
Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Fountain-code Aided File Transfer in Vehicular
Delay Tolerant Networks

Seyed Masoud Mousavi LANGARI1, Saleh YOUSEFI2, Sam JABBEHDARI1
1Department of Computer Engineering, North Tehran Branch, Islamic Azad University,

1667934783 Tehran, Iran
2Department of Computer Engineering, Faculty of Engineering, Urmia University,

Urmia 15311-57561, Iran
sm_mousavi@iau-tnb.ac.ir, s.yousefi@urmia.ac.ir, s_jabbehdari@iau-tnb.ac.ir

Abstract—We propose a mechanism for facilitating file

transferring in Vehicular Delay Tolerant Networks. The
proposed architecture includes using Fountain coding in the
application layer, UDP in the transport layer and a proposed
DTN routing algorithm in the network layer. It is assumed that
files are coded based on a sample of Fountain codes which does
not need in-order reception of packets. As a result, there is no
need of using close-loop reliable protocols such as TCP, hence
suffering from their different overheads; as a result, UDP can
be used in the transport layer. In the network layer, we
propose a novel DTN routing algorithm based on AODV and
Store-Carry and Forward policy. This algorithm (named as
AODV-DTN) uses a cross layer interaction between the
network and the application layer. Results of extensive
simulations study for highway scenarios show that the
proposed architecture leads to a better performance in terms of
file delivery ratio and byte throughput when compared with
FOUNTAIN and classic FTP scenarios. Furthermore, the
negative effect of increasing file size is mitigated in comparison
to other alternatives. It is also shown that for delay tolerant
and long-distanced inter-RSU communications the proposed
architecture behaves sufficiently well.

Index Terms—Ad hoc Network, Buffer storage, Disruption
tolerant network, Error correction codes, Routing protocols.

I. INTRODUCTION

In a wireless ad hoc network, an opportunistic routing
strategy is a strategy in which there is no predefined rule for
choosing the next node in the forwarding process of a
message. A popular sample application for such a routing
policy is in networks suffering from intermittent
connectivity, i.e., end-to-end communication paths are not
available continuously between sources and destinations.

An emerging class of ad hoc networks, called VANETs
exploits transportation systems in order to transfer data. In
these networks, vehicles act as mobile nodes used for
carrying data among vehicles and /or fixed RSUs. Vehicles
can exchange data messages, have the capability to
download, store, and upload the data messages from/to the
other vehicles as well as road side infrastructure. Due to
movement of vehicles, VANETs always suffer from
frequent disconnections. Consequently, traditional routing
protocols such as AODV [1] cannot be directly applied to
these networks. The reason for this inapplicability could be
ascribed to limited buffer and dropping the packets in such
condition. As a result, it cannot address the requirements of
DTN (e.g., frequent disconnections). However, there are
many applications which tolerate delay as long as delivery is
guaranteed. The networks (protocols) which are customized

for such applications are generally called DTN. To send data
to a destination in a DTN, one obvious solution is S-CF
strategy. In this paradigm, when a node receives a message
but it is not connected to any other neighboring nodes, it
stores the messages and carries them until an appropriate
communication opportunity arises (one or more mobile
nodes are appeared); thereafter, it will forward the messages
to the new neighbor (s).

The main application we consider is file transferring. Due
to their nature, these applications need in-order and fully
reliable (from the application’s viewpoint) packet reception.
As a result, TCP is normally used as the transport layer
protocol in which ACK packets are exchanged to guarantee
reliable and in-order reception of packets. However, due to
intermittent connectivity in mobile environments such as
VDTNs, this paradigm which basically addresses fixed
network suffers from several shortcomings. In fact,
imposing high restrictions on the reception order of packets
and acknowledging their reception, reduces the chance of
successful packet reception and increases delay and loss
rate. To enhance the performance of message exchange in
VDTN, in this paper we have thus proposed the use of
fountain coding [2] in the application layer along with UDP
in the transport layer.

Our contributions in this paper are as follows:
(a) Proposing a new architecture for facilitating DTN in

VANETs which includes using Fountain coding, UDP and a
DTN routing policy. The need to in-order file reception is
obviated by exploiting Fountain coding in the application
layer; receiving enough number of distinctive packets is
sufficient. In other words, for recovering the file at the
destination, all packets have the same value and their
reception order is not important. This also obviates the need
for using TCP in the transport layer and UDP suffices.

