 and by Hudlicka et al. in (Hudlicka, E., & 
McNeese, M. D., 2002). There are several works on 
emotion detection from speech based on k-nearest 
neighbors algorithm (Petrushin, V. A., 2000), linear and 
nonlinear regression analysis (Rani, P. et al 2003). 
Discriminant analysis has also been used to detect 
discrete emotional states from physiological measures 
(Ark, W. et al 1999). A combination of Sequential 
Floating Forward Search and Fisher Projection methods 
was presented in (Vyzas, E., & Picard, R. W., 1998) to 
analyze affective psychological states. Neural networks 
have been extensively used in detecting facial 
expression (Zhao, J., & Kearney, G., 1996), facial 
expression and voice quality (Fellenz, W., A. et al, 
2000). The Bayesian approach to emotion detection is 
another important analysis tool that has been used 
successfully. In (Qi, Y., & Picard, R., 2002) a Bayesian 
classification method was employed to predict the 
frustration level of computer users based on pressure 
signals from mouse sensors. A Naïve Bayes classifier 
was used to predict emotions based on facial 
expressions (Sebe, N. et al, 2002. A Hidden Markov 
Model based emotion detection technique was 
investigated for emotion recognition (Cohen, I. et al, 
2000). 
In this paper we have used regression trees (Breiman, 
L., 1993) (also known as decision trees) to determine a 
person’s affective state from a set of features derived 
from physiological signals. The choice of regression 
tree method emerges from our previous comparative 
study of four machine learning methods- K-Nearest 
Neighbor, Regression Tree, Bayesian Network and 
Support Vector Machine as applied to the domain of 
affect recognition (Liu, C. et al 2005). The results 
showed that regression tree technique gave the second 
best classification accuracy – 83.5% (after Support 
Vector Machines that showed 85.8% accuracy) and was 
most space and time efficient. Regression tree method 
has not been employed before for physiology-based 
affect detection and recognition. Person-specific 
regression trees were created to handle the occurrence 
of person-stereotypy. 
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Physiological 
Response 

Features derived Label usedir Unit of measurement 

Sympathetic power Sym Unit/Square Second 
Parasympathetic power Para Unit/Square Second 
Ratio of Sympathetic to Parasympathetic 
power 

Sym Para Unit/Square Second 

Mean IBI IBI ECGmean Milliseconds 
Std. of IBI IBI ECGstd Standard Deviation (no unit) 
Mean amplitude of the peak values of 
the PPG signal (Photoplethysmogram) 

PPG Peakmean Micro Volts 

Standard deviation (Std.) of the peak 
values of the PPG signal  

PPG Peakstd Standard Deviation (no unit) 

Cardiac activity 

Mean Pulse Transit Time PTTmean Milliseconds 

Mean of the 3rd,4th, and 5th level 
coefficients of the Daubechies wavelet 
transform of heart sound signal 

Mean d3 
Mean d4 
Mean d5 
 

No unit Heart Sound 

Standard deviation of the 3rd,4th, and 5th 
level coefficients of the Daubechies 
wavelet transform of heart sound signal 

Std d3 
Std d4 
Std d5 
 

No unit 

Bioimpedance Mean Pre-Ejection Period PEPmean Milliseconds 
 Mean IBI IBI ICGmean Milliseconds 

Mean tonic activity level Tonicmean Micro-Siemens 
Slope of tonic activity Tonicslope Micro-Siemens/Second 
Mean amplitude of skin conductance 
response (phasic activity) 

Phasicmean Micro-Siemens 

Maximum amplitude of skin 
conductance response (phasic activity) 

Phasicmax Micro-Siemens 

Electrodermal 
activity 

Rate of phasic activity Phasicrate Response peaks/Second 
Mean of Corrugator Supercilii activity Cormean Micro Volts 

