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Abstract In recent years, researchers have been building
home robots able to interact and work with people. Yet,
because of the complicated and independent robot
development environments, it is not always easy to share
and reuse robot code created by different providers. In
this work, we present an ontology-based framework that
integrates service-oriented computing environments with
the standard web interface to develop reusable robotic
services. In addition to the service discovery, selection,
and composition processes often performed by traditional
web services, our work also includes an adaptive
mechanism through which the user can iteratively
modify composite robotic services to suit his or her needs.
The proposed methodology has been implemented and
evaluated, and the results show that our framework can
be used to build robotic services successfully.

Keywords Service-Oriented Computing, Al Planning,
Ontology, Service Composition, Robotic Service

1. Introduction

Developing home service robots to achieve user-specified
tasks has become a significant issue with regards to how
we will one day live our lives. Scientists and engineers
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are now building service robots that can interact and
work with people in the home environment. However,
due to the complexity and diversity of robot development
environments, it is hard to integrate and share the robot
application services constructed by different providers.
This has therefore impeded the development of service
robots [1-3].

To overcome the difficulties described above, researchers
have been building robot design frameworks to manage
the complexity and facilitate the reusability of robot code.
From the end-users’ perspective, they expect to obtain
and use the robot application software conveniently
without explicit programming. Robot designers prefer an
easy-to-share order to integrate
application services constructed by different providers

environment in

and concentrate on creating more advanced services.
Considering the needs of both sides, service-oriented
architecture (SOA, [4]) provides a promising choice for
developing robotic services. One of the major advantages
of SOA is that the shared resources are available on
demand. This means that these resources can be regarded
as independent services and accessed without knowledge
of their underlying platform implementation [1,4].
Ideally, with an SOA-based robotic framework, end-users
can control their robot in a similar way to that in which
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they use web services. Moreover, robot designers can
reuse available code to design more comprehensive
services.

Yet, unlike traditional web services, applying SOA to
robot applications involves complicated robot action
control and the complexity of robot control increases
along with the complexity of the task. In the development
of robot code to solve application tasks, a common way to
reduce complexity is to adopt a divide-and-conquer
strategy. That is, to recursively break down a task into
sub-tasks of the same type until the sub-tasks become
simple enough to be solved directly and then to solve
these sub-tasks in reverse order. The above concept of
dividing and solving a robotic task is similar to the
concept of configuring a composite service to accomplish
a specific task in the web service domain, where a
solution to the target task is composed of a set of simple
services (each of which can solve a part of the original
task) through a [5]. Most
composition problems can be solved by workflow-based
or Al planning methods [6-7]. More recently, the semi-
automatic service composition method has become
popular, because it is in fact very difficult to compose the
services in a fully automatic way. Hierarchical Task
Network (HTN) planners are typical examples [5]. This
kind of “hand-tailorable” planners is indicative of the
current trend of combining automatic planners with
human efforts to generate composite tasks.

composition method

In this work, we present a robotic service framework that
tries to meet the needs of end-users and robot designers.
Following the success of web services, our framework
takes a service-oriented architecture in which a robot
controller is created and regarded as a service and
complicated robot tasks are effectuated successfully
through the composition of available services. In
addition, we also develop an adaptive mechanism with
which to modify incorrect or unexpected robot action
sequences during the service composition process. To
implement the proposed methodology effectively, our
work integrates the OWL-S and HTN planners to
describe robotic services and perform service composition
respectively. Unlike traditional web services, the robotic
services here are stored in a publicly available repository,
which will dispatch a duplication of the control code
included in a service to the requester. To verify the
effectiveness of the proposed methodology, we use it to
achieve a wuser-specified control task in a home
environment. The results show the promise of our work.

