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Abstract This paper proposes an alternative optimal fuzzy
high-gain observer design scheme. The structure of the
proposed observer is represented by the Takagi-Sugeno
fuzzy model and has the integrator of the estimation error.
It improves the performance of a high-gain observer and
makes the observer robust against noisy measurements,
uncertainties and parameter perturbation. The proposed
observer adopts the H” control technique and an adaptive
projection algorithm. This technique results in a reduction
of both the fuzzy approximation error and time-varying
addition, the
accomplishes a fast transient response and parameter
convergence. Some simulation results are given to present
the wvalidity of the theoretical derivations and the
performance of the proposed observer.

disturbances. In proposed  observer

Keywords Optimal Performance, Takagi-Sugeno Fuzzy
Model, H® Control, Adaptive Projection

1. Introduction

Over the past few decades, observer design has been a
very active field and has turned out to be much more
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difficult than control problems, since states are partially
or fully unavailable in many practical control problems;
the state variables are not accessible for direct connection
or, sensing devices or transducers are not available or
very expensive. In such cases, observer based control
schemes should be designed to generate estimates of
states. Much research on observer design for nonlinear
systems has been carried out based on fuzzy models. In
the structure of fuzzy models, the Takagi-Sugeno (T-S)
fuzzy model is widely accepted as a powerful tool for the
design and analysis of fuzzy control systems [1-6].

The T-S fuzzy model expresses a highly nonlinear
functional relation in spite of a small number of
implications of fuzzy IF-THEN rules [7, 8]. The T-S fuzzy
model approximates a nonlinear system with the
combination of several linear systems [8]. The benefit of
using the T-S fuzzy model is its mathematical simplicity
of analysis. Fuzzy systems are supposed to work in
situations where there is a large uncertainty or unknown
variation in plant parameters and structures. Generally,
the basic objective of adaptive scheme is to maintain
consistent performance of a system in the presence of
these uncertainties. Therefore, advanced fuzzy systems
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should be adaptive. Adaptive schemes for nonlinear
systems that incorporate fuzzy systems have been
enormously popular [6, 9-13].

The technique, known as a high-gain observer, is to design
the observer gain to make the observer robust against
model uncertainties in nonlinear functions [14]. Hence, it
works for a wide class of nonlinear systems. However,
high gains may excite hidden dynamics and amplify
measurement noise: large oscillations in the transient
response and sensitivity to measurement noise. Thus, a
high-gain observer could not be applicable in practice. In
order to overcome such a problem, several researchers
have successfully designed sliding-mode approaches to
construct observers that are highly robust with respect to
noise in the input of the system. However, it turns out that
the corresponding stability analysis cannot be directly
applied to situations that present output noise. Therefore, it
is still a challenge for the control system community to
suggest a manageable technique to analyse the stability of
identification error generated by sliding-mode type
observers whose structure is obtained by differential-
algebra techniques [15, 16].

The author earlier proposed a robust adaptive fuzzy high-
gain observer (RAFHGO) [17]. It is assumed that their
states are unavailable and their parameters are unknown.
The structure of the proposed observer is given based on
the T-S fuzzy model. An indirect adaptive law is derived
to estimate the unknown parameters and the stability
analysis of the proposed observer is accomplished by the
Lyapunov approach and fuzzy approximation error. The
proposed observer improves the robustness of the existing
high-gain against
uncertainties and parameter perturbation.

observer noisy  measurements,

The goal of the previous research was to improve the
performance speed of fuzzy observers. Therefore, it was
designed based on a high-gain observer design technique.
In general, the high-gain observer design technique
enhances the transient response speed and diminishes the
effect of uncertainties. Regarding its side-effects, however,
high gains can excite the large oscillation in the transient
response and increase the sensitivity to measurement
noise. The difference between the initial value of an original
system and that of the observer leads to a peaking
phenomenon, which can be regarded as a constant type
disturbance. RAFHGO overcame these side effects by
adopting an integral control technique since the integral
control technique ensures asymptotic regulation under all
parameter perturbations and does not destroy the stability of
the closed-loop system [18]. Hence, RAFHGO encompassed
enhancements such as a fast transient response and
insensitivity against the constant type disturbance.

