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STURM-PICONE COMPARISON THEOREM FOR

MATRIX SYSTEMS ON TIME SCALES

Douglas R. Anderson, John R. Graef

A well-known Picone identity is extended and generalized to second-order

dynamic matrix equations on arbitrary time scales. A comparison theorem

is obtained in the spirit of the classical Sturm-Picone comparison theorem

that extends known scalar results to matrix equations that include the lin-

ear homogeneous and inhomogeneous cases, and nonlinear unperturbed and

perturbed cases.

1. INTRODUCTION

More than 170 years have past since Sturm [18] published his famous com-
parison theorem for second order linear differential equations. There is reason to
believe that in fact he first proved this result for difference equations (see Reid
[17]). The first nonlinear version of the Sturm-Picone identity and comparison
theorem appeared in Graef and Spikes [12] for second order ordinary differential
equations. Jaros and Kusano extended the identity to second order half-linear
equations in [15]. Sturm type comparison theorems for higher order difference
equations have appeared in [9] and [10], and a very general Sturm-Picone compar-
ison theorem for higher order delay difference equations appeared in [11]. Here we
are interested in such problems for equations on time scales.

A nonlinear Sturm-Picone comparison theorem for the scalar perturbed dy-
namic equation

(1.1) (px∆)∆(t) + q(t, xσ(t)) = r(t, xσ(t)), t ∈ T,

on time scales T was obtained in Belinskiy, Graef, and Petrović [4], where
xσ(t) = (x ◦ σ)(t). Recently, Zhang and Sun [19] studied the linear Sturm-Picone
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comparison theorem for the scalar homogeneous dynamic equation

(px∆)∆(t) + q(t)xσ(t) = 0, t ∈ T;

note that in many ways the later paper [19] is a corollary to the earlier paper [4].

We seek to extend some of those comparison theorems to the linear homoge-
neous matrix dynamic equation on arbitrary time scales T given by

(1.2)
(
PX∆

)∆
(t) +Q(t)Xσ(t) = 0, t ∈ T,

and the nonlinear perturbed dynamic equation

(1.3)
(
PX∆

)∆
(t) +Q(t,Xσ(t))Xσ†(t)Xσ(t) = R(t,Xσ(t))Xσ†(t)Xσ(t), t ∈ T,

where U † indicates the Moore-Penrose pseudoinverse of U, which always exists and
is unique (see Ben-Israel and Greville [5, Theorem 1.5]). Note that (1.3) would
then include as important special cases (1.1) and (1.2), and thus the continuous
self-adjoint matrix differential equation

(PX ′)
′
(t) +Q(t)X(t) = 0, t ∈ R,

(see Reid [16]), and the corresponding discrete self-adjoint matrix difference equa-
tion

∆(Pn∆Xn) +QnXn+1 = 0, n ∈ Z,

(see Ahlbrandt and Peterson [2] and Bohner [6]), where ∆ is the forward
difference operator ∆Xn = Xn+1 −Xn. We see the connection between (1.2) and

(1.3) if we take Q(t,Xσ(t)) = Q(t)Xσ(t), Q̃(t, Y σ(t)) = Q̃(t)Y σ(t), and R(·, Xσ) ≡
0, so that

Q(t,Xσ(t))Xσ†(t)Xσ(t) = Q(t)
(
XσXσ†Xσ

)
(t) = Q(t)Xσ(t)

Q̃(t, Y σ(t))Y σ†(t)Y σ(t) = Q̃(t)
(
Y σY σ†Y σ

)
(t) = Q̃(t)Y σ(t)

by the properties of the Moore-Penrose pseudoinverse.

Dynamic equations on time scales have been introduced within the last twenty
years by Hilger and Aulbach [3, 14] to unify, extend, and generalize the theory
of ordinary differential equations, difference equations, quantum equations, and all
other differential systems defined over nonempty closed subsets of the real line.
The linear dynamic matrix version (1.3) was introduced in Agarwal and Bohner
[1] and studied further in Bohner and Peterson [7, Chapter 5] and Erbe and
Peterson [8]. Bohner and Peterson [7, Theorem 5.60] have a comparison the-
orem for (1.3) and a companion equation, the proof of which relies on disconjugacy,
a related Riccati equation, a Jacobi condition involving a quadratic functional, and
several other results. Our direct proof in Section 2 will be quite different, rely-
ing only on a Sturm-Picone identity dissimilar to that given in [7, Theorem 5.51].
Moreover, our result for the nonlinear perturbed matrix comparison in Section 3
is completely new. We will assume that the reader is familiar with the basic time
scale calculus and notation (for example, see [7]).