2. Related Work

Web service technologies have been widely applied to the
design of web-based applications. With many successful
researchers are now advocating the
extension of these techniques to the development of robot

experiences,
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systems. The most related works are the ones concerning
robots as services and exploiting the web service
architecture to create robots. For example, Yachir et al.
employed service composition techniques to plan robotic
services to help an elderly person [8]. Their work
emphasized how one can decrease the number of
parameters and services in the composition process to
enhance efficiency. Kim et al. focused on controlling
robots through the integration of web service and robot
application technologies. They used a web service
framework to provide functional communication for a
robot and as a means to control the robot in performing
pre-specified commands [9]. Similarly, Ha et al. proposed
a service-oriented architecture for the integration of
ubiquitous robot devices, including sensors and motors
[10]. To find a suitable service, they developed an
ontology-based method to interpret the task query
specified by the user.

There are also other works which integrate robotic and
web technologies. For example, Mokarizadeh et al.
proposed a framework for using web service composition
to plan actions among robots. A user on the client side
can use the web as a means of transmission with which to
control a robot for the completion of certain tasks (such as
reading the temperature of a room) [11]. In a recent piece
of research conducted by Blake et al., robots were
equipped with web-oriented software interfaces that help
them access universally standard web resources [12]. To
enable knowledge acquisition and data reuse for robots,
Waibel et al. developed an open-source platform
RoboEarth to provide a networked database repository
for robots to share information with others [13]. In
addition, Osentoski and colleagues have built a
framework which enables web interfaces for robots to
share code among roboticists [14].

Ontology is a practical way to deliver semantics between
users and systems and has previously been used in the
successful transmission of domain knowledge. It has also
been applied to robotic applications,
conceptualize the robots (such as their internal structures
and functions), their tasks, or the environments they are
situated in. For example, Lim et al. developed an
ontology-based knowledge framework to include low-
level knowledge (the perceptions and actions of the
robot) and high-level knowledge (the world model) [15].
To solve a spatial planning task, Belouaer et al. also used
ontology to represent the robot environment [16]. In
addition, Jeon et al. defined a domain ontology to parse
and recognize the user’s intentions for his or her robot
behaviour planning [17].

mainly to

Unlike the above studies, our work dedicates itself to
constructing an explicit task ontology for daily home
tasks and focuses on planning-based service composition
to provide robotic services. In the construction of
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ontology, the web services description language, the
Ontology Web Language-Services (OWL-S, [18]), is used
to describe service information and the relationships
between different services to enrich the semantics for the
services. Using a web-based standard platform and
interface, the services created by different providers can
thus be easily shared and integrated. Most importantly,
we develop an adaptation mechanism with service re-
planning to deal with undesired robot behaviours.

3. An Ontology-Based Robotic Service System

As proclaimed in [19], service-oriented computing (SOC)
has become a contemporary programming paradigm. It
regards services as self-described reusable building blocks
that can be used to support the development of software
applications. SOC applies SOA to organize software
applications and infrastructure into a set of interacting
services. Among others, web services are currently the
most promising SOC-based technology. They use OWL-S
to describe services in an unambiguous, computer-
interpretable form. The process described above enables
the automatic discovery, selection, composition and
execution monitoring of services. In addition, the loosely
coupled interoperations between services can be achieved
by using the simple object access protocol (SOAP) or the
representational state-transfer protocol (REST) to convey or
deliver messages. Following the SOC design principles, in
this work we present a service-oriented framework that is
implemented with standard-based, platform-independent
techniques. It can thus exploit the
advantages of SOC to provide rapidly prototyping robotic
services for end-users.

corresponding

3.1 System overview

The conceptual framework and the operating flow of the
proposed robotic service system are illustrated in Figure 1.
As can be seen, our system is mainly comprised of three
major components, a search agent (SA), a composition
agent (CA) and an adaptation agent (AA). The SA is
responsible for analyzing the control command (or query)
specified by the user, so that the system can search and
acquire robot services accordingly from the service
repository. The task ontology shown in Figure 1 is built for
command interpretation. It describes the semantics of a
task in terms of the task structure and the task-solving
process. The SA then searches the task ontology by directly
mapping the vocabulary of the user command and
matching it with the task terms recorded in the ontology. If
the agent cannot find any corresponding task term for the
command, it will then try to map the command into the
cognitive synonyms (collected from the synsets of
WordNet [20]) of the task instead.