Std. of Corrugator Supercilii activity Corstd Standard Deviation (no unit) 
Slope. of Corrugator Supercilii activity Corslope Micro Volts/Second 
Mean Interbeat Interval of blink activity IBI Blinkmean Milliseconds 
Mean amplitude of blink activity Amp Blinkmean Micro Volts 
Standard deviation of blink activity Blinkstd Standard Deviation (no unit) 
Mean of Zygomaticus Major activity Zygmean Micro Volts 
Std. of Zygomaticus Major activity Zygstd Standard Deviation (no unit) 
Slope. of Zygomaticus Major activity Zygslope Micro Volts/Second 
Mean of Upper Trapezius activity Trapmean Micro Volts 
Std. of Upper Trapezius activity Trapstd Standard Deviation (no unit) 
Slope. of Upper Trapezius activity Trapslope Micro Volts/Second 

Electromyograp
hic activity 

Mean and Median frequency of 
Corrugator, Zygomaticus and Trapezius 

Zfreqmean 

Cfreqmedian 

Tfreqmean etc. 

Hertz 

Mean temperature Tempmean Degree Centigrade Temperature 
Slope of temperature Tempslope Degree Centigrade/Second 

Table 1. Physiological Indices and the Features 
 
Regression tree learning, a frequently used inductive 
inference method, approximates discrete valued 
functions that adapt well to noisy data and are capable of 
learning disjunctive expressions. For the regression tree-
based affect recognizer that we built, the input consisted 
of the physiological feature set and the target function 

consisted of the affect levels (participant’s self-reports 
that represented the participant’s assessment of his/her 
own affective state). The main challenge was the complex 
nature of the input physiological data sets. This 
complexity was primarily due to the (i) high 
dimensionality of the input feature space (there are 
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currently forty-six features and this will increase as the 
number of affect detection modalities increases.), (ii) 
mixture of data types, and (iii) nonstandard data 
structures. Additionally, a few physiological data sets 
were noisy where the biofeedback sensors had picked up 
some movement artifacts. These data sets had to be 
discarded, resulting in the missing attributes. 
In this work, we used regression tree to determine a 
participant’s level of engagement fro his/her 
physiological response. The objective was to train a 
regression tree such that it could accept as input an array 
of feature vectors derived from physiological signals and 
provide as input the engagement level associated with it. 
The output was a discrete number in the range 0-9 where 
0 signified lowest level and 9 signified highest level of 
engagement. The steps involved in building a regression 
tree are shown in Fig. 1. Physiological signals recorded 
from the participant engaged in PC-based task were 
processed to extract the input feature set. The 
participant’s self-report at the end of each epoch 
regarding his/her affective states provided the target 
variable or the output. While creating the tree, two 
primary issues were: (i) Choosing the best attribute to 
split the examples at each stage, and (ii) Avoiding data 
over fitting. Many different criteria could be defined for 
selecting the best split at each node. In this work, Gini 
Index (Breiman, L., 1993) function was used to evaluate 
the goodness of all the possible split points along all the 
attributes. For a dataset D consisting of n records, each 
belonging to one of the m classes, the Gini Index can be 
defined as: 
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where pi is the relative frequency of class i in D. If D is 
partitioned into two subsets D1 and D2 based on a 
particular useful attribute, the index of the partitioned 
data Gini(D,C) can be obtained by: 
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where n1 and n2 are the number of examples of D1 and 
D2, respectively, and C is the splitting criterion. Here the 
attribute with the minimum Gini Index was chosen as the 
best attribute to split. We used the Statistics Toolbox of 
Matlab for regression tree functions such as generating, 
pruning and evaluating regression trees 
(www.mathworks.com). Trees were pruned based on an 
optimal pruning scheme that first pruned branches that 
gave the least improvement in error cost. Pruning was 
performed to remove the redundant nodes as bigger, 
overfitted trees have higher misclassification rates. Thus, 
based on the input set of physiological features described 
earlier, the affect recognizer provided a quantitative 
understanding of the person’s affective states. 

