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Abstract This paper addresses the question of how to
make a robot learn natural terrain selectively and use the
knowledge to estimate the terrain for planning an optimal
path. A scheme which combines vision learning and
interaction is proposed. The vision learning module
employs an online boosting learning algorithm to
constantly receive and learn the terrain samples each of
which comprise the visual features extracted from the sub
terrain region image and the traversability measured by
the onboard Inertia Measurement Unit (IMU). Using this
knowledge, the robot could estimate the new terrains and
search for the optimal path to travel using the particle
optimization method. To overcome the
shortcoming that the robot could not understand the
intricate environment exactly, the vision interaction
method, which complements the robot’s capacity of
terrain estimation with the human reasoning ability of
path correction, is further applied. Experimental results
show the effectiveness of the proposed method.
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1. Introduction

Useful mobile robots must be able to adapt to natural
terrain around them and learn from experience. As soon
as robots can learn and predict the traversability of the
terrain well, they can effectively plan their paths.

In the literature on terrain traversability analysis,
vision-based learning methods have mostly been
proposed. In general, they can be categorized as
supervised and unsupervised traversability learning
methods according to the way learning samples have
been employed. For supervised traversability learning
approaches [1-3], the learning samples are manually
selected and labelled with the classes that represent
relevant terrain traversability, e.g., traversable and
non-traversable, and the learning procedure performs in
an offline learning manner. These methods have shown
success on specific terrains. Nevertheless, it is difficult
to find general rules which work for a wide variety of
terrain types, thus the learning machine will be unlikely
to work reliably in the complex unknown environment.
In contrast, unsupervised traversability learning methods

Int J Adv Robotic Sy, 2012, Vol. 9, 102:2012


http://crossmark.crossref.org/dialog/?doi=10.5772%2F50827&domain=pdf&date_stamp=2012-01-01

[4-6] use learning samples which are acquired online by
the robot. Meanwhile, such learning samples are
associated with class labels according to the terrain
traversability obtained from the real-time analysis of
sensor data. These methods enable the robot to exploit its
experience in the navigation process autonomously.
However, these methods assume that the equipped
sensors on the robot should perceive the terrain
accurately and the terrain traversability should be
assessed with appropriate class label. The complexity of
the real environment increases the number of learning
samples with incorrect class labels and decreases the
precision of the learning machine.

To the best of our knowledge, little research has been
dedicated to terrain analysis and path planning by
complementing the robot capacity of terrain estimation
with the human reasoning capability of path correction. In
this paper, we propose a novel scheme which combines
vision learning and interaction to navigate the robot safely
and to facilitate selective learning by the robot.

The remainder of the paper is organized as follows. In
section 2, an overview of the proposed method is
presented. Section 3 introduces the details of the vision
learning method, including visual feature extraction,
terrain traversability assessment and online boosting
learning. In section 4, the process of vision interaction is
described, in particular, the selective learning procedures
are given. Section 5 presents the extensive experiments.
The concluding remarks are given in the last section.

2. System Overview

As depicted in Fig. 1, the proposed mobile robot path
planning method consists of two main modules, namely:
vision learning and vision interaction. In the vision
learning module, when given a sub terrain region, the
vision features are extracted and the terrain traversability
is also calculated. The vision features and the terrain
traversability form a sample that is then used for getting
a classifier by the online boosting learning algorithm.
After a period of study, the robot could estimate the
terrain using its own knowledge. Furthermore, several
path planning algorithms can be employed and executed
according to the terrain analysis results. Nevertheless, at
the start of vision learning, there are not enough samples
to be trained and the terrain estimation results are thus
not reliable. The path planning procedure should mainly
rely on the human guidance procedure. It also should be
noticed that human guidance is necessary even when the
robot has learned various terrains over a long period of
time. This is based on the consideration that the real
environment is intricate and unpredictable, and the robot
should perform continuing selective learning under
human guidance. The terrain estimation and human
guidance procedures supplement each other in the
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evolving vision learning process of the robot. We name
their mutual effect as vision interaction.
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Figure 1. The framework of the proposed method
3. Vision Learning

The main task of vision learning is to learn the
traversability of a sub terrain region to travel from the
corresponding image region. A sub terrain region means
a small portion of the actual terrain [7]. Once the
corresponding image region of a sub terrain region is
determined, the visual features could be extracted. The
class label which represents certain traversability should
also be associated with the visual features for the
successive learning procedure. The details are illustrated
in the following sub sections.

