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SINGULARITY ANALYSIS FOR AUTONOMOUS AND

NONAUTONOMOUS DIFFERENTIAL EQUATIONS

Kostis Andriopoulos, Peter Leach

Singularity analysis of ordinary differential equations is an important tool in
the determination of the possible integrability of the equations. Although sin-
gularity analysis has been studied for decades, it still seems to cause problems
in terms of the interpretation of some elements of the analysis. We summarise
these problems and try to present a delicate approach towards their resolution
by separating the treatment for autonomous and nonautonomous equations.

1. INTRODUCTION

In recent times singularity analysis has become an integral component of the
standard approach to the analysis of differential equations, be they ordinary or par-
tial, scalar or system. This development was a consequence of the observation that
nonlinear partial differential equations solvable by means of the Inverse Scattering
Method could be reduced to an equation of Painlevé Type [1, 2, 3]. The analysis
was popularised in the works of Ramani et al. [27] and Tabor [28]. The deve-
lopment of singularity analysis can be found in the work of Kowalevskaya [22]
in which she found the third integrable case of the top and her procedure forms the
basis of what is now known as the Painlevé Test. About the same time Painlevé and
his School [24, 15, 16, 17] began the long process of the classification of ordinary
differential equations in terms of analytic functions. A concise discussion of these
early results can be found in the classic text of Ince [20]. The process of classifi-
cation proceeds steadily even to the present day as ordinary differential equations
of higher order and partial differential equations are subjected to scrutiny. Some of
this work can be found in references [6, 7, 12, 19]. We should emphasise that the
process of classification and the application of the so-called Painlevé Test generally
do not proceed by the same methods. In fact we are reminded of the comment of
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Painlevé that he did not see the need for ‘le procédé connu de Madame Kowaleski’
[24].

The Singularity Analysis in terms of its application to the resolution of a
differential equation is essentially the determination of an expression for the solution
of the equation as a Laurent expansion about a singularity which we take to be
polelike. In the process the analysis can detect whether the singularity is a pole or
a branch-point singularity. It cannot detect an essential singularity. If one follows
the tradition of Kowalevskaya, clearly presented in the works of Ramani et
al. and Tabor, the singularity analysis has a few simple criteria. The leading-
order behaviour is a pole and the Kowalevskaya exponents, nowadays usually
called the resonances, are nonnegative integers apart from a generic −1 in the
standard analysis. It does happen that there exist equations with negative or mixed
resonances, a fact that was indeed recognised as far as a century ago by Chazy

[7, 9, 21] (see Section 4.1). The solution has a movable natural boundary – a closed
curve in the complex plane (a circle in this case) beyond which the solution cannot
be analytically continued [9]. If one thinks of this in terms of negative resonances,
a solution starting from the neighbourhood of the singularity and expressed as a
power series cannot pass beyond the circle which determines the lower value of the
radius of convergence of the asymptotic expansion. The equation of Chazy, (3),
seems to have remained an oddity without explanation. However, about twenty
years ago various explanations for the case of negative resonances were put forward
and for one interpretation the reader is referred to the perturbative approach by
Conte, Fordy and Pickering [10, 11, 14].

There were also equations with a mixture of positive and negative resonances.
Feix et al. [13] provided a rational explanation for negative resonances and the
whole question – positive, negative, mixed resonances – was explained with explicit
examples by Andriopoulos and Leach [4]. The explanation was quite simple;
found within a first course in the theory of functions of a complex variable. A
related matter, which had exercised the imagination of some workers in the field
[25], was the interpretation of a singularity analysis which yielded an insufficient
number of resonances to provide the number of arbitrary constants required for a
general solution. An early example is found in Lemmer et al. [23] and a more
comprehensive discussion is given by Rajasekar [26].

2. ASPECTS OF THE METHOD OF POLELIKE EXPANSIONS

We recall the standard algorithm of the Painlevé Test as applied to ordinary
differential equations [27, 28]. Firstly one determines the leading-order behaviour
by making the substitution

(1) yi = αiχ
pi , i = 1, n,

into the given system of ordinary differential equations which have yi, i = 1, n,
dependent variables and χ = x − x0, where x0 is the location of the putative
polelike singularity. The location of the singularity is arbitrary in the absence of the
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application of initial/boundary conditions. The remaining constants of integration
required to have a general solution of the system enter at the so-called resonances.
After the leading-order behaviour has been established by the substitution of (1),
one substitutes