However, there still remain several problems to be
considered in RAFHGO. First, only the constant type of
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disturbance is attenuated by RAFHGO, while disturbance
is a random signal in practice. Secondly, the fuzzy
modelling step has to be performed repeatedly to minimize
fuzzy approximation errors. Due to these problems,
RAFHGO is restricted within a narrow bound in terms of
robustness and requires a long calculation time.

In this paper, the optimal fuzzy high-gain observer
(OFHGO) is proposed as an advanced version of
RAFHGO to overcome the aforementioned problems.
OFHGO adopts the H” control technique and an
adaptive projection algorithm. The H” control technique
improves the robustness by constraining the bounds of
external disturbances and model approximation errors
with damping gain [19-21]. The adaptive projection
algorithm constrains unknown parameters so that they lie
in a certain set containing their original value. This causes
fast parameter convergence [22]. For the validity and
effectiveness of the proposed observer, simulation results
are presented

The rest of this paper is organized as follows. In the
Section 2, the T-S fuzzy system is reviewed and RAFHGO
is introduced briefly. The proposed observer OFHGO is
designed in Section 3 and Section 4 presents a
convergence analysis of OFHGO. Comparative
simulation results with RAFHGO are illustrated to
demonstrate the effectiveness of OFHGO in Section 5.
Finally, the paper is concluded in Section 6.

2. Preliminary

This section reviews RAFHGO, as introduced in earlier
work [17]. It achieves a fast transient response and
constant  disturbances.
modelling was used to represent the system. In the

insensitivity  to T-S fuzzy

observer structure, a high-gain observer design technique
and an integral control technique were added.

2.1 State-space Representation and T-S Fuzzy Modelling

The state space representation of the system can be
described as follows:

X = Ax + B[f(x) + g(x)u]

y =Cx @
010 -0 0 1
001 -0 0
where A = Do , B= and CT =
000
000 - 1 0

f(x) and g(x) are unknown but bounded continuous
nonlinear functions. ueR is a control input and yeR is
the output of the system. It is assumed that only y is
measurable and that the system (1) is observable.
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T .
X= [xl Xy xn] eR" is the state vector of the
system, which is assumed to be immeasurable.

Because the functions f(x) and g(x) are assumed to be
unknown, they are replaced with the T-S fuzzy modelled
systems f(x) and g(x). The T-S fuzzy model expresses
highly nonlinear functional relations in spite of a small
number of implications of fuzzy rules and approximates a
nonlinear system with the combination of several linear
systems [7, 8]. Moreover, it has a mathematically simple
structure. However, fuzzy rules provide only rough
information about f(x) and g(x) despite the fact that
fuzzy systems are approximators  [20].
Therefore, adaptive schemes are incorporated with a
fuzzy system to improve the accuracy of RAFHGO. We
f(x) = f(f(lé ) and g(x)= g(xle ). Finally,
f(xle) and g(xle) replace f(x) and g(x) they are
rewritten as follows:

universal

denote

f(x16;) = Zr:hi(y)éin( =07 5(%)

i=1 (2)
g(x16,) Zﬁ<wb =6,n(%)
where éf =a,eR", ég :Bi eR,
EX)=[h(y)% hy(y)Xx - h(y)X] and
n&) =[h,(y) hy(y) - h(y)]

I A o T . .

X= [xl X, xn] €R" is an estimated state vector.
The nonlinear system (1) can be expressed with the T-S
fuzzy model form as follows:

X = Ax+ B[Zr:hi(y)aiTx + ihi(y)biu]
i=1 i=1 3)
y =Cx

The objective of RAFHGO is to improve the speed
performance of fuzzy observers. For this purpose, the T-S
fuzzy model is used to represent the structure of
RAFHGO and the high-gain observer design technique
and integral control technique are used in the observer
structure.

2.2 RAFHGO Design

RAFHGO has the following observer structure, which
includes the high gain observer design technique and the
integral control technique.