3.1 Visual Feature Extraction

For visual feature extraction, the terrain image should be
divided into a finite number of image regions. However,
most research is focused purely on how to segment the
image, typically using the methods of patch and superpixel
segmentation. The performances of these two methods in
traversability classification are discussed in [8]. At their
cores, the position and size of the sub terrain region are not
fixed and always unpredictable. In our opinion, the visual
features can be directly extracted from the image region
which represents the sub terrain region with fixed position
and size. This will also bring us advantages in path
planning. Therefore, we propose a novel method to
segment the terrain image. As shown in Fig. 2, this method
finds the mapping relationship between the given sub
terrain region and the corresponding image region.

Ay
Field of View

Vision Image

Figure 2. The problem of segmenting the terrain image
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As we know, the field of view of the robot is closely related
to the geometric model of the camera. In our work, the
geometric model is built as in Fig. 3. The camera is
installed on the robot at height 4 and pitch angle @, so
the optical axis 0 ¢ intersects with the ground, where o
denotes the optical centre of the camera, and ¢ denotes
the image centre. The length of o0 ¢ represented as [ is
the focal length of the camera. Suppose the coordinate of
pixel ¢ is (u,,v.), the coordinate of pixel a which is
the imaging point of any ground point A(x,y) is
(u,,v,), and the physical size of any pixel along x and
y axes is (s,,s,). By using the pinhole imaging theory,
the coordinate transformation between the image pixel and
the real ground point is then obtained as follows:

hf —h(v, —v,)s, tan @
Y a0+ (v, —v,)s,

x=(u,—-u,)s, 5 y2+h2 5
ST+, —v)s, ]

where f, s and s, can be obtained from the camera

datasheet or the camera calibration process, while 5
and 6 be obtained through direct measurement.

Figure 3. The geometric model of the camera

Hence, given the four corner coordinates of any sub
terrain region, the corresponding image region could be
easily determined by Eq.(1). This procedure is repeated
until every sub terrain region in the field of view is
processed. This also
segmentation is finished.

means the terrain image

Subsequently, various vision features can be easily
extracted from the corresponding image region of a given
sub terrain region. These vision features include colour,
texture, v-disparity [1], etc. In this work, we use colour
features, such as average RGB and grey values, and
texture features such as energy, contrast and entropy.
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3.2 Labelling with Traversability

For describing the traversability of a sub terrain region
where the robot travels, we extend our previous work [9]
and employ five types of measure values including the
angles of roll and pitch, the angular acceleration of roll
and pitch and the acceleration of gravity to describe the
robot attitude associated with the terrain traversability at
a sampling time. The five type values are measured by
the IMU inside the robot and represented as follows:

C=[6.,6. v, v v]. )

2Tt Trit? T pit? Tyt

Furthermore, the measure values can be accumulatively
sampled when the robot travels the sub terrain region.
The overall robot attitude is calculated by

C=[0(6,),0(6,),00).00).c0D], O

roYps Vo Vpo

T
with ()= Y (x, = E(x))*, X €{6,,0,,v/,v].v]}
t=1

Finally, the traversability of a given sub terrain region is
assessed by the normalization:

le-al

"Cmax - CO ' (4)

!//:

where C, and C,,, denote the overall robot attitudes

when travelling the most flat and uneven terrain,
respectively. It can be seen that the larger the value of the
traversability, the more difficult it is to travel the sub
terrain region.

3.3 Online Boosting Learning

Owing to the complexity and unpredictability of terrain,
visual learning should be a long-term process of
knowledge accumulation. Therefore, the robot should
possess the online learning ability in order to constantly
enrich its own knowledge. The online boosting learning
algorithm based on feature selection [10] is adopted. The
main characteristic is that the fixed number weak
classifiers in the online learning process are all updated
by using only one sample, while the updating procedure
is not directly applied to the weak classifiers but to the
selectors.

In the robot navigation process, the terrain samples can be
collected continually. One sample is formed by the visual
features and the traversability of the first sub terrain region
in front of the robot. Once one sample obtained, it is then
used for the online boosting learning procedure. The
sample collecting process is described in Fig. 4.
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Figure 4. The sample collecting process
4. Vision Interaction

Due to limitations with regard to environment perception,
incorrect terrain samples are always learned by the robot.
This means that the robot studies in the manner of
unquestioning learning, rather than selective learning.
Therefore, we propose employing vision interaction to
promote the ability of online selective learning for the
robot and to navigate the robot safely. In addition, vision
interaction is not the goal, but a method of facilitating
selective learning for the robot. In our case, the vision
interaction comprises two procedures: terrain estimation
and human guidance.