(2) yi = αiχ
pi + µiχ

pi+r, i = 1, n,

into the system. The values of r, the resonances, are determined by requiring that
terms linear in the µi have coefficient zero (A geometric interpretation using the
same principles is found in [18]). Given that the coefficients of the µi are zero, the µi

are arbitrary. Should there be a sufficient number of these arbitrary constants, there
are enough constants to provide a general solution. Since the aim of the singularity
analysis is to determine the integrability of the system in terms of analytic functions,
it is evident that the leading-order exponents, pi, i = 1, n, are negative integers
and that the resonances take integral values. (The extension of this discussion to
the case of the so-called ‘weak Painlevé Property’ is not particularly difficult)

After the leading-order behaviour has been determined one seeks the next-
to-leading-order behaviour. Vital information is granted by the various values of
the resonances which indicate the exact positions where the remaining arbitrary
constants appear in the Laurent expansion representing the solution of the given
equation. Goriely [18] provides a proof (following a different formulism) of the
everoccurence of the −1 value. The other n − 1 resonances (for an nth-order
differential equation) can in fact take any other value.

Every resonance is assigned a specific meaning – indeed the same for all
possible values: the position where a constant of integration enters the expansion.
What is in fact noteworthy is the meaning attributed to the value −1 throughout
the years of the existance of the singularity analysis. Independently of the paper,
every single publication treated the −1 resonance as an indication of the forcing of
the singularity to be at the leading-order term or its occurence was associated with
the freedom surrounding the putative singularity. Why? Is there a solid reason
why one should interpret the value −1 differently from all other values?

We assume the standard y = αχp + µχp+r as the next-to-leading-order be-
haviour independently of the nature or the domain of convergence for the resulting
series. The emergence of any value for the resonances signifies the insertion of an
arbitrary constant at the p+ r power. Consider the case of −1. The above lead to
the result that an arbitrary constant comes at p−1. True. In the case of nonpositive
values for all resonances (see Sections 3.1 and 4.1 when dealing with Left Painlevé
Series) there is no problem with −1 and the arbitrary constants are present at each
power that the values of the resonances indicate. That the position of the putative
singularity, x0, is merged within those constants is a separate matter which is given
its appropriate attention in what follows. On the other hand in the case of strictly
nonnegative values for the other resonances one is confronted by a Right Painlevé
Series. The Laurent expansion starts from the power p and then augments by in-
creasing powers of χ, i.e., p+1, p+2, . . . , where the coefficients of some terms may
be zero. It therefore becomes apparent that the p− 1-term reflecting the −1 value
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for the resonance is more dominant than the actual dominant term, a fact which is
indeed remarkable and cannot but be precluded; the resonance −1 is discarded on
the grounds that it produces a term which is more dominant.

Observe that all the above come independently of the existance of a ∂x sym-
metry and consequently the use of the argument that one may relocate the assumed
pole from x0 to 0. Whilst it is true that one could make the translation to the origin,
the x0 would have to come into the initial conditions. In the case of autonomous
equations, the possession of the symmetry ∂x is straightforward and one could have
sought from the beginning for a series around zero and not around an arbitrary x0

as both are equivalent under a translating transformation. This is quite different
with what we wish to address here.

3. AUTONOMOUS EQUATIONS

3.1. An instance of a Left Painlevé Series

Consider the Chazy equation

(3) y′′′ − 2yy′′ + 3y′2 = 0.

When we perform the standard singularity analysis, we find that p = −1, α1 = −6
and r = −1,−2,−3 (Note that the only subdominant possibility is p = −2 and
α arbitrary). Most authors would therefore claim that, since all values of the
resonances are nonpositive, the procedure ends and there is no representation in
terms of a Laurent expansion. There are some others, on the other hand, who claim
that a Series exists but in a domain removed from the singularity. There is also
a third group that developed the perturbative approach with their interpretation
of what one should do when confronted with negative resonances [10, 11, 14]. To
make this clear we represent the Left Painlevé Series, as it is called, as

(4) y(x) = −6χ−1 + α2χ
−2 + α3χ

−3 + α4χ
−4 + · · · ,

where χ = x − x0. It is now clear that (4) contains (seemingly) four arbitrary
constants, x0 and αi, i = 2, 4. This is explained in what follows.

After we have calculated the resonances, we are obliged to seek for consistency
until the highest resonance. Of course in this case we have a series with decreasing
powers and in fact we include a further term in order to illustrate a point. When
we substitute the complete series into the whole equation, (3), we obtain (where
there is summation on repeated indices)

i(i+ 1)(i + 2)αiχ
−i−3 + (2i(i+ 1)αiαj − 3ijαiαj)χ

−i−j−2 = 0, i, j = 1, 2, . . . .

