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Abstract This paper presents an efficient and fast method
for fine tuning the controller parameters of robot
manipulators in constrained motion. The stability of the
robotic system is proved using a Lyapunov-based
impedance approach whereas the optimal design of the
controller parameters are tuned, in offline, by a Particle
Swarm Optimization (PSO) algorithm. For designing the
PSO method, different performances are
considered in both joint and Cartesian spaces. A 3DOF
manipulator constrained to a circular trajectory is finally

index

used to validate the performances of the proposed
approach. The simulation results show the stability and
the performances of the proposed approach.

Keywords Impedance control, stability,
Particle Swarm Optimization, Trajectory tracking.

Lyapunov

1. Introduction

In recent time, programming robot arms for maximizing
their capabilities remains a challenging task [1]. Fine
tuning of control parameters is particularly a time
consuming and an expensive procedure [2, 3]. Indeed,
control parameters must take account of coupling effects
between multiple-joints. Furthermore, tuning procedure
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becomes a very complex problem when the robotic arm
must operate in a constrained environment with high-
accuracy performance and high speed. In fact, in such
case, there is an increasing requirement for stable
position/force control strategies [4, 5, 6]. Furthermore, not
only position and speed parameters of the controllers
must be tuned but also force controller parameters.

In many cases, using Artificial intelligence (Al)
techniques is a good alternative to improve controller
performances for robotic arms [7]. A wide range of Al
techniques as neural network [8] and fuzzy logic [9] have
been widely applied to proper tuning controller
parameters of robot manipulators. Successful applications
can be found in [10, 11, 12].

Alternatively, a wide range of new (Al) techniques, have
submerged [13]. These novel techniques are biological-
inspired optimization methods. They iteratively use
random elements to transfer one candidate solution into a
new better solution with regard to a given fitness function.

The main nature-inspired optimization approaches are
Genetic Algorithms (GA), Simulated Annealing (SA),
Tabu Search, Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO) algorithms.
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Some relevant applications of such strategies in robotic
field can be found in [14, 15, 16, 17]. Among the variety of
evolution algorithms, Particle Swarm Optimization (PSO)
algorithm [18, 19] seems to be one of the most promising
techniques [20]. Particularly, PSO algorithms have less
computational ~ complexities  and better
performances [21].

gives

PSO algorithms were successfully applied in several
robotic applications, “For example, see [22, 23, 24, 25]".
Particularly, for tuning the controller parameters of robot
arms in non constraint environment, several papers were
recently proposed, “For example, see [26, 27]”. However,
for the constrained motion case study, very few papers
were devoted to this topic [28, 29].

Based on the lack of results in this framework, this paper
proposes an efficient and fast method for fine tuning the
controller parameters manipulators in
constrained motion using PSO intelligence. The stability
of the constrained robotic system is proved using a
Lyapunov-based impedance approach whereas the
optimal design of the controller parameters are tuned, in
offline, by the PSO algorithm using different index
performances in both joint and Cartesian spaces.

of robot

The remainder of this paper is organized as follows. In
Section 2, the stability conditions using the Lyapunov
based impedance controller for constrained robotic
systems are presented. In section 3, PSO algorithm is
exposed. The case study of fine tuning the controller
parameters for a 3DOF robotic system constrained to a
circular profile are developed in section 4 where the
performances of the proposed strategy are shown by
simulation results.

2. Impedance control

Let consider the dynamics of a serial-chain n-link
constrained robotic arm with n degrees of freedom
described, in the joint space, by:

M(B)6 + H(B,0) + G(8) = U - Ug (1)

where 0 is the nx1 vector of joint displacements, 6 is the
nx1 vector of joint velocities, 6 is the nx1 vector of joint
accelerations, U is the nx1 vector of torque inputs and
U is the nx1 vector of torques exerted by the contact
generalized forces of the manipulator on the environment,
M(0)is the nxn symmetric positive definite inertia matrix,
H(6,6) is the nx1 vector of centripetal and Coriolis torques

and G(0) is the nx1 vector of gravitational torques.