The second agent, CA, is developed for service discovery,

selection and composition. It retrieves the services which
correspond to the task terms found by the SA from the
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service repository and employs a pre-defined selection
strategy to choose the most suitable service from among
the candidates. For some cases where the required robot
services are not available (e.g., not provided by any
developer), the CA will decompose the original task into
several subtasks in a recursive manner according to the
specification of the task ontology and will find relevant
services for each subtask. Then it will further integrate
these services by means of a composition procedure to
achieve the target task. The third agent, AA, has the role
of system evaluation and adaptation. It presents the
action-planning steps to
simulated/real robot perform the services as delivered by
the agent CA. The user can evaluate the robot behaviour
and indicate if any behaviour sequences are incorrect (or
unexpected) through a pre-designed interface. Agent AA
will send the correction list back to the CA and ask it to
start a modification procedure to find new services to
replace the ones identified as presenting incorrect
behaviours. The details are described in the sections
below.

the wuser and makes a

Service pool

Task Ontology

discover services

] invoke
. ey
services, .="" . ‘
"""""" compose - select

= services

e

User Services Provider

Figure 1. System overview.
3.2 Knowledge ontology for problem solving

As can be observed in the above section, ontology plays
an important role in the mutual-understanding between
users and the service system. It has been used for
knowledge representation and inference in the artificial
intelligence research community for many years. Though
ontology can clarify the structure of knowledge and
enable knowledge sharing, it is not task-dependent. In
fact, it has been indicated that in building a problem-
solver, a designer needs both domain factual knowledge
and problem-solving knowledge [21]. For an action
planning problem (such as solving a robot task), ontology
can be defined so as to provide the sequence of problem-
solving steps through organizing domain knowledge. The
problem-solver can then exploit domain knowledge and
the related techniques defined in the ontology to achieve
the effective implementation of the application task.
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Therefore, in this work we develop two ontologies, task
ontology and position ontology, to specify the structure
of the problem-solving process and to describe the
environmental knowledge for the robot, respectively. To
accomplish the target task in a home environment, a
service robot should understand both ontologies as
described as follows:

e  Position ontology: This ontology defines the locations
of different objects in a home environment and the
containment relationships the objects.
Figure 2 shows a part of the position ontology. It
illustrates that the bowls, plates, and cups are put on
a cupboard, and a TV is placed in the living room.

e  Task ontology: This ontology shows how to resolve a
user’s request using a sequence of steps. It presents
the complexity of the tasks hierarchically. Figure 3
shows a part of the task ontology as defined in the
proposed system. The task ontology describes the
possible actions for the robot (i.e., what the robot can
perform) in the home environment. After receiving
the control command from the user, the system will
parse the command to extract the verb as the action
description and then match the description with the
task terms recorded in the task ontology. For
example, the command “give me a cup” is firstly
parsed to obtain the verb “give”. Then the word
“give” is matched with the terms included in the task
ontology.

between

TV

Living room / Sofa
\ Table

Refrigerator Bowl
Position Kitchen / Cupboard / Plate
ontology \ Table \ Cup

Bathroom

Bedroom

Figure 2. Part of the position ontology.

Get

Give [person object] / Find

Put

Find

/ Grasp
\ Move

Move

Get [object]

Check [position]

Put [position
[ ] Release

Figure 3. Part of the task ontology.

In order to enhance the problem-solving capability of the
task ontology, an efficient and powerful ontology
description language with semantics is needed. OWL-S
provides an ideal choice to implement the ontology
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needed in our robotic service system. It has three major
parts with essential types of knowledge: service profile,
service model and service grounding. In general, the
profile provides the information to express “what the
service does”, including a description of what needs to be
accomplished and the limitations and requirements of the
service. The service model describes “how to use the
service”, including how to perform an analysis (to
examine whether the service meets the user’s needs), a
composition (to compose multiple services to achieve a
specific goal), activities (to coordinate the activities of
different participants) and monitoring (to inspect the
execution of the service). The service grounding presents
“how to access a service”. Its role is to specify a message
protocol and  other
implementation details. Our system uses OWL-S for
ontology construction and it mainly uses service profile
for selection and service model for composition. In
particular, the service model shows how to use the
service step by step, which is similar to the problem
solving process for annotating robotic services.