340 Douglas R. Anderson, John R. Graef

2. LINEAR COMPARISON RESULTS

In this section, we extend the results of [4] and [19] by considering the pair
of homogeneous linear matrix dynamic equations

(
PX∆

)∆
(t) +Q(t)Xσ(t) = 0, t ∈ T,(2.1)

(
P̃ Y ∆

)∆
(t) + Q̃(t)Y σ(t) = 0, t ∈ T,(2.2)

where P, P̃ , and Q, Q̃ are right-dense continuous n×n Hermitian matrix functions
(a matrix M is Hermitian iff M∗ =M, where “ ∗ ” indicates conjugate transpose)

with P, P̃ invertible in T, for X ∈ D and Y ∈ D̃. Here, D denotes the set of all
n × n matrix-valued functions X defined on T such that X∆ is continuous on Tκ

and (PX∆)∆ is right-dense continuous on Tκ2

. Then X is a solution of (2.1) on T
provided X ∈ D and X satisfies (2.1) for all t ∈ Tκ2

. Similarly, D̃ denotes the set
of all n× n matrix-valued functions Y defined on T such that Y ∆ is continuous on
Tκ and (P̃ Y ∆)∆ is right-dense continuous on Tκ2

. Then Y is a solution of (2.2) on

T provided Y ∈ D̃ and Y satisfies (2.2) for all t ∈ Tκ2

.

Lemma 2.1. (Picone Identity) If X is a solution of (2.1) and Y is an invert-

ible solution of (2.2) with the product Y ∗P̃ Y ∆ Hermitian (i.e., Y is a prepared
solution), then G : T →Mnn defined via

G(t) :=
(
X∗PX∆ −X∗P̃ Y ∆Y −1X

)∆
(t)

expands to

(2.3) G = Xσ∗
(
Q̃−Q

)
Xσ +X∆∗

(
P − P̃

)
X∆+

(
Y −1X

)∆∗ (
Y ∗P̃ Y σ

) (
Y −1X

)∆
,

where the argument has been suppressed.

Proof. See the proof of Lemma 3.1.

Before we present our main Sturm-Picone-type result of this section, we intro-
duce the following key definition, an offshoot of an idea originally due to Hartman
[13].

Definition 2.2. A solution X of (2.1) has a generalized zero at t ∈ T iff X(t) is
noninvertible, or if t is a right-scattered point such that (X∗PXσ)(t) is invertible

but (X∗PXσ)(t) ≤ 0. Similarly, a solution Y of (2.2) with the product Y ∗P̃ Y ∆

Hermitian has a generalized zero at t ∈ T iff Y (t) is noninvertible, or if t is a

right-scattered point such that (Y ∗P̃ Y σ)(t) is invertible but (Y ∗P̃ Y σ)(t) ≤ 0. Here
M ≤ 0 for n × n matrix M carries the standard meaning that γ∗Mγ ≤ 0 for all
γ ∈ Cn.

Definition 2.3. The unique solution of the initial value problem (2.1) with initial
conditions X(t1) = 0, X

∆(t1) = P−1(t1) is called the principal solution of (2.1) at
t1.
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Theorem 2.4. (Sturm Comparison Theorem) Assume the rd-continuous invertible

Hermitian matrix functions P, P̃ satisfy

(2.4) P (t)− P̃ (t) ≥ 0, t ∈ T,

and the rd-continuous Hermitian matrix functions Q, Q̃ satisfy

(2.5) Q̃(t)−Q(t) ≥ 0, t ∈ T.

If the principal solution X of (2.1) at t1 has a second generalized zero at t2 > t1
in T, with X invertible and (X∗PXσ)(t) > 0 for t ∈ (t1, t2)T, then every solution

Y of (2.2) with the product Y ∗P̃ Y ∆ Hermitian has a generalized zero in [t1, t2]T.

Proof. See the proof of Theorem 3.2.

3. NONLINEAR COMPARISON RESULTS

In this section, we seek to extend the results in [7, Chapter 5.3] by consider-
ing (1.1) and a possible matrix extension, namely the perturbed nonlinear matrix
dynamic equation

(3.1)
(
PX∆

)∆
(t) +Q(t,Xσ(t))Xσ†(t)Xσ(t) = R(t,Xσ(t))Xσ†(t)Xσ(t), t ∈ T,

and the companion perturbed nonlinear matrix dynamic equation

(3.2)
(
P̃ Y ∆

)∆
(t) + Q̃(t, Y σ(t))Y σ†(t)Y σ(t) = R̃(t, Y σ(t))Y σ†(t)Y σ(t), t ∈ T,

where as before U † is the Moore-Penrose pseudoinverse of U, the coefficients P, P̃ :
T → Mnn are right-dense continuous invertible n× n Hermitian matrix functions,
but here we have the (possible) nonlinearities Q,R, Q̃, R̃ : T ×Mnn → Mnn, for