4.1 Terrain Estimation

Terrain estimation is considered one of the independent
abilities of the robot. When the robot tries to plan a
feasible path to travel, it takes the photo in the field of
view. As to any sub terrain region, the vision features are
extracted, and then the classifier trained by the online
boosting learning method is employed to calculate its
traversability with the vision features. Subsequently, the
path planning is utilized to find a set of such sub terrain
regions with minimum total traversability while taking
the real distance into account. The path planning problem
becomes the following optimization problem:

n—1
min f(Z;)=min Y D(z,,,2, 4., )i =L..om, (5

d=1

where Z, represents a possible path which is comprised of
n sub terrain regions z,,,d =1,..,n and D(z,,z )

measures the traversability and distance between the two
adjacent sub terrain regions. We use the particle swarm
optimization algorithm to solve this problem. As shown in
Fig. 5, a possible path Z; is regarded as a random particle
in the problem space. The fitness value of each particle is
computed as f(Z;) inEq. (5), with

D(Zi,d > Zi,d+1) =4 d(Zi,d > Zi,d+1) +(1-2)- p(Zi,d > Zid4l ), (6)
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where  d(+) distance and

traversability measurements from z,, to z,,, . All of

and p(s) are the

the particles fly through the problem space by following
the current optimum particles. In our case, each
dimension of a particle should fly horizontally with its
own range constraint z,, € [z:“;",sz‘;x],d =2,..,n—1.In
addition, z;, denotes the initial position of the robot,
while z;, denotes the local target position. After a finite

number of iterations, the global optimal position of the
particle swarm is the best solution which represents the
optimal path to travel.

Field of View

min V4
in=l

>
Zi)

Figure 5. Path planning using particle swarm optimization
4.2 Human Guidance

Once the robot plans a path based on terrain estimation,
the path could be overlapped with the captured terrain
image and displayed to the operator, and meanwhile the
robot requests human guidance. When the operator finds
that there are some unreasonable or infeasible sub terrain
regions in the planned path, the operator could reset the
position of the sub terrain region by human robot
interfaces, i.e., dragging the region in the touch screen by
hand. The operator corrects the path by taking the
complex environment the robot could not understand
into account. This procedure combines the advanced
reasoning capabilities of the operator with the local
autonomous capacities of the robot
Nevertheless, as mentioned above, vision interaction is
utilized to facilitate selective learning for the robot. After
the operations of human guidance, the selective learning
procedure which consists of two parts is executed. Firstly,

efficiently.

let z, , and z, be the sub regions before and after

correction respectively, we deduce that the traversability

of z,, denoted as ¥(z,,) which is estimated by the
robot is not right and is less than /(z, ;) . Therefore, we

adjust the traversability of z, , as

www.intechopen.com



w(z,,)=w(z,,)+n, where 1 isan empirical value, we
set 17=0.05. Then, the visual features and the new
adjusted traversability of Z, ; form a new training

sample which is learned by the robot. Secondly, the robot
captures and learns the samples according to its
computing load by using the method as described in
section 3.3, when navigating along the corrected path.

5. Experiment

The proposed method has been applied on the mobile
robot [11] designed by ourselves for real terrain tests. The
robot is propelled by tracks and carries a CCD camera on
top and the IMU (Crossbow VG400) inside. The size of
the robot body is 73cm x 55cm. The former is length,
while the latter is width. The size of a real sub terrain
region is then set to 100cm x 80cm. The CCD camera with
1/4 inch size and 3.6mm focal length is installed on the
robot for terrain sensing at the height s =50cmand the
pitch angle @ =22°. The terrain image resolution is 768
x 494, so we get (u,v,)=(384,247) ,
5,=32/768 mm and s, =24/494mm . By using

Eq.(1), the field of view could be further calculated. The
four corner coordinates of the trapezoid view are
(£3.39m,8.02m) and (£0.33m,0.33m), and the blind

distance is 0.59m. Subsequently, the number of sub
terrain regions in the field of view is set to 7 and the
dimension of a particle which represents a possible path
is 9. The range of each dimension

min max

z0y »zig 1,d =2,...,8 could also be easily computed by

flying

Eq. (1). The developed human robot interaction interface
which is used for human guidance is shown in Fig.6.

Figure 6. The human robot interaction interface
5.1 Online learning under human guidance
At the beginning stage of vision learning, the path

planning depends completely on human guidance. The
operator plans the path for the robot using the human
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robot interaction interface. When the robot navigates
along the planned path, it captures the terrain image in
the field of view, e.g., Fig .7 shows a captured terrain
image. Then, the image region of the first sub terrain
region in front, denoted by white lines as shown in Fig. 7,
is only used for vision feature extraction.