format, a communication

3.3 Service discovery, selection and composition

The ontologies defined above can enable different types

of service functions, including automatic service
discovery, selection and composition. Service discovery is
the process of searching available services to find ones to
satisfy the user’s requests, based on the description of the
functional and non-functional semantics provided by the
user. As mentioned, using OWL-S to describe services can
standardize the service description in semantics. In this
way, an autonomous agent can be developed to find
appropriate according to the
descriptions associated with the services. Here, we use

this method to define and annotate robot services and

services, semantic

construct a search agent responsible for service discovery.
In our system, the OWL-S service profile defines the IOPE
elements (i.e., Input, Output, Precondition and Effect),
which are then later used to match the user’s service
requests with services. The procedure is that if the control
command can find a match for the task terms defined in
the ontology, the system will collect the relevant
information (i.e., IOPE) corresponding to this task term to
examine whether the information matches that of the
services available in the service repository. A successful
match means that the system can find services to fulfil the
user’s request. For instance, in the task ontology shown in
Figure 3, the task “Get” has the input “target object
name”, the precondition “target object exists” and the
effect “target object is on hand”. Once the task “Get”
matches the user command, the task descriptions are
used to find services.

The second type of functions, service selection, is the

process of choosing the most suitable services for the
target task from the candidates provided by the service
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discovery process. To select the best service, many
researchers have proposed different QoS-based selection
methods. The attributes often sought after in the QoS
methods include accessibility, availability, cost, response
time, error rate, throughput, reliability, reputation,
robustness and security [22-23]. Among these attributes,
service reputation directly reflects the results of the
evaluation by the service requesters or the neutral party.
It is an objective and easy-to-measure attribute.
Therefore, in our current implementation, we choose to
use this attribute for service selection and design a rating
strategy to measure service reputation.

Our strategy is based on the concept of collaborative
filtering approach ([24-25]) often used in the application
of product recommendations. In its original form, the
collaborative approach is to recommend items to a user
based on the evaluation results gained from other users
with similar tastes. It first measures the similarity
between users by a certain correlation criterion and then
employs a k-nearest neighbour method to find the most
similar users to perform a recommendation. The
prediction of an unknown item for a user is thus based on
the combination of the ratings of his or her nearest
neighbours. At present, we take all users’ opinions into
similarity
measurement. The strategy can be easily extended to
collect similar users if necessary.

consideration and do not conduct

In our system, users are allowed to evaluate and rate the
services they have consumed. The rating value, which is
an integer ranging from 1 (lowest) to 5 (highest), indicates
the user’s level of satisfaction. All ratings given by users
are combined to rank the candidate services obtained
from the service discovery process. The system will then
select services for the user, according to the ranking
order.

If the system finds no suitable services from the above
procedures, it will start a further service composition
process to find composite solutions for the target task. In
the proposed framework, we adopt the Al planning
techniques to compose services already in the repository.
Among others, HTN planning is a well-designed
methodology suitable for service composition for several
reasons. For example, it encourages modularity that fits
in well the SOA, it can easily scale up to large numbers of
services and it has means by which to minimize various
sorts of failures or costs, because the planner considers
the entire execution path. Further analysis and the
corresponding advantages of using HTN for service
composition are referred to in reference [5].

In the HTN planning domain, the tasks can be
categorized into two types: the primitive or the
compound. A primitive task can be performed directly by
the predefined planning operators, while a compound task
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needs to be decomposed by a planning method. It
performs task decomposition to break down the original
task from the complex (high level) down to the simple
(low level) hierarchically. With the results of the
decomposition the planner solves the subtasks in reverse
order and can produce a sequence of actions for the
original task.