Structure

IFy is M; THEN

X=Ax+ B[é}g(&) + égq(&)u] tL(y-9)+Mo @
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=y-y ()
§=Cx (6)
where a, and b are adaptive parameters and
L:E[L1 L, - L ] is an observer gain vector.
M eR™" is an integral control gain and o is a new state

describing the integral regulation error between the
system output and the observer output and:

L

&

0 L 0 .
E- &2 e R™™,

0 0 1

L & ]

Error dynamics

The observation error is defined as:

A

e =X-X

where x is the original state vector and X is the
estimated state vector.

The error dynamic equation can then be obtained as (8)
and (9) by substituting (3) and (4) into (7):

e=x-X )

é=(A-LC)e+ B[f(x) +g(x)u -0l &%) ©
-0In(u+o- w} ~Mo

o=y-§ ©

The best approximations of f (x) and g(x) can be

expressed as f(xle) and g(xle )-
parameters 6 and 9 are defined in Remark 1.

Here, the optimal

Remark 1: The optimal parameters 9; and 9; are
defined as follows:

9 =arg min {sup

fER XeR*

£(x16,)- f(x)}

9 =arg mm{sup (x|6) gx):l
€ x,xeR"

Using Remark 1, (8) and (9) can be rewritten as:

¢=(A-LCe+ B[(e; —0)TE®R)
. oA (10)
0] 7eg)Tq(§<)u7w} Mo

G=y-§ (11)
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where = [f(f( 10;) - f(x)} + [g(f( | 9;) - g(x)]u is the

minimum fuzzy approximation error.

z o
By the state transition z:{ 1}={ }, the dynamic
Z, e

equations (10) and (11) can be presented as (12):

i:{é—}:AZ+BC(9/Z2'W'u) (12)
e

where A = 0 C , B= 0 and
-M A-LC B

§(0,2,,0,u) = (0; - 0) ) + (0, -6, -0 .

RAFHGO enhances the error convergence speed and
diminishes the effect of the model uncertainties of fuzzy
observers. In addition, it reduces the sensitivity to
measurement noise and the gap between the initial value
of the original system and that of the proposed observer.
However, RAFHGO is only able to overcome a constant
type of disturbance, such as the aforementioned gap,
even when the disturbance is a random signal in practice.
Furthermore, a fuzzy modelling step has to be performed
repeatedly in order to obtain the minimum fuzzy
approximation error. This can cause RAFHGO to require
a long calculation time. These problems have prevented
RAFHGO from being used in practical systems. As a
solution, OFHGO is proposed in this paper. The design
method of OFHGO will be presented in the next section.

3. OFHGO Design

As an advanced version of RAFHGO, OFHGO adopts the
H” optimal control technique in its structure to attenuate
various types of disturbances and minimize fuzzy
approximation. For the design of OFHGO, the state space
representation of the original system is considered as:

X = Ax + B[f(x) + g(x)u + d(t)]

13
V- ox (13)
The structure of OFHGO is expressed as follows.
3.1 OFHGO Structure
IF y is M; THEN
iAg ATz 2y 2 AT (s _
= Ax+13[ef £(%)+ O n(u +d(t) v} )
+L(y-§)+Mé
G=y-y (15)
¥ =Cx (16)

where d(t) is external disturbance and v is an auxiliary
input.
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The main point in this step is to add the auxiliary input v
to the observer structure, which works to attenuate
external disturbances. The error dynamic equation is as
shown below.

3.2 Error Dynamics

é= (AA ~LC)e +B[f(x) +g(x)u-07ER) W)
~OInEu-d(t) +v+o- w} ~Mé

G=y-y (18)

According to Remark 1, (17) and (18) can be rewritten as
follows:

e=(A —che +B[(6;-0)"£X) 19)
+(0), ~6,) ) -w-d() + v} —Mé

G=y-y (20)

By the state transformation adopted for (12), (19) and (20)
can be expressed as follows:
&

z= { } =Az+B{(6,%D(t),u,v) (21)
e

0 C 0
where A = , B= and
-M A-LC B

£(0,%,D(t),u,v) = (0] - 6,)" &%) + (0, —6,) n(X)u+D(t) + v
4. Convergence Analysis

This section presents the convergence analysis of OFHGO
based on Lyapunov stability theory. To accelerate the
parameter convergence process, an adaptive projection
algorithm is used. In addition, both a Riccati-like
equation and the stability theory H* norm are used to
reduce the fuzzy approximation error and the effect of
disturbance. The Riccati-like equation and the H? norm
are reviewed in Remarks 2 and Remarka3.

