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ABSTRACT: Open marine net pens facilitate virus and sea lice transfer, occasionally leading to
infections and outbreaks of disease in farmed salmon. A review of 3 salmon pathogens (infectious
salmon anaemia virus [ISAV], salmon alphavirus [SAV] and the salmon louse Lepeophtheirus
salmonis) shows that increased risk of exposure to neighbouring farms is inversely related to dis-
tance from and directly related to biomass at the source of infection. Epidemiological techniques
integrating data from oceanography, diagnostics and pathogen shedding rates and viability con-
tribute to improved understanding of pathogen transmission pathways among farms and permit
the designation of areas of risk associated with sources of infection. Occupation of an area of risk
may increase the likelihood of exposure, infection and disease among susceptible fish. Disease
mitigation in mariculture occurs at 2 scales: area-based (coordinated stocking, harvesting and fal-
lowing) and farm-based (vaccination, early pathogen detection, veterinary prescribed treatments
and depopulation or early harvest in the event of viral disease). Collectively, implementation of
mitigation measures results in virus disease outbreaks of shorter duration with lower mortality and
therefore reduces the likelihood of pathogen transmission. In contrast, the mitigation of sea lice
transmission is less likely to be effective in some areas due to the loss of parasite sensitivity to thera-
peutants and to dissemination of larval lice when parasites occur below management thresholds.
For wild populations, risk of pathogen spillback is estimated from farm-based epidemiological
data; however, validation, particularly for ISAV and SAYV, is required using direct surveillance.
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INTRODUCTION

In coastal waters of the North Atlantic Ocean, fin-
fish are reared for mariculture in open net pens.
Under these conditions, farmed fish populations are
exposed to pathogens (viruses, bacteria or parasites)
from sources in the marine environment (e.g. wild
fish) (Johansen et al. 2011) which may lead to infec-
tions (Raynard et al. 2007, Garver et al. 2013b). Gen-
erally, the movement of pathogens among suscep-
tible populations reflects a greater connectivity in
aquatic ecosystems compared with terrestrial coun-
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terparts (Uglem et al. 2009, Green 2010), which per-
mits various pathways of transmission and may pro-
mote changes in pathogen characteristics (Nowak
2007, Pulkkinen et al. 2010, Kurath & Winton 2011).
Occasionally, pathogens will move within and among
mariculture sites, and when increases in pathogen
abundance coincide with appropriate host and envi-
ronmental contexts, outbreaks of disease are possible
(McVicar 1997, Murray & Peeler 2005, Bergh 2007).
Outbreaks of diseases have broadened awareness of
pathogen dynamics and disease progression within
and among mariculture sites and have provided
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much of the knowledge-base for the epidemiology of
finfish diseases (Murray 2009, 2013, Salama & Rabe
2013). As a result, mariculture incorporates disease
mitigation strategies (Table 1) that are practised at 2
spatial scales: area-based (coordinated stocking, har-
vesting and fallowing) and farm-based (vaccination,
early pathogen detection, veterinary prescribed
treatments and depopulation or early harvest in the
event of viral disease).

Endemic disease and disease outbreaks in farmed
fish may be associated with an increase in pathogen
spillback to wild fish stocks (Kurath & Winton 2011).
The potential threat of pathogen interactions be-
tween mariculture and wild fish has been considered
for some time (Hastein & Lindstad 1991, McVicar
1997, Hedrick 1998) and more recently has been re-
fined in reviews, models and risk assessments (Peeler
et al. 2007, Johansen et al. 2011). However, in con-
trast to mariculture, the epidemiology of disease in
wild finfish is poorly understood, and information on
which to make judgments about pathogen spillback
is sparse. There is evidence that the distribution of
some pathogens in wild populations is correlated
with the proximity to mariculture (Wallace et al.
2008); however, diseases are rarely observed in wild
marine finfish (Hedrick 1998, Noakes et al. 2000,
Bergh 2007, Riley et al. 2008, Johansen et al. 2011).
Nevertheless, the potential importance of spillback
from farmed to wild salmon has to be considered

Table 1. Measures to mitigate pathogen introduction, dis-
semination and consequences in mariculture

Infectious salmon anaemia virus

. All in—all out stocking and harvesting, fallowing
. Restriction of fish movements

. Coordination of sea lice control

. Vaccination

. Use of good quality smolts

. Reduction of farm stocking numbers

. Improved surveillance and diagnostic capacities
. Depopulation

ONOO O WN -

Salmon alpha virus

1. Fallowing

2. Vaccination

3. Zones without farm between infected and uninfected
areas (fire break)

4. Improved surveillance and diagnostic capacities

Sea lice

1. Restrictions on locations of new farm developments

2. Monitoring and treatment when lice levels exceed
thresholds (which may vary with season)

3. Fallowing

4. Separation of year-classes

5. Synchronous treatments

given that in several regions for salmon mariculture
the biomass of farmed salmon considerably outweigh
the wild population. In Norway, ~400 million salmon
are reared each year compared with ~400 000 return-
ing adult salmon (Thorstad & Forseth 2010). These
data, combined with the known risk of escapees and
the close contact of wild and farmed salmon suggests
that farmed salmon could act as an important reser-
voir of infection for wild salmon.