X ∈ D and Y ∈ D̃, where Q,R, Q̃, R̃ are right-dense continuous in the first (time-
scale) variable, and continuous in the second matrix variable. We let D denote the
set of all n×n matrix-valued functions X defined on T such that X∆ is continuous
on Tκ and (PX∆)∆ is right-dense continuous on Tκ2

. Then X is a solution of (3.1)

on T provided X ∈ D and X satisfies (3.1) for all t ∈ Tκ2

. Similarly, D̃ denotes the
set of all n×n matrix-valued functions Y defined on T such that Y ∆ is continuous
on Tκ and (P̃ Y ∆)∆ is right-dense continuous on Tκ2

. Then Y is a solution of (3.2)

on T provided Y ∈ D̃ and Y satisfies (3.2) for all t ∈ Tκ2

. Compare the following
lemma for (3.1), (3.2) with Lemma 2.1.

Lemma 3.1. (Nonlinear Picone Identity) If X is a solution of (3.1) and Y is an

invertible solution of (3.2) with the product Y ∗P̃ Y ∆ Hermitian, then G : T →Mnn

defined via

G(t) :=
(
X∗PX∆ −X∗P̃ Y ∆Y −1X

)∆
(t)
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expands to

G = Xσ∗
{[
Q̃(·, Y σ)− R̃(·, Y σ)

]
(Y σ)† + [R(·, Xσ)−Q(·, Xσ)] (Xσ)†

}
Xσ(3.3)

+X∆∗
(
P − P̃

)
X∆ +

(
Y −1X

)∆∗ (
Y ∗P̃ Y σ

) (
Y −1X

)∆
,

where the argument has been suppressed.

Proof. Note that under these assumptions, (Y σ)† = (Y σ)−1. Suppressing the ar-
guments, we expand the dynamic differential version of G using the delta derivative
product rule and the fact thatX and Y are solutions to (3.1) and (3.2), respectively,
to obtain

G = X∗σ(PX∆)∆ +X∆∗PX∆ − (X∗P̃ Y ∆)∆(Y −1X)σ −X∗P̃ Y ∆(Y −1X)∆

= X∗σR(·, Xσ)Xσ†Xσ −X∗σQ(·, Xσ)Xσ†Xσ +X∆∗(P − P̃ )X∆ +X∆∗P̃X∆

−X∗σ(P̃ Y ∆)∆(Y −1X)σ −X∆∗P̃ Y ∆(Y −1X)σ −X∗P̃ Y ∆(Y −1X)∆

= X∗σR(·, Xσ)Xσ†Xσ −X∗σQ(·, Xσ)Xσ†Xσ +X∗σQ̃(·, Y σ)Y σ†Y σ(Y −1X)σ

+X∆∗(P − P̃ )X∆ +X∆∗P̃X∆ −X∆∗P̃ Y ∆(Y −1X)σ −X∗P̃ Y ∆(Y −1X)∆

−X∗σR̃(·, Y σ)Y σ†Y σ(Y −1X)σ.

With some factoring and rearranging, we have

G = X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ†

]
Xσ +Xσ∗

[
Q̃(·, Y σ)(Y σ)†

−Q(·, Xσ)(Xσ)†
]
Xσ +X∆∗(P − P̃ )X∆ −X∗P̃ Y ∆(Y −1X)∆

+X∆∗P̃
[
X∆ − Y ∆(Y σ)−1Xσ

]

= X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ†

]
Xσ +Xσ∗

[
Q̃(·, Y σ)(Y σ)†

−Q(·, Xσ)(Xσ)†
]
Xσ +X∆∗(P − P̃ )X∆ −X∗P̃ Y ∆(Y −1X)∆

+X∆∗P̃
{
X∆ + Y

[
−Y −1Y ∆(Y σ)−1Xσ

]}

= X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ†

]
Xσ +Xσ∗

[
Q̃(·, Y σ)(Y σ)†

−Q(·, Xσ)(Xσ)†
]
Xσ +X∆∗(P − P̃ )X∆ −X∗P̃ Y ∆(Y −1X)∆

+X∆∗P̃
[
Y Y −1X∆ + Y (Y −1)∆Xσ

]
.