The χ−4 terms give α1 = −6, the terms χ−5, χ−6 and χ−7 give the three arbitrary
constants α2, α3 and α4, respectively. If we collect the χ−8 terms, then we get
that α5 = (3α 2

3 − 4α2α4)/6 as expected since every further coefficient should be
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expressed in terms of the ‘four’ arbitrary constants. In order to show that this
number is in fact three and considering the fact that the Series is valid outside a
disc surrounding the singularity, ie |x−x0| > |x̄−x0|, where x̄ stands for all points
on the boundary of the disc, we rewrite (4) as
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We now redefine the arbitrary constants as β2, β3 and β4 by

α2 = β2 + 6x0, α3 = β3 − 2x0β2 − 6x 2
0 , α4 = β4 − 3x0β3 + 3x 2

0 β2 + 6x 3
0

and, when all the above expressions are substituted into the coefficient of x−5, we
obtain (3β 2

3 − 4β2β4)/6. We conclude that the solution has 3 arbitrary constants.

Consider now the equation

(5) y′′′ − 2yy′′ + 3y′2 + ky8 = 0.

There are several points to be discussed in such a situation. We substitute
for a leading-order term the usual y = αχp in (5) to obtain

αp(p− 1)(p− 2)χp−3 − 2α2p(p− 1)χ2p−2 + 3α2p2χ2p−2 + kα8χ8p = 0.

The only balance to be found (with an integral value) is p = −1, the last term is
more dominant and in the current literature that value would not be permissible
because all nondominant terms are supposed to be less dominant! However, when
we look for a Left Painlevé Series, this is to be expected and the value p = −1
is accepted. We proceed for the resonances, which are determined by considering
the dominant terms of the equation only. They are found to be r = −1, −2, −3
as before (this is how this example was constructed!). Indeed, when we substitute
the truncated series up to the last resonance in all terms of (5), we recover the −6
value for the leading-order coefficient, the three arbitrary constants (which in fact
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absorb, as was explicitly demonstrated above, the position x0 of the singularity)
α2, α3 and α4, and in the last step, when we collect all terms raised to the eightth
power, we get

α5 =
1

2
α 2
3 −

2

3
α2α4 − kα 7

1 ,

which shows that there are no inconsistencies arising when all terms in (5) are
taken into account. Therefore the series obtained is valid outside a punctured disc
surrounding the pole.

3.2. An instance of a Right Painlevé Series

Consider another Chazy equation, videlicet

(6) y′′′ − 2yy′′ − 2y′2 = 0.

The standard singularity analysis forces the leading-order exponent to be p = −1,
the leading-order coefficient α0 = −1 and the resonances r = −1, 2, 3. We can
therefore write the solution as the Laurent Series expansion

(7) y(x) = −χ−1 + αχ+ βχ2 + . . . ,

which is valid in |x−x0| < |x̄−x0|. If we require |x| < |x0|, then (7) can be equally
written as
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and it becomes apparent that no merging of arbitrary constants can possibly occur.

4. NONAUTONOMOUS EQUATIONS

4.1. An instance of a Left Painlevé Series

Our vehicle is a modified Chazy equation, videlicet

(8) y′′′ − 2yy′′ + 3y′2 + xy9 = 0.
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Apparently p = −1, α1 = −6 and r = −1, −2, −3. When the truncated series
is substituted into the equation (where all terms are taken into account) and we

collect all terms in χ−8, we obtain α5 = −
1

6
(4α2α4 − 3α 2

3 − α 9
1 ). It is at the χ−9

that the location of the pole enters explicitly into the expansion, i.e.

α6 = −
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2 α4 + 6α2α
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8
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9
1 ).

The Laurent expansion is therefore written as

y = −6χ−1 + α2χ
−2 + α3χ

−3 + α4χ
−4 + α5χ

−5 + α6χ
−6,

where χ = x− x0, α2, α3 and α4 are arbitrary and α5 and α6 are the expressions
just above. Note that x0 enters at the power −9 − (−4) + (−1) = −6 and that
following the argument in a previous section the seemingly four arbitrary constants
are essentially three.

4.2. An instance of a Right Painlevé Series

Consider the equation

(9) y′′ − 6y2 − x = 0,

which is the first of the six Painlevé transcendents.

When we perform the singularity analysis, we obtain p = −2, α0 = 1 and
r = −1, 6. The solution can therefore be written in the correct form as

(10) y(x) = χ−2 −
x0

10
χ2 −

1

6
χ3 + α3χ

4 + ...,

where χ = x − x0. Note that in (10) the x0 enters the expansion at the fourth
power after the leading order, or, otherwise put, at the power 0− (−4)+ (−2) = 2.

Consider the equation

(11) y′′ − 2y3 − xy − a = 0,

which is the second of the six Painlevé transcendents.