The goal of this paper is to assess the extent to
which current epidemiological knowledge informs
our understanding on the risks and consequences of
pathogen transmission from farmed salmon popula-
tions. We consider these risks and consequences to
be relevant both to wild and maricultured popula-
tions. As Atlantic salmon Salmo salar and rainbow
trout Oncorhynchus mykiss constitute over 95% of
the biomass of maricultured finfish in the northeast
Atlantic Ocean (FAO 2012), the present paper
focuses on 3 pathogens which cause diseases of con-
siderable economic impact in salmon mariculture.
For each of infectious salmon anaemia virus (ISAV),
salmon alpha virus (SAV) and the salmon louse Lep-
eophtheirus salmonis, we review occurrence in wild
populations and epidemiological considerations in-
cluding mitigation practices in mariculture and evi-
dence of spillback. For each disease, we then provide
a qualitative risk assessment according to 3 pathways
of effects (introduction, dissemination from farm, con-
sequences) and estimate the differential collective
impacts of disease mitigation strategies.

MATERIALS AND METHODS

Pathways for pathogen interactions between wild
and farmed populations are illustrated in Fig. 1. A
risk analysis framework similar to that described ear-
lier for aquatic animal health management (Peeler et
al. 2007) is used to assess for each pathogen the
effect of farm-based disease mitigation practices
(Table 1) on the likelihood and uncertainty of each
effects pathway and the consequences of pathogen
spread. Definitions for descriptors of likelihood and
uncertainty are given in Tables 2 & 3.

Infectious salmon anaemia virus (ISAV)

Introduction

Infectious salmon anaemia (ISA) was first reported
in farmed Atlantic salmon in Norway in 1984 (Thorud
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Fig. 1. Routes and consequences of pathogen interactions between farmed and wild salmonids (numbers indicate temporal
sequence of processes driving emergences: 3. and 4. may occur simultaneously)

Table 2. Definitions of levels of uncertainty used in risk & Djupvik 1988) and since then in eastern Canada
assessment (EFSA 2006) and the USA, Scotland, Chile and the Faroe Islands

(Christiansen et al. 2011, Rimstad et al. 2011, Lyn-

Uncertainty Definition gstad et al. 2013). The disease is characterized by
anaemia, haemorrhage and necrosis in several or-

Low ¢ Solid and complete data available; strong gans and is caused by ISAV. ISAV belongs to the

evidence in multiple references with most
authors coming to the same conclusions, or

¢ Considerable and consistent experience
from field observations

genus Isavirus within the family Orthomyxoviridae.
Different strains or genotypes of the virus occur. The
low virulent variant (ISAV-HPRO) is found in appar-

ly health il f fish Ki
Medium e Incomplete, or only some data available; ently healthy wild and farmed fish, and Kibenge et

evidence provided in small number of
references; authors’ or experts' conclusions

vary, or Table 3. Definitions of levels of estimated likelihood

e Limited evidence from field observations,
or Likelihood Definition

¢ Solid and complete data available from
other species which can be extrapolated Rare Event may only occur in exceptional
to the species being considered circumstances

High e Scarce or no data available; evidence Unlikely Event could occur but is not expected

provided in unpublished reports, or Moderate Event might occur at some time

e Few observations and personal communi- Likely Event will probably occur in most
cations, and/or instances

* Authprs' or experts' conclusions vary Almost certain Event is expected to occur in most
considerably instances




122 Aquacult Environ Interact 6: 119-134, 2015

al. (2012) list 3 hypotheses to explain the relationship
between low virulent and virulent strains: [SAV-
HPRO in wild fish is ancestral to virulent ISAV vari-
ants (Rimstad et al. 2011), virulent ISAV mutates to a
less virulent form, and HPRO is the original consen-
sus sequence of all HPR-deleted sequences during
virus replication in a cell. However, HPRO strains are
also detected late during disease outbreaks and per-
sist long after the disease has been eradicated (Chris-
tiansen et al. 2011, Kibenge et al. 2012). Fish are
infectious well before clinical signs are observed
(Totland et al. 1996) and shed viral particles within
3 d of initial infection via faeces, urine and skin
mucus (Lyngstad et al. 2013).

The transmission of ISAV among Atlantic salmon is
primarily horizontal in both freshwater and seawater
(Totland et al. 1996, Jones & Groman 2001, Lyngstad
et al. 2013), although vertical transmission has not
been ruled out (Thorud & Djupvik 1988, Melville &
Griffiths 1999, Marshall et al. 2014). ISAV occurs in
gonadal tissue in spawning salmon (Nylund et al.
2003, 2007), and there is evidence that the virus was
introduced to Chile in association with salmon ova
(Vike et al. 2009).

Wild reservoirs and extent of surveillance

In addition to Atlantic salmon, the virus replicates in
brown trout Salmo trutta and Arctic charr Salvelinus
alpinu) (Jones et al. 1999a, Kibenge et al. 2004). At-
lantic herring Clupea harengus and American eel
Anguilla rostrata may also be asymptomatic carriers
(Totland et al. 1996, Devold et al. 2000, Kibenge et al.
2004). Pollock Theragra chalcogramma do not appear
to be a reservoir for the virus despite wild populations
having close contact with cultured Atlantic salmon
(McClure et al. 2004). Pacific salmon (Oncorhynchus
keta, O. tshawytscha, O. kisutch and O. mykiss) ap-
pear resistant to ISAV infections; however, the virus
has been re-isolated from experimentally infected
chum and coho salmon and from steelhead, suggest-
ing these species are susceptible under certain cir-
cumstances (Rolland & Winton 2003). Relatively little
research has been conducted on the prevalence and
maintenance of ISAV infections in wild fish popula-
tions including those adjacent to affected Atlantic
salmon mariculture sites. Serum antibodies to ISAV
were measured in returning Atlantic salmon from the
Connecticut and Penobscot Rivers in the eastern USA,
suggesting the fish had previously been exposed to
the virus (Cipriano 2009). The virus was isolated from
sea trout in Scotland (Raynard et al. 2001), and there