Here we used the fact that (Y −1)∆ = −Y −1Y ∆(Y σ)−1. Continuing in this manner,
we obtain

G = X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ† + Q̃(·, Y σ)(Y σ)† −Q(·, Xσ)(Xσ)†

]
Xσ

+X∆∗(P − P̃ )X∆ −X∗P̃ Y ∆(Y −1X)∆ +X∆∗P̃ Y
[
Y −1X∆ + (Y −1)∆Xσ

]

= X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ† + Q̃(·, Y σ)(Y σ)† −Q(·, Xσ)(Xσ)†

]
Xσ

+X∆∗(P − P̃ )X∆ −X∗P̃ Y ∆(Y −1X)∆ +X∆∗P̃ Y (Y −1X)∆

= X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ† + Q̃(·, Y σ)(Y σ)† −Q(·, Xσ)(Xσ)†

]
Xσ

+X∆∗(P − P̃ )X∆ +
[
X∆∗P̃ Y −X∗(Y ∗)−1Y ∗P̃ Y ∆

]
(Y −1X)∆.
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Now since Y is a solution of (3.2) with Y ∗P̃ Y ∆ Hermitian, and P̃ is Hermitian, we
have

G = X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ† + Q̃(·, Y σ)(Y σ)† −Q(·, Xσ)(Xσ)†

]
Xσ

+X∆∗(P − P̃ )X∆ +
[
X∆∗P̃ Y −X∗(Y ∗)−1Y ∆∗P̃ Y

]
(Y −1X)∆

= X∗σ
[
R(·, Xσ)Xσ† − R̃(·, Y σ)Y σ† + Q̃(·, Y σ)(Y σ)† −Q(·, Xσ)(Xσ)†

]
Xσ

+X∆∗(P−P̃ )X∆+
[
X∆∗(Y σ∗)−1−X∗(Y ∗)−1Y ∆∗(Y σ∗)−1

]
Y σ∗P̃ Y (Y −1X)∆

= X∗σ
[
R(·, Xσ)Xσ† −Q(·, Xσ)(Xσ)† + Q̃(·, Y σ)(Y σ)† − R̃(·, Y σ)Y σ†

]
Xσ

+X∆∗(P − P̃ )X∆ + (Y −1X)∆∗
(
Y ∗P̃ Y σ

)
(Y −1X)∆.

Here we have used the fact that Y ∗P̃ Y ∆ being Hermitian implies Y ∗σP̃ Y is Her-
mitian as well, a fact shown easily using the simple formula [14] given by Y σ

= Y + µY ∆.

Theorem 3.2. (Perturbed Sturm Comparison Theorem) Assume that

(3.4) P (t)− P̃ (t) ≥ 0

and

(3.5) [R(t, U)−Q(t, U)]U † +
[
Q̃(t, V )− R̃(t, V )

]
V † ≥ 0

for all t ∈ T. If equation (3.1) has a unique principal solution X at t1 with a
second generalized zero at t2 > t1 in T, with X invertible and (X∗PXσ)(t) > 0

for t ∈ (t1, t2)T, then every solution Y of (3.2) with the product triple Y ∗P̃ Y ∆

Hermitian has a generalized zero in [t1, t2]T.

Proof. We argue by contradiction. Let X be the principal solution of (3.1) at t1
with a second generalized zero at t2 > t1 in T, and let Y be a solution of (3.2) with
the product Y ∗P̃ Y ∆ Hermitian and with no generalized zeros in [t1, t2]T. It follows

that Y is invertible and (Y ∗P̃ Y σ)(t) > 0 for all t ∈ [t1, t2]T. Then, by Lemma 3.1,
we integrate the expression for G from t1 to t2 to obtain

(
X∗PX∆ −X∗P̃ Y ∆Y −1X

)
(t)
∣∣∣
t2

t1
=

∫ t2

t1

(
X∗PX∆ −X∗P̃ Y ∆Y −1X

)∆
(t)∆t(3.6)

=

∫ t2

t1

Xσ∗
{
[R(·, Xσ)−Q(·, Xσ)] (Xσ)† +

[
Q̃(·, Y σ)− R̃(·, Y σ)

]
(Y σ)†

}
Xσ(t)∆t

+

∫ t2

t1

(
X∆∗

(
P − P̃

)
X∆(t) +

(
Y −1X

)∆∗ (
Y ∗P̃ Y σ

) (
Y −1X

)∆
(t)
)
∆t.