(b) Solving the buffer space problem in the network layer
and as the DTN routing policy requires, we propose AODV-
DTN algorithm which adds S-CF policy to the basic AODV
algorithm. The proposed architecture hinders buffered
packets from being dropped; in fact, it sends them to the
application layer where a large amount of buffer is provided.
In other words, a sort of cross layer interactions (between
the network and the application layer) is used for
transmitting packets.

(c) Discussing performance trade-offs: (i) byte throughput
vs. file size (ii) delivery ratio vs. file size, (iii) download
time vs. file size, , (iv) inter-RSU byte throughput vs. file
size. Using those, we examine how file size affect the

 117

Digital Object Identifier 10.4316/AECE.2013.04020

1582-7445 © 2013 AECE

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

efficiency of our architecture. In order to evaluate the
performance of proposed architecture we have conducted
extensive simulation study.

The reminder of this paper is organized as follows. In
section 2, we review the related works. In section 3, we
explain the fountain code and its characteristics. In section
4, we describe in details the proposed VDTN approach. In
section 5, we bring the results of simulation of the proposed
approach. Finally, the paper is concluded in section 6.

II. RELATED WORKS

Various routing protocols have been introduced and
designed for DTNs. In following, we categorize the most
important ones. The first category is based on having some
prior knowledge about nodes’ mobility pattern [3-4]. The
probabilistic routing was used based on history of nodes’
encounters and transitivity [5]. Hence, a message was
passed to a new relay only if it had higher delivery
predictability. It should be noted that in most practical
VANETs scenarios, the schedules of encounters may not be
predictable. Even if the schedules are known, there may be
some errors. In the worst case, if the movements of the
nodes are random, no assumptions can be made about their
movement. In this paper, we neither use prior information
nor do we control vehicles` movement patterns for file
transfer.

In the second category, nodes are aware of their location
through some methods such as GPS. IHLAR combined
geographic with topology based routing to reduce the end-
to-end delay [6]. Hello packets were used to calculate the
delivery probability [7]; furthermore, Hello packets were
deployed to propose ORION improving delay and delivery
ratio [8]. PRNFP proposed a position based routing
algorithm which enhanced the performance of the system
[9]. Digital map, connectivity graph, location of destination
vehicle, and the duration of connectivity among vehicles
were deployed to achieve a stable route and reduced
network load [10]. Some of these methods try to send
message based on local information in each step that may
cause to create a loop because each node selects the closest
node to destination from its local point of view. Therefore,
such methods may suffer from local phenomena. Moreover,
greedy forwarding may lead to a dead end which means
there is no closer neighbor to the destination.

The third category of previous works is based on
exploiting relay nodes. The message delivery probability
was evaluated in two-hop relay with erasure coding [11]. In
[12] some stationary devices were located at crossroads
where vehicles met them. The mentioned stationary devices
improve packets delivery probability by practicing store and
forward policy. By using these devices, authors of [13] tried
to replicate data for maintaining Distributed Data Base
(DDB). However, the weakness of these methods is
placement of the stations. The optimal placement was shown
to be NP-Hard [14].

One of the simplest and earliest methods in DTN is
replication methods. A simple routing protocol named
Epidemic Routing was proposed based on S-FC and
replication [15]. Inspiring from this basic method, other
authors try to propose more intelligent methods, aiming at
limiting the number of packets propagated in network. The

average copy count per message was tried to be reduced in
different time steps called periods [16]. In each period, some
additional copies were sprayed into the network, and each
period had its own waiting time for message delivery. The
Spray&Wait [17] algorithm sent packets to a certain number
of vehicles which were selected randomly, and waited until
one of these vehicles met the destination. In the wait phase,
aiming at reaching a better performance, took advantage of
mobility information [18]. However, the clear shortcoming
of replication-based schemes is waste of bandwidth.