Remark 2: According to the Riccati-like equation, if there
exists P and Q that satisfy:

ATP+PA+Q+[12—2JPBBTP—0
Py

then the matrix A is Hurwitz; that is, all eigenvalues of
A have negative real parts (Re 4, <0).

Here, P and Q are symmetric positive definite matrices
and y denotes the robust H” control gain. In addition,
p >0 is the prescribed attenuation level.
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Remark 3: If state x, parameters O; and Bg, and the
minimum approximation error @ (or disturbance d(t))
are bounded, then:

jOT\e(t)\zdt < a+bJ'OT\a)(t)\2dt 22)

for all t>0, where a and b are constants and @ is the
minimum approximation error.

The convergence analysis is given in Theorem 1.

Theorem 1: For (21), consider a Lyapunov candidate as:

v=17z+ L (0-6,)70,-6,)
2 2y,

(23)
L0 -6,)70. -6,
2y, & 8 & T8
and adaptive law as:
if (|0 <Ny ) or ([6;] =N, and 2"PBE]£(%) >0),
0; = 7,2"PBE(X) (24)
if (|6 =N, and 2"PBO£(%) <0),
. N ATc/s
0, = 12 PBE(X) - 7,2 PR AN (25)
2
if (‘Bg‘ < Ng) or (‘Gg‘ =N, and zTPBeg‘q(f()u > O),
0, = 7,2 PBn(X)u (26)
if (\ég‘ =N, and z'PB! n(X)u < 0),
A T . T égé;n(f()u
Gg =72 PBn(X)u-y,z PB————o (27)
0
g
and an auxiliary control input as:
v=—y"'B"Pz (28)

where the following notations apply:

V : positive definite and radially unbounded function
P : symmetric positive definite matrix

7, and y, : positive adaptation constant gains

N¢ and N, : positive constants

This adaptive law and V guarantee the asymptotic stability of
z for the equilibrium point z =0, which means the bound of

N

X, 6; and 0, for the equilibrium point x=x, 6; = 9: and
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ég :9;, where X is an original vector and 6; and 9; are
optimal parameters. V is termed the Lyapunov function. In
addition, the auxiliary control input, v improves the tracking
performance of the proposed observer.

Proof: The differentiating equation (23) yields:
V= %(zTPz +2'Pz)
1 o omgh 1o A 1 (29)
-—(6;-6;) 6,-—(6,-6,)6,.
7 72

By substituting (21) and Remark 1 into (29), V is
rewritten as follows:

V= %zT [A P4 PA ]z +2'PB(0,%, D(t),u, v)

Lo -6, —i(eg 6,6,
71 72

_ 1, Q-+ (12 - 2JPBBTP z+2z'"PBD(t) - z'PBv
2 P v
+2"PB(O; - 6,)" £(%) +2'PB(6, - 6,) n(X)u

Lo -6, —i(eg -6,)"e,.
71 72

Using (24), (25), (26), (27) and (28), V is obtained as
follows:

V= _EZTQZ _ 1 ,pBBTP+ zTPBD(t)
2 2p°
1 7 1 5.
=——7 Qz+—p°D*(t
5 Q 2P (t)
T
1 l(13T1>z+pD(t)) l(BTPz+pD(t))
2| p P
<110z L),
2 2

Integrating the above inequality from t to T yields:

1T 1 1 2¢T
osV(T)—V(O)s—EjO 2'Qzdt+_p J’O D?(t)dt
1,7 1 T
0<V(T)+ Ejo 2"'Qzdt < V(0) + > pzjo D?(t)dt

[} 2'Qzdt <2v(0)+ p2 [ D*(t)dt

Hence, V<0, as Q is a positive definite matrix. In
addition, the selection of p can render it sufficiently
small enough to ignore.