Figure 7. A captured terrain image

Accordingly, the terrain traversability is calculated using
the measure values of the robot attitude as shown in Fig.
8. Furthermore, the formed sample is then applied for
online boosting learning. The overall procedure is
repeated until the robot has a preliminary and good
understanding of various terrains.
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Figure 8. The measure values of the robot attitude

5.2 Path planning based on terrain estimation

The path planning experiments are performed on many
real captured terrain images on condition that the robot
could estimate the traversability of a given sub terrain
region only by the vision features. Fig. 9 shows a real
terrain image for path planning. The local target is set to
the region in the distance.
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Figure 9. A real terrain image with random particles

Firstly, a list of particles with total number 50 is
randomly initialized. Each particle represents a possible
path and each dimension of a particle represents a real
sub terrain region. Thus, as shown in Fig. 9, the random
particles could be visualized on the terrain image.

In Fig. 9, only five particles are displayed. Secondly, as to
any particle, the traversability of each dimension is
dynamically and efficiently estimated by the learned
classifier. Then, the fitness value of each particle could be
computed by f(Z;) in Eq.(5). Through the constant

flight of the particles, the global optimal position of the
particle swarm is finally obtained. The final path as

shown in Fig. 10 is [(Ocm,0cm), (Ocm,109cm),
(64cm,209cm), (100cm,309cm), (148cm,409cm),
(189cm,509cm), (167cm,609cm), (87cm,709cm),

(0cm,802cm)] in the coordinate system with the origin at
the robot, where each coordinate is the centre of the real
sub terrain region. In order to verify the stability of the
path planning algorithm, the optimal path searching
process is performed repeatedly several times. In each
searching process, the fitness values of the previous best
positions of the swarm are recorded. The curves depicted
in Fig. 11 reflect the change of the fitness value in each
searching process. It can be seen that the path planning
algorithm always converges at the 20th iteration.

Figure 10. The path planning result
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Figure 11. The fitness value change curves
5.3 Autonomous navigation based on vision interaction

The test field for autonomous navigation, as shown in Fig.
12, is mainly covered with rubble, sand, bricks and other
obstacles. The navigation task is that the robot should
travel from the start position to the goal position
autonomously.

Figure 12. The test field for autonomous navigation

Firstly, the robot turns toward the goal and captures the
terrain image as shown in Fig. 13(a). The path planning
procedure based on terrain estimation as described in
section 5.2 is then performed. The path planning result is
also displayed on the figure. The planned path shows
that the robot could keep away from the frontage bricks
effectively. However, the robot could not predict the sub
terrain region covered with deep sand based on its own
knowledge. This terrain region is denoted by the yellow
lines as shown in Fig. 13(a). This will bring about a
potential security risk in that the robot may slip and even
get stuck in the sand. Therefore, the operator corrects in a
timely fashion the planned path using the developed
human robot interaction interface. The corrected path is
shown in Fig. 13(b). Subsequently, the robot could travel
to the goal following the path through the method of
inertia navigation. At the same time, the selective
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learning process described in section 4.2 is initiated. The
entire navigation process is shown in Fig. 14. During the
navigation process, the five type values are measured by
the onboard IMU and shown in Fig. 15. It can be seen that
the robot travels to the goal successfully by combining
the terrain estimation ability and the advanced reasoning
capabilities of humans, while the robot attitude varies
smoothly during the overall navigation process.

(b)
Figure 13. The planned path (a) and the corrected path (b)

Figurel4. The navigation process based on vision interaction
including (a), (b), (c) and (d)
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6. Conclusion

This paper has presented a path planning method for
autonomous navigation by combining vision learning
and interaction. The vision learning module employs an
online boosting learning algorithm to constantly receive
and learn a new sample which is comprised of visual
features extracted from the sub terrain region image and
the terrain traversability measured by the onboard IMU.
The vision learning procedure makes the robot expand its
knowledge through continual learning and then
independently plans the path to travel based on terrain
estimation and particle swarm optimization. During the
travelling, the robot could perform the vision learning
procedure again, however, this is done by unquestioning
learning, rather than selective learning. The vision
interaction method is proposed to supplement the terrain
estimation capacity of the robot with the reasoning
capability of the operator. Under human guidance, the
path planned by the robot is corrected according to the
real situation. Then, the navigation process is performed
and meanwhile the selective learning procedure is
initiated. Experiments show that the robot could
understand the environment in front well and plan a
feasible path under human guidance, effectively avoiding
the uncertainties such as violent vibration, slip and even
shut down when travelling on intricate terrains. Future
work will comprehensively evaluate the efficacy of the
selective learning method and improve the efficiency of
the developed algorithm.
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Figure 15. The planned path (a) and the corrected path (b)
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