was evidence of viral genomic RNA in Atlantic
salmon parr and adults and in non-migratory and
anadromous brown trout collected either close to farm
operations or in rivers distant from farm operations, in
the absence of clinical disease (Raynard et al. 2001).
In Norway, brown trout collected from rivers were
found to harbour the highest prevalence of the virus,
while Atlantic salmon showed low prevalence of the
virus (Plarre et al. 2005). No fish showed clinical signs
of infection, and ISAV was not cultured from any of
the samples tested but could be detected after a few
weeks in disease-free salmon injected with tissue
homogenates from RT-PCR-positive wild fish (Plarre
et al. 2005). Therefore, Atlantic salmon, brown trout
and sea trout are candidate reservoir species of ISAV
HPRO (EFSA 2012).

Epidemiological considerations in mariculture

Risk categorizations and themes for pathogen intro-
duction into marine salmon farms have been evalu-
ated by Oidtmann et al. (2013). Lyngstad et al. (2008,
2013) list the characteristics relevant to assessment of
pathways of horizontal transmission for ISAV includ-
ing live fish movements and egg movement, exposure
via water, on-site processing, short distance mechan-
ical transmission as well as distance independent
mechanical transmission. The risk of ISAV dissemina-
tion from infected to adjacent farms is related to the
salmon biomass and host density at the infected site
(Ogﬂt et al. 2005, Hammell & Dohoo 2005, McClure et
al. 2005, Salama & Murray 2011, 2013) and inversely
related to seaway distances among the farms (Mar-
dones et al. 2009, 2011, Aldrin et al. 2011, Murray
2013). The latter factor is linked to local hydrodynamic
conditions, which influence the rate and direction
of virus dispersal (Gustafson et al. 2007, Salama &
Murray 2013), but generally, a short seaway distance
to an ISA site is an important risk factor. ISAV might
be spread by infected biological material including
animal waste or discharge from slaughtering (Lyn-
gstad et al. 2013), and this is directly related to the
biomass of infected stock harvested (Munro et al.
2003). Mardones et al. (2014) found that multiple gen-
erations on a farm, mean smolt weight at stocking
>120 g, farm area and increased number of shipments
entering a farm were associated with reduced time to
infection, whereas time-to-infection was longer for
farms located farther away from an ongoing ISAV
outbreak. Transport of infected fish in well boats or
sharing of personnel and equipment among sites are
important risk factors, particularly for transmission
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over greater distances (Murray et al. 2002, Murray
2013). Outbreaks of ISA in Norway, Scotland, eastern
Canada and the USA and Chile have led to the estab-
lishment of exclusion or management zones defined
by clusters of sites sharing tidal excursions, embay-
ments or other common waterways (Mardones et
al. 2011, Murray 2013). Such disease management
areas (DMAs) can be effective at preventing disease
emergence, even with some transfer to neighbouring
areas, if the number of long-distance contacts is kept
to a minimum, and fallowing is synchronized (Werk-
man et al. 2011, Murray 2013).

Mitigating factors and spillback

The establishment of more stringent on-farm and
among-farm biosecurity measures have reduced the
risk of infection as indicated by the reduced longevity,
reduced mortality and spatial limitations of more re-
cent outbreaks (Murray et al. 2010, Mardones et al.
2014). Maintaining fish in good health may reduce
their susceptibility to low virulent strains and thus
lower the rate of new outbreaks (Lyngstad et al. 2011).
Rapid removal of sick or dead stock is also effective in
limiting virus transmission (Jarp & Karlsen 1997). Co-
ordinated fallowing within management areas com-
bined with risk-based surveillance lessens the likeli-
hood that virulent ISAV will persist and re-establish
(Murray et al. 2010). In Chile, disease control meas-
ures introduced in 2009 (summarized in Table 1) con-
tributed to the recovery of the industry after the
occurrence of ISA (Mardones et al. 2014). Ritchie et al.
(2009) suggested that different ISAV strains will pose
different risks following infection and showed that
survivors of an earlier infection had greater resistance
to subsequent infection. Similarly, mortality and virus
levels in salmon previously exposed to a low virulence
ISAV strain were lower following challenge with a
high virulence strain compared with naive controls
(LeBlanc et al. 2012). Vaccination against ISA may be
feasible (Jones et al. 1999b). While such management
actions will mitigate the risk of virus transmission,
there are no data on transmission of ISAV to wild fish.
Occurrence of the HPRO genotype in wild salmonids
indicates that a reservoir of infection exists outside the
farmed salmon population (EFSA 2012). Lyngstad et
al. (2011) found the low virulent genotype to be fre-
quently present in farmed Atlantic salmon in Norway
and concluded that this strain transitioned into viru-
lent genotypes causing solitary outbreaks or local epi-
demics. Although there is a theoretically higher risk
for wild fish to acquire the infection the closer they are

to an infected site, failure to detect such patterns of in-
fection likely reflects the limited effort to survey these
populations (Lyngstad et al. 2013).