The Cartesian position of the end-effector of the

constrained robotic arm is characterized by a
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vector X €RP wherep is the task space dimension.
Cartesian position is function of the joint displacements
such that:

X =h(0) 2)

where h(8):R"™ — RP denotes the direct kinematics. The

time derivative of the direct kinematic model (2) yields
the following differential kinematic model:

X =J(6)0 ®3)

Where Xis the pxl1Cartesian velocity vector and

J(0) e RP*" is the so-called analytical Jacobian matrix.
The vector of torques due to the contact generalized
forces exerted by the manipulator on the environment can
be written as:

Up= J(©)'F )

The time derivative of the differential kinematic model (3)
can be written as:
X =j(0)6+](6)0 &)

where X is the px1 Cartesian acceleration vector and
J(0) is defined by:

j©=-<50) ©

Given a desired Cartesian position of the end-effector
X4 €RP and a desired contact force Fq €RF, the control

problem aim to ensure:

lim X-X4 =0 )

t—ty
and
lim F-F4 =0 (8

t—t;

The last problem will be solved under the following
assumptions:

Ar: The entire vectors of forceF, Cartesian position X,
Cartesian velocity X and Cartesian acceleration X are
measured.

Az: The Jacobian matrix J(0)is assumed to be full ranked

and bounded for all 0 € R".

As: A desired impedance model for the contact point
between the end-effector of the robotic arm and the
constrained environment is imposed such that [30]:

F, -F

7. =
47X, -X

:Kd -FBdS-‘-MdS2 (9)

where Kg,Bq,My €ERPPare stiffness, damping and
inertia matrices, respectively, and s is the Laplace
operator.
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A« All control feedback gain matrices, used to solve the
control problem are diagonal.

Theorem:

For desired stiffness, damping and inertia matrices
Kg4,Bq, My €ERPPand if there exist diagonal gain
matrices K, K, K; €RP®Psuch that the following
conditions:
K, +(1
K, + (T
My =0

+Kp)Kg >0
+K{)Bg >0 (10)

P*P

or
Kp>0

K, >0 (11)

K¢ =-Ipxp

are satisfied, then the robotic system described by the
dynamical model (1) and the direct kinematic model (2) is
asymptotically stable under the constrained force model:
F=F4-Kq(Xq -X)-Bg(Xg - X)-Mq(Xg -X) (12)
and the control law:
U=J(0)"[Ky(Xq = X)+K, (Xq =X)+K¢(Fy ~F)+F4]+G  (13)
where K,,K,,K; e RP*Pare position, velocity and force

gain matrices, respectively.

Proof:

Let ® e R" and Y(D) € RP the error vectors defined in

the joint and task space, respectively, by:
D=0-04 (14)
Y(®) = X(6) - X (15)
Consider, now, the constrained robot system described by
the dynamic model (1) for the force design (12) and the
control law (13). Using the relations (14) and (15) we can
write [31, 32]:

M@)D+H®, D) +]" (@)K, V(D) +] (DK, V(D) +] T (©)K3 V(@) =0 (16)

where
Kl ZKp +(I+Kf)Kd
Kz ZKV+(I+Kf)Bd (17)
K3 = (I+Kf)Md
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In order to evaluate the relationship between the
dynamics of the constrained robotic system and its
energy, we use Lagrange's equation described by [33]:

YR S )

dtlod ) a0 o0  od

where T(®,®) is the kinetic energy of the constrained

robotic system defined by:
T(qn,dn):%chM(q))cb (19)

and P(®), D(®,®d) are potential energy and dissipation

function respectively. For the Lagrange equation (18) we
can prove that [31]:

OP(D) 4T
o = (@K Y(@) (20)
%:]T(®)K2Y(®)+]T(®)K3Y(®) 1)
o &)< 3400010 @)

Impose, now, to the system (16) to have a Lyapunov
Hamiltonian function defined by [33]:

V(®, D) = T(, D) + P(D) — P(0) (23)

The error system (16) is asymptotically stable if V(d,d)

satisfies the following conditions [34]:

V(0,00=0 if ®=0,0=0 (24)
V(O,D)>0if ®#0,d=0 (25)
V(®, D) <0 if D=0,d#0 (26)

since T(0,0)=0, then V(0,0)=0 so the first Lyapunov
condition (24) is verified. The second Lyapunov condition
(25) will be verified if we prove that V (®) defined by:

VP(CD)=P(CD)—P(O) (27)
is positive definite [33] since the Kkinetic energy

T (D, (15) is positive definite and Vp (0)=0.