 
Fig. 1. Creating a Regression Tree 
 
5. Engagement-Based Teleoperation 
 
5.1 Control Architecture for Implicit Human-Robot Interaction 
For a human-robot interaction to mimic similar human-
human interaction, it is essential that both the robot and the 
human have implicit as well as explicit communication with 
each other. This requires a systematic information flow 
between the human, robot and the environment. A 
generalized model of human-machine system developed by 
Riley (Riley, V., 1989) represents such an information flow 
that can be systematically modified according to any rule-
base to represent a particular level of automation in human-
machine interaction. It is a powerful front-end analysis 
method that can be employed to identify human-machine 
protocols as well as the automation concerns that 
accompany the design of such systems. The general model 
represents the most complex level of automation embedded 
in the most complicated form of human-machine interaction. 
We modified this model to represent the specific system 
developed for human-Oracle interaction in a 
teleoperation experiment. This system mimicked a 
teleoperation task where an operator teleoperated a 
mobile robot in a given workspace. In this case Oracle is 
expected to behave as an intelligent partner to the 
operator. This requires Oracle to respond appropriately 
to the engagement levels of the operator while not 
undermining the importance of its own safety and goals. 
The reduced architecture is shown in Figure 1. 
As seen in Figure 2, in the top-left “robot input” 
quadrant, Oracle receives information from both the 
world and the operator through various sensors. The 
world information is obtained through the infrared 
sensors, touch sensors, light sensors etc. Oracle receives 
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this information, infers the world state and forms a model 
of the world for itself. Operator information that is 
received by Oracle is of two types – control input and 
affective input. The control input contains teleoperation 
information and is provided to Oracle through a joystick. 
The affective information is obtained through 
biofeedback sensors that measure physiological signals of 
the operator, for instance- cardiac activity, electrodermal 
activity, muscle activity, temperature etc. This 
information is used to interpret the affective state of the 
operator, for example to judge whether the operator is 
getting inattentive, fatigued, or stressed (implicit 
communication). Oracle also receives explicit commands 
from the operator through the control sensors (explicit 
communication). Instead of blindly following every 
teleoperation command of the operator, Oracle 
continuously evaluates the engagement level of the 
operator and modifies its behavior accordingly. On 
detecting low levels of engagement, Oracle alerts the 
operator and in some cases can even stop itself. 
The “robot output” quadrant contains nodes that 
determine the behavior of Oracle. Oracle uses its 
representation of the world, knowledge of its own goals 
and the urgency level of the situation to determine the best 
course of action. Oracle is assisted by a set of rules to 
determine its behavior as shown in Figure 3. In our 
previous works 0,0 we have employed a hybrid 
subsumption architecture model to determine Oracle’s 
behavior. Oracle’s decision results either in an action or 
initiation of speech on its part. In the “human input” 
quadrant the human receives information both from the 
world and Oracle. The human can perceive the dialogues 
initiated by Oracle and observe its behavior. He/she then 
exploits this knowledge to infer Oracle’s state as well as 
predict what it might do next. This inference, the world 
representation that the human forms, and his/her own 
ultimate goals are all employed by the human to determine 
the next action. The resulting human’s action might be 
simply to monitor Oracle’s actions or issue a command to 
it. Hence, in each cycle of the loop, there is a methodical 
information flow in between the world, Oracle and the 
human. At the very fundamental level, this is a sense-infer-
plan-act loop wherein, Oracle and the human utilize the 
available information to interact with each other and to 
take actions that influence each other and the world. 
 
5.2 Teleoperation Experiment 
The objective of the experiment was to develop and 
implement real-time, affect-sensitive human-robot co-
ordination during teleoperation. The robot was expected 
to recognize and respond to the varying levels of 
engagement of the human operator. 
However, due to the limitations explained in Section III, 
the experiment was performed in two parts. First, we 
designed a regression tree based affect-recognizer that 
could identify or “understand” the physiological 
responses of a person. Second, we implemented a 
human-robot co-operation task consisting of Oracle being 