Salmon alpha virus (SAV)
Introduction

Pancreas disease (PD) was first reported from
farmed Atlantic salmon in Scotland (Munro et al.
1984). A similar condition named ‘sleeping disease’
(SD) was subsequently described from freshwater-
reared rainbow trout (Boucher & Baudin-Laurencin
1996). PD represents a chronic condition with associ-
ated mortality in farmed salmon and trout and conse-
quently is of economic importance for farmed fish in
Ireland, Norway and Scotland (Rodger & Mitchell
2007, Aunsmo et al. 2010, Jansen et al. 2014). Both
diseases are caused by infection with SAV in the
family Togaviridae (Weston et al. 1999), also known
as salmon pancreas disease virus. Six SAV subtypes
have been distinguished using phylogenetic analysis
with partial E2- and nsP3-gene sequence data (Frin-
guelli et al. 2008), providing evidence that some sub-
types are dominant in certain geographical regions.
Following infection, virus RNA persists in tissues for
extended periods (Andersen et al. 2007, Christie et
al. 2007, Graham et al. 2010, Jansen et al. 2010), pos-
ing a possible risk to healthy fish. Salmonid alpha-
viruses are transmitted horizontally (Boucher et al.
1995) and have been detected in the salmon louse
Lepeophtheirus salmonis by PCR (Petterson et al.
2009), but in this case viral replication in lice and
consequent transfer of the virus to a new host has
not been demonstrated. This is in contrast to the 26
enveloped mammalian alphaviruses that cause dis-
ease in humans and domestic animals, and which
require mosquitoes or other haematophagous arthro-
pods to serve as vectors (Brown & Condreay 1986).
The identification of potential vectors for SAV has
been highlighted as an area for investigation, and
knowledge in this area would improve management
and understanding regarding risk and infection
(McLoughlin & Graham 2007).

Wild reservoirs and extent of surveillance

In Scottish waters, long rough dab Hippoglossoides
platessoides, common dab Limanda limanda and
plaice Pleuronectes platessa were identified as possi-
ble reservoirs of SAV based on the detection of low
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levels of virus RNA in pooled tissues (Snow et al.
2010). Virus subtype V was subsequently isolated into
cell culture from common dab (Bruno et al. 2014).
Three of the 6 SAV subtypes were identified in dab in
a locality remote from salmonid aquaculture, strongly
implicating dab as a non-salmonid reservoir of the
virus. Fringuelli et al. (2008) reported identical se-
quences at separate farm sites over several years, im-
plying that this is a slowly evolving virus. This is sup-
ported by a virus evolution study by Karlsen et al.
(2014), which concluded that all 6 subtypes of SPDV
diverged prior to the 20" century and earlier than the
first introduction of farmed rainbow trout into Europe.
SAV positive tissues were detected by real-time RT-
PCR and sequencing in common dab, plaice and
megrim Lepidorhombus whiffiagonis from the Irish
and Celtic Seas (McCleary et al. 2014). A very low
prevalence of SAV subtype I was reported in common
dab and plaice, except for 1 haul in Dublin Bay,
Ireland where 25 % of common dab were SAV positive.

Epidemiological considerations in mariculture

SAV 1I is the dominant subtype from Atlantic sal-
mon reared in the Shetland Isles, Scotland, whereas
salmon from the northeast of Scotland and the West-
ern Isles show subtype V as dominant (Graham et al.
2012). Subtypes I, IV, V and VI have been isolated
from Atlantic salmon in Scotland and Ireland (Weston
et al. 2005, Fringuelli et al. 2008) and subtype II from
rainbow trout in the UK and continental Europe. The
subtype IlI is restricted to farmed Atlantic salmon in
Norway. Recently, a subtype Il has also been reported
from Norwegian farmed salmon (Hjortaas et al. 2013,
Jansen et al. 2014). There is also evidence that sub-
types traditionally observed in one environment are
now identified in new areas, for example, the finding
of SAV II strains in saltwater reared Atlantic salmon
(Graham et al. 2012) and SAV I strains occurring in
freshwater salmonids (Lester et al. 2011). Statistical
models regarding the most likely route of transmission
of SAV among farmed fish suggest passive drift of
virus in the water (Viljugrein et al. 2009, Stene et al.
2014). Horizontal transmission of the virus affects the
probability of a disease outbreak in a single cohort
(McLoughlin et al. 1996, Kristoffersen et al. 2009, Vil-
jugrein et al. 2009). Evidence of vertical transmission
of SAV III was not found in a study by Kongtorp et al.
(2010). Madhun et al. (2014) detected SAV and pis-
cine reovirus in recently escaped salmon in Norway,
highlighting the potential contribution of escapees in
virus transmission to other local salmon farms.

Mitigating factors and spillback

The available information indicates that SAV is
transmitted among mariculture populations and that
movement of the virus between marine reservoirs and
mariculture populations is bidirectional. Fallowing of
farm sites reduces or limits the build-up of infectious
agents, a practice that is required in many countries.
However, despite fallowing, SAV has re-emerged at
some farms following restocking (McLoughlin et al.
2003), and persistence of the virus in sediments may
serve as a source of infection. Experimental work has
shown that SAV can survive for ~6 d at 10°C in sterile
saltwater with organic loading (Graham et al. 2007).
This suggests that the virus is sufficiently viable in the
aquatic environment to be useful for modelling, as
assumed by Viljugrein et al. (2009). Phylogenetic data
of SAV subtype IV are consistent with a history of re-
peated transmission between dab and salmon. Com-
mon dab can move into brackish waters and then
enter freshwater river systems in coastal areas (Elliott
et al. 1990); hence, they could encounter subtypes other
than those frequently attributed to marine salmon as
reported by Lester et al. (2011). Graham et al. (2006)
reported virus-neutralising serum antibodies in saithe
Pollachius virens, a species commonly found in the
vicinity of sea cages, but no disease was recorded.
This indicates the possibility of inter-species transmis-
sion of SAV between wild and farmed fish. The
precise role of common dab as a natural host with po-
tential to transmit infection to farmed fish is not
known, particularly if the virus is self-sustaining in
aquaculture through farming practices (Kristoffersen
et al. 2009, Bruno et al. 2014). Interestingly, Karlsen et
al. (2014) suggest that SAV subtypes diverged prior to
fish farming and therefore must have been associated
with a marine reservoir. Mitigation to contain SAV
in endemic regions also includes vaccination (Bang
Jensen et al. 2012, Karlsen et al. 2012).