5. Simulation

OFHGO is applied to the synchronization of an unknown
nonlinear system and the superior performance of
OFHGO is emphasized in a comparison with RAFHGO.

Sung-Hoon Yu, Yong-Tae Kim, Chang-Woo Park and Chang-Ho Hyun:
An Optimal Fuzzy High-Gain Observer for an Uncertain Nonlinear System



6

A Duffing forced-oscillation system is considered as the
unknown nonlinear system. We start by representing the
system using the T-S fuzzy model. In this regard, the
techniques described in [7] are employed to construct
fuzzy models for the Duffing system. In the following
paragraphs, the system with the control input term is
represented in the T-S fuzzy model framework.

<Duffing Forced-Oscillation Model [7]>
Xy =Xy,

%, == —0.1x, +12cos(t) +u

Assume that y e [—d d] and d >0. Thus, we have the
following fuzzy model:

Rule1 IFy is M;, THEN x=Ax+Bu

Rule 2 IFy is M,, THEN x=A,x+Bu’

T * 0 1
h = , =u+12cos(t), A, = ,
where x [X1 Xz] u =u cos(t) 1 {0 01
0 1 0 y2 y2
A, = ,B=| |, Mi(y)=1-L-, M,(y)=2=
? Ldz —0.1} M W=t M=y
and d=4.

Figure 1 and Figure 2 show the parameter adaptation
performance. It is clear that OFHGO is more robust
against parameter perturbations than RAFHGO. The
parameter perturbation of OFHGO is significantly
reduced.

Figures 1 and 2 indicate the performance comparison
result between RAFHGO and OFHGO. As it is readily
recognized, all results of RAFHGO do not show its
parameter adaptation status within 10 seconds, whereas
OFHGO almost finishes estimating original parameters in
10 seconds.

(a) RAFHGO

Int J Adv Robotic Sy, 2013, Vol. 10, 188:2013

e e

P U UM MO SO (OUUR: NUUUR S WU O S )

(b) OFHGO

Figure 1. Comparison result of parameter adaptation a;

o) S N SN VAR S S W - -
0
02 i i I i i | i i

(b) OFHGO

Figure 2. Comparison result of parameter adaptation b,
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T(sec)

Figure 3. Disturbance signal

In order to prove the robustness of OFHGO against
disturbances, the disturbance signal illustrated in Figure
3, which is a Gaussian distributed random signal with a
mean of 0 and variance of 1, is used.

TS0 22 30 4 50 60 70 8 9% 100

()RAFHGO

el 4 1 4 & ¥ § P P
1]
(b)OFHGO

Figure 4. The synchronization result

Figure 4 depicts the synchronization results using both
RAFHGO and OFHGO. It seems that both observers

www.intechopen.com

accomplish the state estimation (synchronization)
successfully. However, although there was a Gaussian
distributed random signal with a variance of 1, the
magnitude of RAFHGO is bigger than 2. This means that
RAFHGO cannot handle time varying disturbance and
only captures the effect of the disturbance. On the other
hand, OFHGO overcomes it and there is no change of
magnitude. Secondly, even though the value of the
observation error is too small to determine which method
has better performance, in the time period from 0 seconds
to 20 seconds, during which OFHGO finishes estimating
the original states, RAFHGO continues to search for the
original states. This demonstrates that OFHGO enhances
the speed performance.

6. Conclusion

This paper proposed an optimal fuzzy high-gain observer
as an advanced version of RAFHGO to overcome the
weaknesses of RAFHGO. Robustness against various types
of disturbances was achieved through the use of the H”
control technique, and the parameter convergence speed
was accelerated using an adaptive projection algorithm in
OFHGO. In addition, the parameter perturbation of
OFHGO was significantly reduced. Accordingly, the
estimate speed of states was improved. Using Lyapunov
theory and a Riccati-like equation, the properties of
OFHGO were guaranteed in a convergence analysis.
Finally, the synchronization of a chaotic system was
simulated and the performance of OFHGO was
demonstrated in a comparative simulation with RAFHGO.
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