Different authors combined network coding with other
DTN methods. The effect of different spraying algorithms
and cost reduction of erasure coding were studied [19]. In
[20], the authors proposed an idea in area of network coding
to improve data delivery and reduce the number of
transmitted bytes by flooding. In [21], the authors
implemented the epidemic routing with network coding, and
to obtain better performance they introduced adaptive
scheduling mechanism to ensure that the buffer of nodes is
enough for current amount of data. The performance of
epidemic routing in presence of network coding in
opportunistic networks was compared with the sole use of
replication [22]. In [23], by using erasure coding, along with
estimation based routing schemes, lower delivery delay and
faster distributing of message blocks were reported. In [24],
the goal was to study a class of replication methods that
included coding to enhance the probability of successful
delivery within a given time limit.

III. FOUNTAIN CODES

A special type of network coding is a Fountain Codes
[25], also known as rateless erasure codes. Fountain code
does not require a feedback packet for acknowledgment and
the original source file can be rebuilt up from any subset of
encoding symbols from the given set which is equal or only
slightly larger than the source file. Raptor Codes [26], Luby
Transform Codes [27], Online Codes [28], and different
kinds of fountain codes [29-30] are some examples of this
coding.

Fountain codes constitute a class of rateless codes, which
can generate an infinite number of encoded packets based on
the source file. For encoding packets, at first, a degree
distribution should be chosen which determines the number
of symbols that would be summed up together, using XOR
operation on the bit level, into one output symbol. Each
encoded symbol is generated randomly and independently
by using the aforementioned degree distribution. The key
factor of encoding and decoding process is degree
distribution since the efficiency of the codes strictly depends
on this issue; therefore, some authors try to design an
optimized degree distribution to improve the performance of
fountain codes [31-33]. Through reverse XOR operation, the
decoding process is done at the receiver with respect to the
degree distribution in the header of the received packet. The
most important characteristic of fountain codes is that the
source data packets can be recovered from any subset of the
received packets.

Generally, N = K(1 + ε) packets are needed to decode the

original file successfully where ε is the overhead and K is
the number of original packets that are going to be

 118

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

transmitted. The overhead, so-called ε, normally is variant
between 5 to 100% which depends on the implementation
[34]. If N < K, the receiver does not get enough encoded
packets to re-build the original file. If N = K, it is
conceivable that receive is able to recover the original file.
And, finally, if N = K + E and N > K where E is
supplementary packets, the probability of recovering the
original file at the destination is (1 - δ) and δ is upper-

bounded by 2
-Kε. As a result, the larger the file size is, the

higher the probability of receiving successfully at receiver
becomes. The encoding and decoding process of fountain
code has a low complexity and the required space for storing
these processes are linear; therefore, the only cost of this
coding is related to its excess number of encoded packets in
term of load of the network. These characteristics of
fountain code demonstrate that not only it can be efficient
and reliable as TCP, but also it is universal and tolerable in
intermittent connectivity environments such as VDTNs.

Fountain code in application layer for encoding and
decoding process and PUMA in network layer were used to
reduce the delivery time and bandwidth occupation [35].
Fountain codes were used to improve file transfer
probability and efficiency [36]. A comparison of fountain
code and TCP in case of file transfer showed that fountain
code outperforms TCP in typical cases of operation [37].
CFP [38] integrated optimal probabilistic forwarding
scheme with fountain codes to reach better delivery ratio
while the waste of the resources was avoided. FOCAR was
proposed to obtain high reliability and low end-to-end delay
[39]. In addition, it was shown that Fountain coding could
improve the data delivery in VANETs compared to other
traditional protocols [2]. In this paper, we are seeking a
thorough and systematic understanding of the benefits and
performance gains when Fountain coding is used in
VANETs along with S-CF policy. Our approach uses neither
a priori knowledge of network connectivity nor any control
over nodes’ mobility. To the best of our knowledge, this sort
of investigation has not been performed so far. The main
advantages of fountain codes lay on its positive
characteristics can be summarized in:
1- Low complexity of encoding and decoding

2- Reconstructing the original file from any subset

3- Receiving packets out-of-order at the destination

4- Obviating the demand of an acknowledgement for
receiving a packet at a destination.