SAV occurs at low levels in wild non-salmonid fish
and there is no evidence that infections are associated
with disease. Overall the conditions that promote epi-
demics and disease occurrence in aquaculture may
not occur for wild fish, thus limiting the occurrence of
clinical disease and its effects on wild fish.

Sea lice

Introduction

Sea lice are parasitic copepods which are ubiquitous
and inevitable pests of maricultured salmon, with an
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estimated annual global cost to industry of €300 mil-
lion (Costello 2009). In the northern hemisphere, the
salmon louse L. salmonis is the largest and most
aggressive species affecting salmon and therefore the
target of management and treatment. Sea lice life
cycles include a free-living phase, consisting of first
and second stage nauplii and infective copepodids,
and a parasitic phase consisting of 2 chalimus stages,
1 or 2 preadult stages and adults (Hamre et al. 2013).
The free-living stages are non-feeding and dispersive
and their longevity is defined by endogenous lipid
and ambient temperature (Cook et al. 2010). The
extent of dispersion during early larval development
is largely determined by currents in the ambient sea-
water (Tully & Nolan 2002). Host-seeking and attach-
ment by the copepodid is facilitated by anatomical,
physiological and behavioural traits (see Mordue &
Birkett 2009). In the absence of treatment, high host
densities combined with appropriate environmental
conditions support rapid growth in the size of the
parasite population with associated scale loss, skin
ulceration and haemorrhage (Brandal & Egidius 1977,
Wootten et al. 1982, Johnson et al. 2004).

Wild reservoirs and extent of surveillance

Infestations with L. salmonis have been reported
from anadromous salmonids for over 300 yr (Torrissen
et al. 2013), and an historical perspective on scientific
surveillance efforts in the North Atlantic and Pacific
Oceans is provided by Pike & Wadsworth (1999). Re-
cent research supports the view that the parasite is
prevalent and abundant on salmonids throughout the
northern hemisphere with some variation among host
species. In Ireland, over 93 % of 928 returning adult
Atlantic collected off the Irish coast between 2004 and
2011 were infested with an average of nearly 12
L. salmonis per fish (Jackson et al. 2013b). In Scotland,
all 94 adult salmon caught over 2 yr were infested with
mean intensities of 26.1 to 28.7 L. salmonis per fish
(Todd et al. 2000). In the northeast Pacific Ocean, more
than 98 % of returning adult salmon had mixed infes-
tations with L. salmonis and Caligus clemensi and the
mean intensity of adult female L. salmonis ranged
among species from 1.6 to 8.5 (Beamish et al. 2005). In
addition to the high prevalence, a common feature of
infections on returning Pacific salmon is that most para-
sites are motile (preadults or adult stages). An autumn
rise in sea lice abundance in mariculture has been as-
sociated with the seasonal return of infested adult Pa-
cific salmon during their spawning migrations (Beamish
et al. 2007, Saksida et al. 2007, Marty et al. 2010).

Epidemiological considerations in mariculture

Outbreaks with L. salmonis occurred on farmed
salmon in Norway in the 1960s, in Scotland in the
1970s and in eastern Canada in the 1990s (Jones
2009). Thus, a need for management and treatment
options for L. salmonis arose prior to a clear under-
standing of the epidemiology of the parasite. Early
investigations explored the importance of para-
meters useful for farm-based parasite manage-
ment, including level and type of treatment, cage
volume, temperature effects on development, sal-
inity, current speed, tidal flushing time, history of
sea lice infections and fallowing (Bron et al. 1993,
Revie et al. 2002, 2003, 2005, Heuch et al. 2003,
2009, McKenzie et al. 2004, Stien et al. 2005, Sak-
sida et al. 2007, Lees et al. 2008). Host biomass or
density is an important mariculture variable in
some Norwegian fjords in which a large number
of farms occupies a relatively small volume of
water (Bjorn et al. 2011, Jansen et al. 2012). Math-
ematical models expanded on the earlier observa-
tions and estimated the dispersal of sea lice larvae
according to the speed and direction of water flow
in coastal ecosystems (Murray & Gillibrand 2006,
Gillibrand & Kate 2007, Stucchi et al. 2011, Salama
et al. 2013, Asplin et al. 2014). Aldrin et al. (2013)
used Norwegian data to model the expected abun-
dance of lice at a farm as a function of 1 mo-
lagged abundance at the same farm, at neigh-
bouring farms or at other non-identified sources.
The model assumed lice populations followed a
zero-inflated negative binomial distribution and
found that the same farm accounted for two-thirds
of the expected abundance, neighbouring farms
accounted for slightly less than one-third and other
sources, ~6% of the observed abundance (Aldrin
et al. 2013). Analysis of data from Chilean farmed
salmon infected with another parasitic copepod,
Caligus rogercresseyi, found a significant relation-
ship with infections on neighbouring farms during
the preceding 2 wk (Kristoffersen et al. 2013).
Direct measures of salmon louse infestation pres-
sure using sentinel fish and surveillance of wild
populations (Bjern et al. 2011, Middlemas et al.
2013, Serra-Llinares et al. 2014) may be useful in
validating the models. Together these studies
are consistent with the ‘neighbour’ concept de-
scribed in Aldrin et al. (2013) and indicate that
elevated risk of salmon louse infestation can ex-
tend 30 km from a farm, as shown earlier (Krkosek
et al. 2005, Jansen et al. 2012, Middlemas et al.
2013).
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Mitigating factors and spillback