From (27) and (20) we can write:
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{avp(CD)} _ {ap(cp)} T @K Y(@) 28)

oo oo
then :
6Vp (D) T B
{GTLH) =J (0K,;Y(0)=0 (29)

Let consider the function W given by:

A%
W - 0 (D) _ 0 (GP((D)j 30)
oot oD opT\ oD

Substituting (20) in (30) we have:

0

0T

(JT(CD)KIY(CD)) =w;; +J (@)K, J(®) (31)

where:

T

i
At the equilibrium point we have:
[Wlo-o =37 OK,J0) (32)

Based on (32), the function W is positive definite at the
equilibrium point if K, is positive definite. Hence the
second Lyapunov condition (25) is satisfied if K, is

positive definite.

Using the expression (23) we have:

dV(®) _ dT(®, D) . dP(@)

33
dt dt dt (33)
From equation (19) we can write:
dT(®,®) .7 . dM(D) @
———= =0 M(P)D+P ————
at T (34)
=dTM(®)d + H(D, D)
Furthermore,
dP(®) _ ;1 OP(P) 35)
dt oD
Substituting (20) in (35) we have:
% =TT (@)K, Y(D) (36)
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Substituting (34) and (36) in (33) we obtain:

J—)dvi’d) = dTM(@)bD + DTH(®, & )+ DT T (@)K, V(@) (37)

From (16) we can write:
M)+ H(, b} (@)K, V(@)= T (@)K, Y(@)+] (@)K, ¥(@) (38)

Substituting the second member of (38) in (37) gives:

Mj?—q’):—ch<JT(cI>)I<2Y(cI>)+JT(cD)KsY(cD» (3)

Using relations (3), (14) and (15) gives:

NIy 0yeic o) (40)

The third Lyapunov condition (26) is then verified if K,
is positive definite and Kj; is null. Note that K5 is null if
I+K; =0 or M4 =0.The control objectives (7) and (8)
are then reached if the conditions (10) or (11) are satisfied.
However, to ensure some desired performances, tuning
the controller gain matrices K, and K, €RP*P remain a

complex and time consuming procedure. This difficult
problem will be solved in the next section.

3. PSO-Impedance Controller
3.1 Overview of PSO algorithm

The particle swarm optimization (PSO) method was
firstly introduced by Kennedy and Eberhart [18]. It is a
relatively new evolutionary algorithm that may be used
to find optimal or near optimal solutions in big search
space. The PSO method is developed from study on
swarm such as fish schooling and bird flocking. It can be
easily stable
characteristic with good computational efficiency.

implemented, and has convergence

During flight, each particle adjusts its position according
to its own experience, and the experience of other
particles, making use of the best position encounter by
itself and its neighbors. The swarm direction of a particle
is defined by the set of particles neighboring the particle
and its history of experience. The best previous position
of ith particle is recorded and represented as pbest;. The

best particle among all the particles in the group is
represented as gbest [35].

The PSO concept consists of, at each time step, changing
the velocity (or acceleration) of each particle itoward
itspbest and the gbest position. For the ith particle, a

new velocity and position are updated such that [19]:
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Vi(k“) =wl vVi(k) + ¢y -rand() - (pbest; — pgk))

(41)
+ ¢, -Rand()- (gbest(k) - pgk))

p§k+1) _ pgk) + Vi(km (42)

for k=1,2,..,Nand i=1,2,.., M and where:

M Number of particles in a group

N Maximum number of iterations

v Velocity of ith particle at iteration k

p'¥ Position of ith individual at iteration k
pbesti(k) Best position of ith individual at iteration k
gbest® Best position of the group until iteration k
w® Inertia weight factor at iteration k

€1,Cy Acceleration factors

rand () Random numbers between 0 and 1

Rand () Random numbers between 0 and 1

In general, the inertia weight is calculated according to
the following equation:

W(k) _ WmaXI:TWmin .k (43)

The design steps for implementing the PSO algorithm are
given as follow:

1. Initialize a population array of particles with
random positions and velocities on d- dimensional
space.

2. For each particle, evaluate the desired optimization
fitness function.

3. Compare particle’s fitness evaluation with its

pbest; . If current value is better than pbest; , then

set pbest; equal to the current value.