teleoperated by an operator/user whose (apparent) 
physiological state was being continuously monitored. 
The first part of the experiment is described in Section IV. 
The second part of the experiment consisted of 
implementing a real-time human-robot interaction during 
teleoperation. Oracle was supposed to recognize the 
operator’s level of engagement through continuous 
physiological sensing, and act accordingly to address the 
situation. Since closed-loop experiment could not be 
performed, the physiological signals collected in the first 
part were streamed in at real-time speed to Oracle as if it 
were coming from the person controlling the robot. This 
allowed us to demonstrate that if such physiological 
signals are generated during a human-robot task, the 
robot could detect the engagement level of the operator 
and subsequently modify its behaviors. Controlling the 
Oracle was done by sending low-level commands from a 
desktop PC using a standard RS-232 serial port. 
Commands were wirelessly sent to Oracle by the 
operator that allowed control over the drive motors, 
heading motion, gripper, sensors, etc. The teleoperation 
task consisted of picking and depositing of objects (coke 
cans) by Oracle in a given workspace. Oracle was 
teleoperated by an operator via a joystick in 
accomplishing this task. While the teleoperation task 
continued, the physiological data collected in the first 
part of the experiment was sent to the robot as if coming 
from the operator in real time. The behavior 
modifications of Oracle depended upon the level of 
operator engagement detected. The continuous values 
obtained from regression tree were discretized to obtain 
three levels of engagement – high, medium and low. As 
shown in Figure 3 Oracle could switch between three 
types of behavior depending upon the level of operator 
engagement. When it detected high levels of engagement, 
it followed the operator’s commands being sent to it. As 
the level of engagement decreased to medium level, it 
alerted the operator by speaking out its current 
movement, for instance, “I am turning left now.” When 
the level of engagement dipped lower, Oracle lowers its 
speed to a minimum after giving a warning to the 
operator and eventually stopped. 

 
Fig. 2. Human-Robot Interaction Framework (Modified 
From Riley’s Original Information Flow Model) 
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Fig. 3. Behavior Types for Mobile Robot 
 
6. Results 
 
6.1 Engagement Detection 
Forty nine features/indices were derived from the 
following measured physiological signals – ECG, EMG 
(corrugator, zygomaticus, and upper trapezius), 
peripheral temperature, galvanic skin response, blood 
pulse volume, heart sounds, and. bio-impedance. On 
determining the correlation between the indices derived 
from the physiological signals and the self reported level 
of engagement, it was found that certain physiological 
indices were well correlated with the state of 
engagement. A correlation of 0.3 and above was 
considered a significant value and was supported by 
previous research. Fig. 4 shows the correlation values for 
indices that were highly correlated with engagement for 
Participant 5. The useful indices for this participant were 
IBI - dz/dt (Interbeat Interval from the difference signal of 
bio-impedance), IBI- ECG (R-R interval from ECG), Tonic 
Mean (mean level of tonic skin conductance), Phasic Rate, 
Phasic Mean, Phasic Max (rate, mean amplitude and 
maximum amplitude of the phasic response of skin 
conductance), Temp std (standard deviation of the 
peripheral skin temperature), blink amp (mean amplitude 
of the eye blink response), and Zyg Med Freq (Median 
frequency of zygomaticus EMG). 

 
Fig. 4. Correlation of Physiological Indices with Self-
Reported Engagement for Participant #1 

For each of the six participants there were distinct 
physiological indices that showed significant correlation 
with their state of engagement. However, these indices 
were not identical for all participants due to the well-
known phenomenon of subject-stereotypy (Within a 
given context, different individuals express the same 
emotion with different characteristic response patterns). 
Fig. 5 shows the correlations for Participant #1. Person-
stereotypy can be seen on comparing the two plots. 

 
Fig. 5. Correlation of Physiological Indices with Self-
Reported Engagement for Participant #5 

Not only were the useful indices different for the two 
participants, the extent of correlation for the same index 
is different for each participant. It was observed that 
phasic rate was well correlated for all the participants. 
The other important indices were mean pulse transit 
time, mean blink amplitude, mean tonic level, and 
standard deviation of zygomaticus EMG. Such individual 
differences can be accounted for by the phenomena of 
person-stereotypy. We used regression tree methodology 
to compute a participant’s level of engagement from a set 
of features derived from his/her physiological response. 
Our approach was to determine the specific pattern for 
each person and automatically create a regression tree 
according to individual responses. 
It was also observed that based on the indices, it was 
possible to distinguish between different affective states, 
for instance between engagement and anxiety and 
between engagement and boredom. Due to space 
limitation, we only present the results of selected 
participants, even though the traits observed were 
generic. Fig. 5 shows that the indices that indicate 
engagement can be differentiated well from the state of 
boredom while Fig. 6 shows that engagement is also well 
differentiated from the state of anxiety for Participant #5. 
All the six participants showed clear distinction between 
the five measured affective states based on physiological 
indices. 
 