Increased abundances of L. salmonis have repeat-
edly been observed on wild salmonids in coastal
regions associated with salmon mariculture in Ire-
land, Norway and western Canada (Tully & Whelan
1993, Tully et al. 1999, Bjorn et al. 2001, Bjorn & Fin-
stad 2002, Morton et al. 2004, Marty et al. 2010, Mid-
dlemas et al. 2010, 2013). Accordingly, Norway has
implemented ‘Temporary Protected Zones' and '‘Nor-
wegian Salmon Fjords' (Heuch et al. 2005, Bjorn et al.
2011, Serra-Llinares et al. 2014), in which there are
restrictions to the development of new farms, and
established farms must follow mandatory actions
including scheduled reporting of lice numbers, syn-
chronized treatments and fallowing within manage-
ment areas to maintain lice levels below required
limits (Bjern et al. 2011, Ritchie & Boxaspen 2011).
While larger protected areas can be effective in min-
imising levels of L. salmonis on farms, some pro-
tected areas may be too small due to increased local
biomass densities or to increased external influences
(Serra-Llinares et al. 2014). Other jurisdictions have
implemented strategies to manage sea lice. In British
Columbia (western Canada), the Sea Lice Manage-
ment Strategy adopted in 2003 requires management
action when total motile (adult and preadult) L.
salmonis abundances exceed 3 per fish during the
juvenile pink salmon juvenile migration between
March and July (Saksida et al. 2011). Ireland has main-
tained a national Sea Lice Monitoring Programme for
salmonid mariculture since 1991 (O'Donohoe et al.
2013) (O'Donohoe et al. 2013, p. 3). Data are published
annually and serve in part ‘to provide management
information to drive the implementation of control
and management strategies'. The 5 principal compo-
nents of the programme are to separate generations,
to fallow sites annually, to harvest early 2-sea-winter
fish, to use targeted and synchronous treatment
regimens and to use agreed husbandry practices.

Temporal patterns in the abundance of planktonic
L. salmonis nauplii and copepodids in coastal and
off-shore regions of a Scottish loch are correlated
with treatment or relocation actions of farmed salmon
within the same loch (McKibben & Hay 2004, Pen-
ston et al. 2008, Penston & Davies 2009, Murray et
al. 2011, Penston et al. 2011). Similarly, infection
pressure on sentinel salmon smolts is related to the
abundance of ovigerous L. salmonis on adjacent pop-
ulations of cultured salmon (Bjeorn et al. 2011, Pert et
al. 2014). Conversely, the coordinated proactive
application of salmon louse treatments, regardless of
louse abundance, was associated with reduced abun-

dances on juvenile Pacific salmon that migrate in
adjacent waterways in British Columbia (Jones &
Hargreaves 2009, Peacock et al. 2013, Rogers et al.
2013). Collectively, these studies recognise that spa-
tial distributions of infective L. salmonis larvae near
mariculture sites are governed by physical processes
such as wind forcing which act locally and drive
water flow (Amundrud & Murray 2009), and by the
application of sea lice management strategies. Im-
portantly, the failure of many treatment options due
to reduced sensitivity within louse populations indi-
cates a need for alternative management strategies
(Jones 2009, Torrissen et al. 2013, Helgesen et al.
2014).

Evidence for population-level effects related to
spillback

The possibility that L. salmonis adversely impacts
wild salmonid populations stems from evidence
of disease caused by severe infestations on indi-
vidual salmon combined with the observations that
many populations of Atlantic salmon and sea trout
have been declining throughout the North Atlantic
Ocean since the late 1980s (Parrish et al. 1998, Cha-
put 2012). The extent to which the negative health
effects of sea lice on individual juvenile salmon may
be extrapolated to measurable changes in salmon
population abundance has been explored using
mathematical models (Krkosek et al. 2007, 2011) or
meta-analyses (Ford & Myers 2008). Sea trout
smolts may be particularly vulnerable because they
occupy coastal marine habitats and therefore may
be at greater risk of exposure associated with mari-
culture. In the Hardangerfjord, Norway, where
annual production of maricultured salmon is over
80000 t (Skaala et al. 2014a), sea trout have been
infested with potentially lethal intensities of L.
salmonis in 2008, 2010 and 2012 (Serra-Llinares
et al. 2014). In this region there has been a decline
in the number of mature sea trout in the River
Guddalselva between 2000 and 2011 (Skaala et al.
2014b). Similarly, declining sea trout populations in
western Ireland were associated with elevated sea
lice infestations and proximity to mariculture (Tully
et al. 1999). Effects of sea lice on Atlantic salmon
populations have been investigated by treating
smolts with emamectin benzoate and comparing
the survival of treated and untreated salmon. Ema-
mectin benzoate is toxic to L. salmonis, and these
studies assumed that differences in survival are
due to sea lice-associated mortality. The results of
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similar long-term studies conducted in Ireland
(Jackson et al. 2013a) and Norway (Skilbrei et al.
(2013) are summarised in Torrissen et al. (2013).
Both studies reported overall marine mortality of
95% or greater regardless of treatment, and there
was considerable variability in the apparent efficacy
of treatment among years and release dates. Never-
theless, the likelihood that treatment increased sal-
mon survival, expressed as an odds-ratio, was cal-
culated to range from 1.14:1 to 1.17:1 in the Irish
and Norwegian studies, respectively. A meta-analy-
sis of the Irish and Norwegian data, including those
of Gargan et al. (2012), reported increased survival
among treated salmon with an odds ratio of 1.29:1
(Krkosek et al. 2013). Although there is an ongoing
debate regarding the quantitative outcome, these
studies provide a glimpse into the magnitude of sea
lice effects in wild salmonid populations. They also
emphasise the challenges associated with attempt-
ing to quantify the incremental impact of a parasite
within a population already experiencing >95%
mortality.