The concept of task decomposition in HTN is very similar
to the composite process decomposition in the OWL-S
service model. It reduces the complexity of reasoning by
eliminating uncertainty during the planning process. One
well-implemented HTN planner is the Simple
Hierarchical Ordered Planner 2 (SHOP2, [26]). The
authors of reference [5] have proved the semantic
correspondences between the SHOP2 planning and the
situation calculus of the OWL-S process model. They
have also shown that SHOP2 can be used to compose web
services effectively. This means that the HTN planner is a
suitable tool to work with the hierarchically structured
OWL-S process model. Following their successful studies,
we choose to employ SHOP2 to conduct our robotic
service composition.

OWL-S has hasResult hasResult
. hasInput L. . L
atomic Precondition  (negative) (positive)
HOP2 Input
SHO P Pre Del Add
operator parameters
OWL-S has Control List of atomic
] hasInput . .
composite Precondition construct & composite
SHOP2 Input
method parameters Pre E Task

Translate-atomic-process-effect(Q)

Input: an OWL-S definition Q of an atomic process A with only effects.
Output: a SHOP2 operator O.

v = the list of input parameters defined for A in Q.

Pre = conjunct of all preconditions of A as defined in Q.

Add = collection of all positive effects of A as defined in Q.

Del = collection of all negative effects of A as defined in Q.

Return O = (A(v ") Pre Del Add).

Translate-If-Then-Else-Process(Q)

Input: an OWL-S definition Q of a composite process C with If-Then-Else
control construct.

Output: a SHOP2 method M.

v~= the list of input parameters defined for Cin Q.

iy = conditions for If as defined in Q.

Pre1 = conjunct of all preconditions of C in Q and 7.
Pre2 = conjunct of all preconditions of C as defined in Q.
Taski= process for Then as defined in Q.

Task2= process for Else as defined in Q.

Return M = (C(v—) Prer Task: Prez2 Taskz).

Table 1. Two examples of OWL-S and SHOP?2 translations.

As OWL-S and SHOP2 have their own internal
representations for information processing, in order to
use SHOP2 for service composition, some translations
between OWL-S and SHOP2 have been defined in [5].
These translations are from the OWL-S process models to
the SHOP2 domains and from the OWL-S composition
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tasks to the SHOP2 planning problems. Table 1 (the
upper part) shows the translations for the planning
elements, operator and method mentioned above. To
explain such translations in detail, this table (the lower
part) also lists two major translations: one is the
translation of the atomic OWL-S definition “atomic
process” into a planning operator, and the other is the
translation of an OWL-S process (with the If-Then-Else
control construct) into a planning method. With such
transitions, a service originally created by the OWL-S
descriptions can have its SHOP2 format and be used by
the planner for service composition.

3.4 System adaptation

After having used the service discovery, selection and
composition processes described in section 3.3, the user
can expect a set of services to complete his or her task.
However, due to unforeseen situations, in some cases the
robot cannot achieve the task with the services organized
by the planner. To remedy such a failure, the system
needs to consider the newly acquired world states and
adapt to these states by performing a re-planning
procedure iteratively. As per our design, the system will
highlight the planning steps which correspond to the
incorrect behaviour sequences. The user can inspect the
highlighted part to see what caused the failure, modify
the world states accordingly (i.e., the preconditions that
need to be satisfied but are not yet listed in the available
services) and then activate the planner again in order to
find other services to replace the current ones. Through
the above interactive procedure for feedback collection,
the system can gradually derive services that most meets
the user’s needs.

To effectively implement system adaptation (i.e., iterative
re-planning), we use the software OpenRAVE (Open
Robotics and Animation Virtual Environment, [27]) to
construct simulated robots and the environments the
robots are situated in. OpenRAVE is an open-source
cross-platform software architecture. It provides high-
level scripting, motion planning, perception and tests
control algorithms. As this software has focused on
designing high-level robotic tasks rather than low-level
control, users can thus concentrate on the development of
autonomous motion planning without being distracted
by operating details (for example, collision detection). In
this way, robot developers can easily share and compare
different controllers or algorithms with others. As high-
level scripting language is helpful for object-oriented
design and useful in invoking service functions, we
choose therefore to use the high-level language Python to
implement the proposed method.