Case I : Suppose X has a singularity t2. Since X(t1) = 0 and X(t2) is singular,
there exists a vector γ 6= 0 such that X(t2)γ = 0, and we have

γ∗
((

X∗PX∆ −X∗P̃ Y ∆Y −1X
)
(t)
∣∣∣
t2

t1

)
γ = 0.(3.7)
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But by (3.6) and our assumptions (3.4) and (3.5), respectively, we have

0 = γ∗
(∫ t2

t1

Xσ∗
{
[R(·, Xσ)−Q(·, Xσ)] (Xσ)†

+
[
Q̃(·, Y σ)− R̃(·, Y σ)

]
(Y σ)†

}
Xσ(t)∆t+

∫ t2

t1

X∆∗
(
P − P̃

)
X∆(t)∆t

+

∫ t2

t1

(
Y −1X

)∆∗ (
Y ∗P̃ Y σ

) (
Y −1X

)∆
(t)∆t

)
γ > 0,

which is a contradiction.

Case II : Suppose t2 is a right-scattered point such that (X
∗PXσ)(t2) is invertible

but (X∗PXσ)(t2) ≤ 0. Then there exists a vector γ 6= 0 such that γ
∗(X∗PXσ)(t2)γ

≤ 0. Set I =
∫ t2
t1
G(t)∆t for G from Lemma 3.1. Then I > 0 by the right-hand side

of (3.6) and our assumptions (3.4) and (3.5), respectively. But

0 < γ∗Iγ = γ∗
(
X∗PX∆ −X∗P̃ Y ∆Y −1X

)
(t)γ

∣∣∣
t2

t1

= γ∗
(
1

µ
X∗P (Xσ −X)−

1

µ
X∗P̃ (Y σ − Y )Y −1X

)
(t2)γ

=
1

µ
γ∗(X∗PXσ)γ(t2)−

1

µ
(Xγ)∗(P̃ Y σY −1)(Xγ)(t2)

−
1

µ
(Xγ)∗(P − P̃ )(Xγ)(t2) < 0,

another contradiction. Here we have used the fact that Y ∗P̃ Y σ > 0 implies
P̃ Y σY −1 > 0 as well.

The following reformulation of Theorem 3.2 is immediate.

Theorem 3.3. Assume P, P̃ satisfy (3.4) and Q,R, Q̃, R̃ satisfy (3.5). If (3.2) has

a solution Y with the product Y ∗P̃ Y ∆ Hermitian such that Y has no generalized
zeros in [t1, t2]T for t1, t2 ∈ T with t1 < t2, then the principal solution X of (3.1)
at t1 satisfies (X

∗PXσ)(t) > 0 for t ∈ (t1, t2]T.

As indicated in Section 2, equations (3.1) and (3.2) reduce to (2.1) and (2.2)
in the linear homogeneous case and we obtain the standard comparison theorem.
However, we should point out that the results given here in Theorems 3.2 and 3.3
allow us to compare two nonlinear unperturbed equations, a (nonlinear) unper-
turbed equation to a linear or nonlinear perturbed equation, etc. We leave the
formulation of these results to the reader.

4. OSCILLATION

In this section, we give an oscillation result, and thus suppose that supT =∞
throughout. Let a ∈ T. We say that equation (3.2) is nonoscillatory on [a,∞)T if
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and only if there exist a solution Y of (3.2) with Y ∗P̃ Y ∆ Hermitian and a point
t0 ∈ [a,∞)T such that (Y

∗PY σ)(t) > 0 on [t0,∞)T, i.e., Y has no generalized zeros
on [t0,∞)T. Otherwise, we say that (3.2) is oscillatory on [t0,∞)T. Similarly, we
say the linear homogeneous equation

(4.1) X∆∆(t) +Q(t)Xσ(t) = 0

is nonoscillatory on [a,∞)T if and only if there exist a solution X of (4.1) with
X∗X∆ Hermitian and a point t0 ∈ [a,∞)T such that (X

∗Xσ)(t) > 0 on [t0,∞)T,
and it is oscillatory on [t0,∞)T otherwise.

In the following theorem, we use the notation that for any n × n Hermitian
matrix M, λmax(M) denotes the largest eigenvalue of M. Moreover, we assume the
time scale T does not eventually become the continuous real line, in the sense that
there exist two right-scattered points somewhere on any half line.

Theorem 4.1. Assume that for any t0 ∈ [a,∞)T there exist points b0 > a0 ≥ t0
such that µ(a0) > 0, µ(b0) > 0, and

(4.2) λmax

(∫ b0

a0

Q(t)∆t

)
≥

1

µ(a0)
+

1

µ(b0)

for Q in equation (4.1). If

(4.3) I ≥ P̃ and
[
Q̃(t, V )− R̃(t, V )

]
V † −Q(t)UU † ≥ 0,

then (3.2) is oscillatory.

Proof. By [7, Theorem 5.63], condition (4.2) implies that (4.1) is oscillatory on
[a,∞)T. Then, from Theorem 3.3 and (4.3), we have that (3.2) is also oscillatory
on [a,∞)T.
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