Risk assessment

The likelihood that disease mitigation strategies
adopted by salmon mariculture influence the trans-
mission of ISAV, SAV and L. salmonis, as concep-
tualised in Fig. 1, is summarised in Table 4. In the
absence of mitigation, there is high confidence in the
likelihood that zones of ISAV infectivity will extend
beyond farms or farm clusters (Werkman et al. 2011),
resulting in elevated risk of exposure among adja-
cent susceptible species. Mitigation of infectious sal-
mon anaemia, including biosecurity measures, early
detection and depopulation, is associated with a
reduced likelihood of virus acquisition from neigh-
bouring farms, resulting from reduced virus trans-
mission by water, fish-to-fish contact or by biological
or anthropogenic vectors (Table 4A). Conversely,
mitigation practices in mariculture are unlikely to
influence transmission of the virus from a wild reser-
voir. Similarly, while mitigation is expected to lessen
the likelihood of ISAV spillback, the absence of effec-
tive surveillance of wild populations elevates the

Table 4. Estimates of likelihood and uncertainty surrounding the effects of mitigation on risk pathways associated with the introduction,
dissemination and consequences of (A) infectious salmon anaemia virus, (B) salmon alphavirus and (C) the salmon louse Lepeophtheirus
salmonis in mariculture. See Table 1 for mitigation measures

Pathway of effect Description With mitigation

Likelihood Uncertainty

Without mitigation
Likelihood Uncertainty

(A) Infectious salmon anaemia virus

Introduction Infection on farm derived from neighbouring farm  Unlikely Low Likely Low
Infection on farm derived from wild reservoir Unlikely High Unlikely  High

Dissemination from farm Water (including mucous, faeces) Unlikely Low Likely Low
Fish-to-fish contact (including escaped fish) Unlikely Medium Moderate Medium
Biological vectors (parasites, birds, etc.) Unlikely Medium Moderate Medium
Equipment and personnel Unlikely Low Likely Low

Consequences Spillback infection in wild host Unlikely High Likely High

Disease in wild population Unlikely High Unlikely  High

(B) Salmon alphavirus

Introduction Infection on farm derived from neighbouring farm  Unlikely Low Likely Low
Infection on farm derived from wild reservoir Unlikely Medium Unlikely  Medium

Dissemination from farm Water (including mucous, faeces) Unlikely Low Likely Low
Fish-to-fish contact (including escaped fish) Unlikely Medium Moderate Medium
Biological vectors (parasites, birds, etc.) Unlikely Medium Moderate Medium
Equipment and personnel Unlikely Low Likely Low

Consequences Spillback infection in wild host Unlikely High Likely High

Disease in wild population Unlikely High Unlikely  High

(C) Lepeophtheirus salmonis

Introduction Infection on farm derived from neighbouring farm  Moderate Low Likely Low
Infection on farm derived from wild reservoir Moderate High Moderate High

Dissemination from farm Water Moderate Low Likely Low
Fish-to-fish contact (including escaped fish) Unlikely Medium Unlikely Medium
Biological vectors (parasites, birds, etc.) Rare Medium Unlikely Medium
Equipment and personnel Unlikely Low Unlikely Low

Consequences Spillback infection in wild host Moderate High Likely Low

Disease in wild population Unlikely High Unlikely  High
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uncertainty. Mitigation measures for SAV are similar
to those for ISAV, resulting in a similar pattern in
the likelihood and uncertainties of transmission
pathways. The occurrence, geographic distribution
and genetics of SAV in wild reservoirs, however,
lessen the uncertainty of transmission to mariculture
(Table 4B). Mitigation of sea lice results in an altered
pattern in the likelihood of transmission pathways
compared with the viruses: with mitigation there
remains an elevated likelihood of sea lice transmis-
sion from neighbouring farms since treatments can
be less than 100 % effective, even less so when para-
sites display resistance to the medication (Table 4C).
Similarly, the likelihood of sea lice spillback remains
moderate, despite treatment.

DISCUSSION AND CONCLUSIONS

A consistent finding of epidemiological investiga-
tions into the transmission of ISAV, SAV and Lepeo-
phtheirus salmonis associated with mariculture is the
risk posed to neighbouring farms as a function of dis-
tance (Aldrin et al. 2011, Salama & Murray 2013).
The extent of this risk is site or area specific, and
dependent on the biomass or density of the affected
stock, the shedding rate and half-life of the pathogen
and on hydrographic characteristics, which influence
patterns of pathogen dispersal and can vary consid-
erably among coastal regions (Suttle & Chen 1992,
Foreman et al. 2012, Garver et al. 2013a, Asplin et al.
2014). These data have been used to estimate zones
of risk for sea lice and ISAV, implying that neigh-
bouring farms or any wild fish within defined zones
are at elevated risk of exposure to the pathogen (Jarp
& Karlsen 1997, Mardones et al. 2011, Werkman et al.
2011, Serra-Llinares et al. 2014). The consequences
of this exposure will be determined by the magnitude
and duration of the infectious dose and by factors
intrinsic to the at-risk population such as density,
age, overall health and natural susceptibility. These
factors are relatively well characterised for cultured
stock, which are therefore valuable in validating pre-
dictions of exposure, infection and possible disease
consequences that result from pathogen transmission
from neighbouring sites. The likelihood and uncer-
tainty of pathogen transmission pathways were com-
pared with and without farm-based disease miti-
gation strategies. Infections with ISAV or infectious
haematopoietic necrosis virus (IHNV, see Saksida
2006) among maricultured Atlantic salmon tend to
be acute with elevated mortality. Outbreaks of these
infections trigger management responses which in-