As shown in Figure 4, when the system executes a

composite service in OpenRAVE, the planned action
steps are also presented in the robotic service interface.
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As it is, the system is designed to present the solution
(i.e.,, the sequence of steps) which is most highly
recommended by the planner. It can also be modified to
list multiple solutions for the users’ reference. With the
results thus shown in the interface, the user can compare
the planned steps with the robot actions to determine
whether the robot has achieved the task successfully. If
the user finds that the actions in the simulation do not
match his or her request, he or she can mark the wrongly
performed steps and ask the system to conduct the
service composition again. The user can also create new
services incomplete plan through a
demonstration-based =~ mechanism  we  developed
previously [28], in which the user can generate control
code without explicit programming.

to fix an

« S ©®127.0.0.1 o h

Robotic Services Interface

[Setect the Robot types Setect ihe Environments
barrett -wam Rabot Myrouse

arwaxda-hironx Robot Bedroom
hudarkr30118 Robot = | Select Kitchen

Setect

Send the Command Submit
HTN Planning

World State

(exist cup) (exist user) ‘

get cup) (find cup) (move table)
d user) (put user) (move user)

|

Action || RE-Pian

Figure 4. The interface for showing the current world states and
planning steps.

4. Implementations and Experiments

As indicated in the first section, this work aims to provide
an integrative approach to meet the needs of end-users
and robot designers. Because web services are based on
common industry standards and existing technology,
applications that rely on web services can be deployed
easily regardless of the language, platform, or internal
protocols they use. The proposed framework has adopted
the same design methodology, so that new robotics
services can easily be shared and reused. In this section,
we will concentrate on presenting how our framework
works with the use of a walk-through example.

4.1 Application task

To verify the proposed methodology, we use it to carry
out a simulation of an application task, in which a home
robot deals with daily chores for its owner. The robot has
some pre-programmed basic service components (i.e.,
controllers), and the user needs to develop new
controllers for more complicated tasks. The application
task is that the user asks the robot to give him a cup. To
understand the user’s request, the robot needs to connect
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to the ontology server in order to parse the command
“give me a cup”. Because the robot has not experienced
this task before, the system then tries to find the services
directly or to decompose the task and find services for the
subtasks accordingly if necessary. For this application
task, the services related to the subtasks derived by the
planner include “locate a cup”, “navigate to the cup
position”, “grasp the cup”, “locate the user”, “navigate to
the user”, and “give the cup to the user”. During the
service execution period, the system will continuously
use the changed world states to examine whether the
robot has achieved the sub-goal at each stage. As
described above, should the robot not be able to
accomplish the overall task successfully, the system will
present the planning steps with their corresponding
world states (related to the subtasks unable to be
achieved). Then the user is asked to provide more
information in order to make a new plan. After the task is
completed, the user is allowed to rate the services.

Two test scenarios were arranged for this task. In the first
scenario, the cup is placed on the table and it is visible to
the robot. This is mainly to verify whether the system can
find a suitable service to drive the robot to pick up the
cup. In the second scenario, the cup is moved into an
opaque cupboard so that the robot needs to find the cup’s
location first and then pick it up. This case is to examine
whether the system can adapt to a new environment and
make a new plan to fulfil the target task.

4.2 System workflow

In our work, the user needs to select the robot type and
the task environment from the pre-defined interface (as
shown in Figure 4), before sending a control command to
request robotic services. The robot type is used to derive
some hard constraints (e.g., hardware restrictions) that
need to be satisfied in the service discovery process. The
task environment provides the initial world states (that
are the preconditions of the desired service) and indicates
the initial positions of the objects in the environment. In
addition to the pre-defined choices, users are allowed to
take the XML descriptions to create their own simulated
robots and environments.

The system can be used to solve the application task
described in the above section. After receiving the user
command “give me a cup”, the system uses a common
natural-language parser ([29]) to check the syntax of the
command and generate a syntax tree (as shown in Figure
5). It then sends the verb part to the task ontology and the
noun part to the position ontology to search for suitable
services. In this work, an exact-match scheme is used to
perform direct vocabulary-mapping between the user
command and the task terms recorded in the ontology. To
stretch the scope of task terms in semantics, we have
collected the synonyms for the task terms from the
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WordNet to form a word set in advance. If the system
cannot find an exact task term to match the user’s
command, it will turn to the word set to find an identical
match for the command.