6.1 Experimental Demonstration of Adaptive Robot Behavior 
During the teleoperation experiment, an operator would 
control Oracle via a joystick to perform a pick and place 
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task. Oracle was supposed to pick specific objects (empty 
coke cans) from the workspace and place them in a 
specified area. At the same time, Oracle also received 
physiological feedback as if it were coming in real-time 
from the operator. Oracle modified its behaviors 
depending upon the perceived engagement level of the 
operator (Fig. 3). During the experiment, an engagement 
index inferred from the various physiological indices 
described before was computed every 30 seconds. The 
engagement index was computed using the regression tree 
that was previously created from the data collected during 
the PC based cognitive tasks. Self-reports of participants 
were available every three minutes to validate the 
correctness of the real-time algorithm used for engagement 
detection. There were 36 teleoperation trials done (six for 
each participant). Each session lasted one hour. Fig. 8 
shows a teleoperation trial in progress. 

 
Fig. 6. Comparison between Correlation of Self-Reported 
Boredom and Self-Reported Engagement with 
Physiological Indices for P #5 

 

Fig. 7. Comparison between Correlation of Self-Reported 
Anxiety and Self-Reported Engagement with 
Physiological Indices for P #5 

 
Fig. 8. Teleoperation Experiment 

 
Fig. 9. Continuous Evaluation of Engagement Index 

Fig. 9 shows the continuous evaluation of the 
engagement level in real-time along with the periodic 
self-reporting from Participant #1. 
The solid line indicates the predicted value of 
engagement (calculated every 30 seconds) and the stars 
indicate the periodic self-reporting (every 3 minutes) of 
the participant regarding his/her perceived engagement. 
It can be seen that during the one-hour trial, there were 
two missed alarms and one false alarm. 
For Participant #3, a confusion matrix (Table 2) shows the 
number of false alarms and missed alarms during the real 
time detection of engagement from the physiological data 
during all of the six sessions (training data set size is 50). 
The engagement values have been divided into three 
different groups – low, medium and high according to 
the rule based system that determines the behavior 
changes. It can be seen that the detection is accurate 
(17+47+20)/97=86.60 % times, alarms are missed 7/97=7.22 
% and false alarms occur 6/97=6.19 % times. 

 
Table 2 Confusion Matrix for P #3 

Fig. 10 shows the variation in the percentage accuracy of 
the engagement detection system with change in the size 
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of the training set across all participants. The training 
datasets were formed by selecting a subset of the entire 
training dataset while keeping the testing data set 
constant. The accuracies presented in Fig. 10 were 
computed over the invariant testing dataset. 

 

Fig. 10. Mean % Accuracy with Change in Size of 
Training Data Set For All Six Participants 

It can be seen that as the size of training data set was 
increased the overall accuracy became higher. We expect 
that in the future we can train our engagement detection 
system on larger training datasets and thereby achieve 
higher accuracy in detecting engagement. 
 
7. Conclusions and Future Work 
A proof-of concept teleoperation experiment 
demonstrating detection of operator engagement level by 
the robot was presented. An innovative human-robot 
interaction structure was designed and developed 
wherein the robot was sensitive to the engagement of the 
operator it worked with and could adapt its behavior 
according to this perception. This approach 
synergistically combined concepts in affective computing, 
psychology, and robotics to develop a robotic system 
capable of combining implicit and explicit channels of 
communication from the human to intelligently 
determine its optimal behavior. A regression tree based 
prediction system yielded reliable engagement prediction 
with approximately 88% success. We experimentally 
demonstrated that the robot could adapt its behavior 
based on the engagement level of the operator as 
determined from his/her recorded physiological signals 
that were sent to the robot in real-time. 
Future work would consist of expanding the range of tasks 
and contexts to which this framework can be applied and 
increasing the reliability and robustness of engagement 
detection. The next step would be to test the presented 
human-robot interaction framework in closed-loop 
experiment. We would also like to work towards increasing 
the range of affective states detected beyond engagement to 
include frustration, fatigue, boredom, anxiety and anger. 
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