4. Identify the particle in the neighborhood with the
best success so far, and assign it to gbest .

5. Change the velocity and position of the particle
according to equations (41) and (42) respectively.

6. If a criterion is met (usually a sufficiently good
fitness or a maximum number of iterations), go to 7
else go to 2.

7. The particle that generates the latest gbestis an

optimal controller parameter.
3.2. PSO-Controller tuning

To design the impedance controller (13), only the stability
condition (11) will be adopted in this paper to ensure that
My # 0po . In this case, the force matrix gain is well

defined as K;=-I, . Taking on account of the

p-
assumption A4, the member of each individual of the
swarm will be composed of the diagonal elements of the
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Figure 1. Impedance controller tuned with PSO

gain matrices K, K, €RP*P. Consequently, whatever

the number of degrees of freedom for the constrained
robotic arm, the dimension of the individual member will
be always 4 for a planar robot and 6 for a three
dimensional robot.

Fig.1 illustrates the block diagram of optimal design of
the proposed Lyapunov-based impedance controller for
constrained robotic arms using PSO algorithm.

3.3. Performance indexes

A fundamental step in applying PSO algorithm remains
in choosing the cost function or performance index which
is used to evaluate fitness of each particle. In this paper
the following cost functions:

1. Mean of Root Squared Error (MRSE)

2. Mean of Absolute Magnitude Error (MAE)

3. Mean of Time-weighted Magnitude Error (MTE)

Based on (7) and (8) we consider furthermore a
multiobjectif optimization problem to be solved where
the two objectives to be reached are really in conflict.
Furthermore the multiobjectif problem will be solved
under the stability constrained conditions (11).

We first try to solve the problem in the joint space by
considering the following multiobjectif cost functions:

N N
MRSE = — S ek e + SR B
N{gz k=1 (44)

w1 Sl S
0N & Bl 2, 2 (45)
(& 7 Noor
MTEg=—| ) t-e e+ ) t-F -
0 N[E{ k "€k Ei Fe K (46)
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where:
F =[Fq(k) - F(0)]" e %P

e =014 =0,(K) - 0, 4(k)=0, (k)] eR"

€k :l.ai,d(k)*ei(k)Je R, i=1,--n

Fiy =[Fia(0) - Fi(k)]e %, j=1-p

0;q(k) design the ith element of desired angular

displacement vector. F;4(k)andF;(k) design the jth

element of the desired force vector and the jth element of
the force vector, respectively.
The optimization problem will be also solved in the

Cartesian space by considering the following
multiobjectif cost functions:
1 [or &[T
MRSE , = — ET.E, + S4B -F
SEACER Y
MAE, = §§|E |+§;§;|F |
=— ' 1
Y Nga "t S (48)
MTE, =L St-Ef-E +§:t-FT-F
CNLE R E T (49)

where:

E, =[Xq(k) - X(K)[" € ®P
Ejp =[Xja(0)-X;0)|eR, j=1-.p

X;(k) and X4 (k) design the jth element of Cartesian

displacement vector and the desired Cartesian

displacement vector, respectively.
4. Application to a 3DOF constrained robotic arm

To verify the stability and performances of the proposed
controller tuned by PSO intelligence, a 3DOF robotic arm
constrained to circular trajectory is considered (see Fig. 2).

4.1. The 3DOF constrained robotic arm

The dynamical model (1), kinematic model (2) and
differential kinematic models (3) of the 3DOF constrained
robotic arm are defined, respectively, by:

Il +m1k% +m2L21 +m3L21 a-Cqip b'C13
M(©)= a-cpp

b‘C13 C-Cp3

12 + mzk% +1’1’13L22 C-Cy3
13 + m3k§
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Figure 2. 3DOF manipulator at constrained circular motion

0 a-spp
Hp,0)=|-as, 0
—d-syp —c-sinsps 0 6%

d'Sl2 9%
C-Sp3 9%

(m1k1 + m2L1 + m3L1) +C1
GO)=g| (myky+m3l;y)-cy
m2k3~c3
Ly-c;+Ly-cp+Ly-c
h(e _ 1% 2°%2 3°%3
Ll'Sl+L2'Sz+L3'S3
*Ll'Sl
Ll'Cl