As mentioned in section 3.2, the task ontology records the
parameters for implementing a specific task, so the
system can use these parameters to discover relevant
services. In the part of the process illustrated in Figure 3,
we can see that to achieve the “Give” task, the system
needs two input parameters, namely “Person” and
“Object”, and it takes the segments “me” and “cup”
extracted from the command to correspond to the two
parameters, respectively. After the service discovery
process, the system obtains some service candidates and
it uses the selection strategy to evaluate and rank the
candidates. Finally, a composite service “Give” with the
highest reputation value is selected.

S: Sentence
VP: Verb Phrase
VB: Verb

NN: Noun
NP: Noun Phrase
DT: Determiner

Figure 5. Parse tree of the user command.

The OWL-S example shown in Figure 6 illustrates a
typical service model used to solve robot tasks. The
description of the model is similar to the ones for web
service applications. It mainly includes information about
inputs, outputs, preconditions and effects of a service, so
that the service requester can perform an analysis,
composition, activities and monitoring to achieve a
specific goal. The OWL-S process ontology provides
different (such as  CompoiteProcess,
composedOf, Sequence, etc. shown in the example) to
model services as processes. Further details on service
modelling are referred to in reference [18]. Robotic service
providers can follow the relevant instructions to create
new services.

markups

This example describes the model as defined for the robot
behaviour, “Give”, which is composed of one atomic
process, “Find”, and two composite processes, “Get” and
“Put”. As can be seen, the task “Give an object to a
person” can be broken down into three subtasks: “Get the
object”, “Find the person”, and “Put the object to the
person (meaning location)”. In addition, the process for
“Give” has two inputs “Person” and “Object” (to tell the
robot which object to take, and to whom) and two
preconditions “ExistObject”  (to
indicate if any person or object exists in the world state).

“ExistPerson” and
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<process:CompositeProcess rdf:ID="Give">
<process:hasInput rdf:resource="#Person"/>
<process:hasInput rdf:resource="#Object"/>
<process:hasPreconditoion rdf:resource="#ExistPerson"/>
<process:hasPreconditoion rdf:resource="#ExistObject"/>
<process:hasEffect rdf:resource="#PersonHasObject"/>
<process:composedOF>
<process:Sequence>
<process:components rdf:parseType="Collection">
<process:CompositeProcess rdf:about="#Get"/>
<process:AtomicProcess rdf:about="#Find"/>
<process:CompositeProcess rdf:about="#Put"/>
</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>

Figure 6. The OWL-S example.

With results of decomposition, the system can then
translate the “Give” service described by OWL-S into a
HTN method and invoke the sub-services included in the
“Give” process to complete the overall task. Figure 7 (a)
shows the HTN method which corresponds to the “Give”
service, which includes the subtasks “Get”, “Find” and
“Put”. The action steps of “Give me a cup” can be carried
out by the relevant atomic services (i.e., HTN operators), in
the order of (find cup), (move table), (grasp cup), (find
user), (move user) and (release cup).

However, in the second test scenario (as described in
section 4.1) in which the cup is hidden in an opaque
cupboard, the robot cannot grasp the cup directly,
although it can obtain the cup’s position from the loaded
environment file and then move to a position around the
cup. This means that the current service can not satisfy
the user’s requirement. To cope with such a failure, the
system highlights the relevant steps in the HTN plan, so
that the user can inspect this part so as to find out the
reasons for the failure, modify the world state and make a
new plan.

In the experiment, the system highlighted that the robot
could not complete the subtask “grasp”. By examining the
robot actions corresponding to the highlighted part (the
problematic part), the user found that the cup did not
appear in a visible place so the robot could not grasp it. To
solve this problem, the user added a new world state
“(isContainer cupboard)” as the precondition and a new
input “cupboard” to the planner to find suitable services.
After that, the system found a “search” service (to open
containers to check if any of them contains the target
object) that matched the new requirement. The new plan
also indicated that this “search” service must be performed
before the “grasp” service (see Figure 7(b) and (c)).