clude early pathogen detection through the use of
sensitive and specific diagnostic methods followed
by cage- or site-specific depopulation. In addition,
elevated biosecurity standards, including control over
the movement of fish and the movement and dis-
infection of staff (including clothing and personal
equipment) and larger equipment such as transport
vehicles, have become widely adopted by industry.
As a result, outbreaks of clinical ISA are now rare or
absent in Scotland and New Brunswick in eastern
Canada and a recent outbreak of IHN in western
Canada was of shorter duration with lower mortali-
ties compared with earlier outbreaks (Murray et al.
2010, ICES 2013). It is worth noting a possible dif-
ference between the epidemiology of ISAV and
SAV. For ISAV, the wild reservoir of the HPRO strain
remains a potentially important source for continued
outbreaks, in addition to HPRO strains that persist in
farmed populations (Lyngstad et al. 2011). By con-
trast, wild reservoirs no longer seem to play a part in
the epidemiology of SAV. Biosecurity will minimise
the spread of infections, and maintaining a high
health status (through good water quality, vaccina-
tion, etc.) will minimise the likelihood of future dis-
ease emergence. New diseases inevitably have their
origin in wild populations, but emergence is gener-
ally observed in farmed populations (Fig. 1); thus, a
high health status in farmed fish will reduce their
susceptibility to putative pathogens in wild popula-
tions (and possible subsequent back spill).

In comparison to the viruses, sea lice infections do
not elicit similarly robust mitigation measures. Rather,
they are readily counted and treatment or other man-
agement actions are often linked to parasite abun-
dance relative to a treatment trigger level. Sea lice
treatment trigger levels are management thresholds
which aim to reduce infection pressure on adjacent
farmed or wild host populations (Saksida et al. 2011).
Where they exist, infection thresholds are legislated
or adopted under industry codes of good practice
(Murray 2014), and values differ within and among
countries (Ritchie & Boxaspen 2011). In British Colum-
bia, the adoption of management thresholds led to a
transient increase in the quantity of emamectin ben-
zoate used (Saksida et al. 2011). Generally, the in-
creased use of a single medicine increases the risk of
resistance in the target population, ultimately lessen-
ing the effectiveness of the treatment. Theoretically,
to be most effective, trigger thresholds should be ad-
justed to reflect host biomass in an area (Ritchie &
Boxaspen 2011). More data are required to assess the
effectiveness of treatment triggers with respect to sea
lice spillback to wild salmon. The continued release of
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sea lice larvae resulting from reduced treatment effi-
cacy and from sub-threshold infections argues for the
continued application of integrated pest management
strategies (Brooks 2009). The reliability with which
sea lice populations in a given region can be screened
for sensitivity to treatment chemicals or medicines
and alternative treatments applied as required lessens
the uncertainty surrounding the effectiveness of these
measures.

Whereas epidemiological data from mariculture
may be useful in estimating risk of exposure, they are
limited in their ability to estimate infection and dis-
ease in adjacent wild populations. Thus, while evi-
dence supports the theoretical occurrence of ISAV,
SAV and salmon lice within a zone of risk associated
with an infected mariculture site, there is little evi-
dence of ISAV or SAV infections in wild fish in sup-
port of this claim, which may be a consequence of
limited surveillance. Further, there are no data that
permit interpretation of the consequences of ISAV
or SAV infections in wild fish. The extent to which
salmon lice contribute to measurable population-
level effects is beginning to be explored, but there is
uncertainty and spatial variation in the apparent
effects (Krkosek et al. 2013). In the treated-smolt
studies reported above, the extent to which the ap-
parent louse effect is related to mariculture requires
further work.

We have argued that the wealth of epidemiological
data derived from salmon mariculture relative to its
scarcity from wild populations, provides a reasonable
basis for estimating pathogen interactions both among
farmed populations and between farmed and wild
populations. However, the existence of these data
does not always equate with their availability for
third party analyses. The following requirements are
considered useful and possibly necessary to assist in
the characterisation and mitigation of pathogen trans-
mission from farmed salmonids.

(1) Systematic collection of disease-relevant data
from cultured populations, including pathogen iden-
tification, prevalence, severity and mortality;

(2) Systematic collection of data related to farm
species and biomass, seawater temperature and
salinity and plankton density;

(3) Archival of mariculture-derived data in an
accessible format and establishment of data sharing
protocols;

(4) Development and application of coupled hydro-
dynamic and particle-tracking models to characterise
hydrographic processes in mariculture coastal zones
to estimate pathogen dispersion from farms or farm
clusters;

(5) Establishment of epidemiologically isolated
management zones for farm clusters. Management
zones should incorporate limits to local biomass, and
protocols for coordinated activities such as stocking,
disease pathogen monitoring, harvesting, single age-
class and sea lice treatments;

(6) Pathogen surveillance of adjacent wild popula-
tions to document marine reservoirs of infection and
validate mariculture management practices.
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