*Lz *Sp *L3 ’53:|

L3 *C3

I(e){

L2 -Cp
where:

cpp =cos@ —0,), €13 =cos®, —63), cr3 =cosO, —6;)
s12 =sin®; —0,), 5,3 =sin@®, - 05)

¢, =cosb;, ¢, =cosh,, c; =cosb;

s; =sinb;, s, =sind,, s; =sin6;

a=m,Lk, + m3L;L,

b= m3L1k2
Cc= m3L2k3
d= m3L1k3

The parameters m;,L;, k; and I; , (i=12,3), design
mass, length, position of gravity center and moment of
inertia of the links of the 3DOF constrained arm.

4.2 Trajectory generation

The desired Cartesian displacement, speed and

acceleration of the constrained robotic system are used as
inputs of the control laws (13). It is essential then to
generate desired trajectories. Assume that joint motion
must begin and end regularly such that:

0;(tg) = 050; 0;(tg) =0
0;(tf) = 0iq; 0i(tf) =0

where t; and t; design initial and terminal times.

Reference joint trajectories are chosen as:
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el,d(t) = aio + ailt + aiztz + ai3t3

éi,d(t) =aj + 2ai2t + 3ai3t2

where:
a0 It t% t?) B 0i0
aj _ 1 te tfz- t% eid
ap| [0 1 2t, 3t2] |0
a | |0 1 2t 32| | O

In the Cartesian space, we impose a circular motion. To
realize this profile, we will introduce a sinusoidal signal
on each axis. So, the axis references correspond to a
harmony excitation in quadratic phase. Therefore, for a
circle radiusR, the desired end-effector motion of the
constrained robotic system will be defined by:

X Rcos(a30 +a31t+a32t2 +a33t3)
d= .
R sm(a30 + a31t + a32t2 + a33t3)

4.3. Simulation Results

Simulation results are conducted solving the dynamical
robotic model (1) using relations (2), (3), (4), (5) and (6) for
the control law (13) and the force design (12). The
parameter data of the robotic system are given by Table 1.

Designation Variable | Value
Number of particles in a group M 30
Maximum number of iterations N 50
Minimum inertia weight factor Wmin 0.4
Maximum inertia weight factor W max 0.9
Search interval for k,, lp,.. kp,..J] T100 900]
Search interval for k, k.. k] [30 500]
Search interval velocity of ki, L k.. 72| o 450]
Search interval velocity of k,, o k. /2] o 250]
acceleration constants €1 C2 2

Table 2. Variables of the PSO algorithm

Link i mi(Kg) Li(m) kim) | Li(Kgm=?)
1 1.960 0.321 0.140 0.016
2 1.120 0.253 0.109 0.006
3 0.420 0.187 0.095 0.001

Table 1. Physical parameters of the robotic arm

Desired circular motion is obtained by imposing
0;0=[0 0 0fFand 6,3=[r m = as initial and final
joint positions, t,=0and t; =1s as initial and final
times and R=0.76m for the circle Radius. The desired

circular trajectory is then given by:

_[0.76cos(3ntt? - 2mit?)
471 0.76sin@mt? - 2mt3)

PSO intelligence is applied using the variables given by
Table 2. To carry out simulation results, two case studies
for desired contact force, stiffness, damping and inertia
parameters were assessed (see table 3). Fig. 3 and Fig. 4
show the convergence characteristics of cost functions for
the two cases with respect to index performances (44)-
(49).
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Case study 1 Case study 2
Fy [6 off [6 6ff

My diag[0.02 0.02] | diag0.05 0.05]

By diag[5 5] diag[10 10]

Ky diag[20 20] diag[10 10]