When we apply singularity analysis we obtain p = −1, α0 = ±1 and r =
−1, 4. The solution can therefore be written in the correct form as

(12) y(x) = ±χ−1 ∓
x0

6
χ+

∓1− a

6
χ2 + α3χ

3 + ...,

where χ = x− x0. This time the pole enters at the power −1− (−3) + (−1) = 1.

In general (for nonautonomous equations) x0 enters at the power given by
the difference between the lowest power of χ multiplying x0 in the equation and the
dominant exponent in the equation plus the leading-order exponent. The arbitrary
constants in each of (10) and (12) are two, x0 and α3, as it should be. Of course
one notes the appearence of x0 in the series. We claim that the pole appears in
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the coefficients of powers of χ in the solution of only nonautonomous equations.
As has already been pointed out, the resonance −1 is discarded since it provides a
term which is more dominant than the a priori-assumed leading-order term.

5. DISCUSSION/CONCLUSION

We have shown by way of several examples how one obtains any desired
member of a Left or a Right Painlevé Series. These series are valid within particular
domains of the complex plane. The question is now obvious: in the case of a full
Laurent Series how does one determine the coefficient of any term in the Series
expansion which is now valid within an annulus?

After the exponent(s) and coefficient(s) of the leading-order term(s) and the
resonances have been calculated from the dominant terms and no problems have
been encountered, the full Laurent series is substituted into the full equation to de-
termine the coefficients of each term and to check for consistency at the resonances.
Naturally, in terms of implementation, only a finite number of terms can ever be
considered except for the (probably rare) cases in which it is possible to write an
explicit expression for a recurrence relation defining the coefficients. For example,
when we consider the third member of the Riccati differential sequence [5],

(13) y′′′ + 4yy′′ + 3y′2 + 6y2y′ + y4 = 0,

although all terms in (13) are dominant, the existence of two nongeneric resonances
means that consistency needs to be checked. We have the three possibilities of a
Left, a Right Painlevé Series and a full Laurent Series. For both the Left and the
Right Painlevé Series, there is no inconsistency and all coefficients can be deter-
mined without ambiguity. In the case of the full Laurent Series the determination
of coefficients poses an insurmountable difficulty. The coefficient of every exponent
contains a doubly infinite number of terms and makes their determination in a pre-
cise form impossible. Even worse is the problem of consistency at the resonances.
If one has to take into consideration the possibility of an infinite number of terms
at each of the resonances, it is impossible to ensure consistency. It is possible that
this difficulty led to the conclusion [8] that the introduction of a logarithmic term
or terms was necessary for consistency. Of course the logarithmic terms destroy
the analyticity of the solution. However, equation (13) has the explicit solution,

(14) y =
1

x− x1
+

1

x− x2
+

1

x− x3
,

where the constants, x1, x2 and x3, are determined by the initial conditions and,
without loss of generality, x2 is closer to x1 than x3 and all of the expansions are
about x1. The Right Painlevé Series is defined in the region 0 < |x| < |x2−x1|. The
Left Painlevé Series is valid for |x| > |x3 − x1|. The full series exists in the annulus
defined by |x2 − x1| < x < |x3 − x1|. The expansions in the different regions of
the series representations of the solution, (14), are completely devoid of logarithms.
As the conclusion presented in Christiansen et al. [8] was a general statement,
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it is incumbent upon us to provide a rational explanation of the resolution of this
problem. Fortunately equation (13) provides us with a very useful guide.

Our concern now is with differential equations which have both positive and
negative resonances apart from the generic−1. Bearing in mind that the singularity
analysis cannot reveal an essential singularity existence of such a series implies that
it is valid on the exterior of a disc centred on the singularity. In the particular
instance of (13) the region of validity is confined to an annulus, but one cannot
exclude the possibility of validity over the whole of the complex plane exterior to
the disc. Consequently there must be at least two singularities. The first is that
about which the expansion is made formally and the second is the minimum value of
|x−x2| for which the full series is convergent. In order to determine the coefficients
of the full series all that one has to do is to move the point of expansion from x1

to x2. Then in a region about that point there exists a Right Painlevé Series and
all of the coefficients can be determined. Naturally the region may not encompass
the whole of the part of the complex plane encompassed by the full series. That
is not a problem since the remaining region can be covered by means of analytic
continuation. This does not mean that the process is simple. What it does mean
is that it belongs to standard analysis. However, it is impossible to evaluate the
coefficients in a finite algorithm.
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11. R. Conte: The Painlevé Property : One Century Later. Conte Robert ed., CRM Series
in Mathematical Physics, Springer-Verlag, New York, 1999.



Singularity analysis for ordinary differential equations 239
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