Taking the new plan, the robot could first check the
position ontology to obtain the possible cup position and it
then checked the world states to find all the containers
which could be used to store the cup. After checking the
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position ontology, the robot realized that the cup was
placed in the cupboard and it confirmed that the world
state “(isContainer cupboard)” was true. In line with the
other world state “(isClosed cupboard)”, the robot tried to
open the cupboard, and then grasped the cup successfully.

task: [ (give ?per 20bj)|

preconditions:
— | —
subtasks:|  (get 20bj) ‘ ’ (find ?per) ‘ ’ (put ?place)
[
(hold %0bj)
—>
’ (find 20bj) H (move ?place) || (grasp ?obj) ‘ ’(move ?per) ‘ (release?obj)‘

(@)

task: (get ?2obj)

subtasks:

task:

preconditions:

(exist 20bjB)
(isContainer ?0bjB

(open ?0bjB) ‘ ’ (find ?0bj) ‘
[

{isClosed ?ob@>

— | —>

subtasks:

(find 70bjB) ‘

’ (handmove ?tag) ’ (grasp ?tag) ‘ ’ (pull ?tag) ‘

(©

Figure 7. The planning and re-planning.
4.3 Simulation results

Figure 8 illustrates how the robot achieved the task in the
two test scenarios which were conducted in a simulation.
The first four steps in the figure (i.e., steps (1)-(4)) show
that the robot used the position ontology to infer where
the cup was located. In the first simulation, once the robot
knew that the cup was in the kitchen, it went there and
recognized that the cup was put on the table. Then the
robot moved to the region around the cup so that it was
able to grasp the cup. Steps (5)-(7) in Figure 8 describe the
following: the robot moved to a position close to the cup,
and performed the “Get” service. Next, steps (8)-(12)
show that after the robot had picked up the cup, it
invoked the other two services “Find” and “Put” to find
the user and give him or her the cup.
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Figure 8. The simulation results for the application task.

As mentioned before, if the robot cannot complete the task
with the services obtained from the composition process,
the system needs to start a re-planning procedure to find
other services for the robot to perform. In the second task
scenario here, the initial plan did not work, because the
service “Find”, with the environment being as it is, cannot
result in any state “found object” which was the
precondition of the service followed. To deal with this
failure, the user asked the system to change the world state
from “cup is visible” to “cup is invisible”, and then to use the
HTN planner again to make a new plan. This time, a new
service “Search” was found and used to seek the object’s
“containers”. For any object with a property “container”, the
robot activated the service “Open” to open it, and checked if
the cup was inside. Steps (13)-(16) of Figure 8 represent to
the process described above, in which the robot opened the
cupboard and then grasped the cup to achieve the task.

5. Conclusions

In this work, we have emphasized the importance of
developing an easy-to-share networking platform for the

www.intechopen.com

reuse of robot code distributed by different providers.
Considering the needs of both sides, robot designers and
end-users, we presented an ontology-based framework
that integrates a service-oriented computing environment
with the standard web interface to facilitate the sharing of
robotic services. In addition to the service discovery and
selection processes, our framework includes a planning-
based composition mechanism to generate composite
robotic services to solve complicated tasks. It also
performs ‘system adaptation” to continuously update
world states and make new plans. To verify the proposed
methodology, experiments were conducted, and the
results show that a composite service can be derived for
the application task successfully.

As can be observed, the proposed robotic service
framework has some advantages. First, with the help of
task ontology, users can share their problem-solving
concepts and reuse their individually-designed services.
Second, our work follows the SOC principles and thus
features high-level interoperability and simplified
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services integration. Third, the specially-designed system
adaptation can increase system stability and user
satisfaction in the changed environment.

Based on the presented framework, we are now
extending our work in several directions. To enrich the
task ontology, we plan to include other domestic tasks
defined in relevant ontology studies to construct a more
complete ontology. Meanwhile, it is worthwhile
exploring new ways to tackle the scalability problem
when more and more services are required to solve tasks
with high complexity.
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