Table 3. Case study parameters

MRSE, | MAE, MTE,

kp, 799.3 640.9 757.8
kp, 839.6 727.2 322.4

ky, 358 307.2 500
ky, 297.2 319.5 290.6

Processing time (s) 1961 1965 2093
Best fitness value 0.0369 0.0408 0.0374

Table 4. PSO-best controller tuning in the joint space: casel

MRSE, | MAE, MTE,
kp, 691 646.8 746.6
kp, 860.2 699.6 380.9
ky, 450.1 464.8 451.4
ky, 272.6 458.8 438.3
Processing time (s) 2973 2958 3210
Best fitness value 0.0457 0.0458 0.0582

Table 5. PSO-best controller tuning in

the joint space: case2

MRSE MAE y MTEy
kp, 255 566.1 551
kp, 801.5 572.4 391.4
ky, 500 269.3 200.5
ky, 367.4 222.2 324.5
Processing time (s) 1988 1960 2052
Best fitness value 0.0286 0.0292 0.0355

Table 6. PSO-best controller tuning in the Cartesian space: casel

Haifa Mehdi and Olfa Boubaker: Impedance Controller Tuned
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Table 7. PSO-best controller tuning in the Cartesian space: case2

Best cost functions and their corresponding controller
gain parameters were reported in Tables 4 and 5 using
the performance indexes (44)-(46) and in Tables 6 and 7
using the performance indexes (47)-(49). It is clear that
optimization procedure with respect to the Cartesian
space errors gives better results.

Best solutions are reported in Table 8 and will be used in
the following to illustrate the performances of the PSO-
impedance controllers. Fig. 5 and Fig. 6 show the
convergence of the PSO algorithm to these solutions with
respect to the number of iterations. Fig. 7 and Fig. 8 show
the evolution of joint positions and velocities using best
controller gains whereas Fig. 9 and Fig. 10 illustrate the
tracking performances of the desired forces and the
smooth profile of control laws.

L oo "
2 \ MREEx
o % MAEx
= L —
s 5 00 MTEx
g8 |
25
£4 003F i
i
=
=
= 0.02s 1 L L L L L L 1

I
o 5 10 158 20 25 30 35 40 45 a0
iterations

0.05 T

. MRSEg
ER MAES
= ? 0.045 - MTEa
w E
§ =
=2 F ]
E2 0.04

=

[u} 3 10 15 20 25 30 35 40 45 50
iterations

Figure 3. Evolution of fitness functions: casel

»
=
25 0055 - -
z& 005p MRSEx ]
@ E 0.045 MaEx  H
2
5 ooaf MTEx
=
S 00%F i E

T T T T
o 5 10 158 20 25 30 35 40 45 a0
iterations

0.085
a
2 § 0.06 - B
B
w € 0055 - — MRSEs
=
o2,
cw — MAEs
= 005f
[y = — MTEs
0.045 . . . . | | | | 3

[u} 3 10 15 20 25 30 35 40 45 50
iterations

Figure 4. Evolution of fitness functions: case2
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MRSE MAE MTEy Kp, Kp, ky, ky,
kp, 821.3 493.3 900 Case study 1 255 801.5 500 367.4
kp, 792 1 487.2 6205 Casestudy 2 | 493.3 487.2 331.5 356.2
Ky, 434.2 331.5 485.2 Table 8. Case study controller parameters
ky, 364.5 356.2 4363
Processing time (s) 2969 2966 3305 Position and force errors are depicted in Fig. 11 and Fig.
Best fitness value 0.0342 0.0341 0.0543 12, respectively. Results prove the tracking performances.

Fig.13 shows the evolution of the constrained robotic arm
to a circular profile.

w
i}
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Y o fus]
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[} [} [}
T T T

!
= 5
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I I
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T
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. L L L I
o 5 10 158 20 25 30 35 40 45 a0
iterations

550

200 -

Ewolution of ky
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Figure 5. Convergence of controller parameters: casel
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Figure 6. Convergence of controller parameters: case2
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Figure 12. Position and force errors: case 2
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Figure 13. Robotic arm constrained to a circular profile
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6. Conclusion

This paper proposes a Lypunov-based impedance
controller tuned by a multiobjectif Particle Swarm
Intelligence. In order to examine effects of the cost
functions on the controller parameter optimization,
different performance indexes were used in both join and
Cartesian spaces. The PSO- impedance controller was
tested on a 3DOF robot constrained to a circular
trajectory. The simulation results prove the stability and
the performances of the offline tuned controller.
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