IV. PROPOSED ARCHITECTURE

As illustrated in Fig. 1, our proposed architecture for file
transferring includes using Fountain coding in the
application layer, UDP in the transport layer and a cross
layer mechanism which extends AODV for DTN (named as
AODV-DTN). We assume file chunks are encoded by the
sender according to a sample of fountain codes (such as
Raptor [26]) while the sender is off-line and stores packets
in its own memory. Since fountain coding is used in the
application layer, the order of packet reception is not
important and all coded packets have equivalent values. This
feature satiates the demand of using TCP and its ACK
mechanism in the transport layer; hence, deploying a simple
UDP along fountain coding is sufficient. The main logic

behind choosing this architecture is that in intermittent-
connective environments such as VDTN, data packets and
even ACKs may be in risk of loss due to frequent
disconnections leading to several retransmissions. In such
environments, traditional routings like AODV do not appear
to act well. Indeed, they cannot store many packets for a
long time due to lack of buffer space; consequently, data
packets are dropped from buffer after a short time. In
addition to using fountain coding in the application layer, to
find a better chance to deliver data from sources to
destinations, there is a cross-layer interaction between
AODV-DTN and the application layer; that is, we add a
large FIFO buffer to the application layer (Fig. 1).
Link_Breakage and Neighbor_Found signals are deployed
in our paradigm sent from AODV-DTN toward the
application layer. Each time a link breakage is detected,
AODV-DTN sends a Link_Breakage signal to the
application layer to inform itself that destination is changed
temporarily; thereafter, AODV-DTN instead of buffering
the packets itself sends the packets toward the FIFO module
in the application layer for the sake of buffering.

Figure 1. Proposed Architecture

The large application layer buffer prevents packet loss

and dropping at the network layer. Since the application is
tolerable, we assume that the TTL of packets are large
enough to ensure that all packets are delivered to the
destination; indeed, there is no packet loss due to TTL
expiry. Later, if a temporary destination (carrier vehicle)
detects a new neighbor (through HELLO mechanism; see
the next paragraph) that have a route toward the primary
destination, the network layer gives Neighbor_Found signal
to the application layer. Thus, buffered data will be sent to
the newly found neighbor and then toward the primary
destination. In the following, we explain the process in more
details.

In RFC [3561], the HELLO mechanism is proposed in
order to determine network connectivity and offer
connectivity information for possible available neighbors
through reception of broadcast control message. Each
vehicle by broadcasting a HELLO message every in
HELLO_INTERVAL [1] can assist in identifying whether a
neighbor has joined or left the network. Each vehicle
maintains a neighbor table to store information of vehicles

 119

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

within its transmission range, as well as a route table to store
information about routes to destinations. In our new
architecture, so-called HELLO messages are utilized to
detect breakage and establishment of links.

Data are sent through multi-hop communication from a
source vehicle to its related destination, and the active route
for file transferring never expires unless a disconnection
occurs. When the primary destination is unavailable
meaning that a disconnection happens and an interruption is
detected by an intermediate vehicle; hence, a Link_
Breakage signal is sent to the application layer of this
intermediate vehicle which is named temporary destination.
As shown in Fig. 2, from now on packets are sent to this
temporary destination, and the AODV-DTN sends received
packets to the application layer for buffering.

Figure 2. Implemented Store-Carry and Forward policy

During the routing process, if the connection between

source and the current temporary destination is interrupted,
the last available vehicle becomes another temporary
destination. As we assume packets do not expire because of
TTL, they can be carried until an opportunity raises for
delivering to the primary destination. Whenever any of the
temporary destinations finds a new neighbor, the AODV-
DTN protocol checks whether there is a route to the primary
destination through the new neighbor by using route
discovery [1]. If so, AODV-DTN sends Neighbor_Found
signal to the application layer through cross layer
mechanism (see Fig. 1). By receiving this signal in
application layer, the temporary destination commences
forwarding its buffered packets. Otherwise, it carries the
buffered packets until finding a neighbor that has got a path
to the primary destination. In forwarding phase, two cases
are raised:
 If the desired file is not fully received in a temporary

destination, it only tries to forward its buffered file
chunks.

 If the original file is received completely in a temporary
destination, the original file can be rebuilt up at this
vehicle. Afterwards, it can act as a source vehicle and
generate encoded symbols of its own from the full
content to the primary destination. This issue helps the
primary destination to download and receive the
desired file faster and more reliable.

While file chunks are being forwarded, if a route breaks,
last available vehicle becomes a temporary destination for
correspondence source which previously have been a
temporary destination. Accordingly, this process continues
until data are delivered to the primary destination. The
operational procedure is shown in Fig. 3. In other words, we

may have more than one temporary destination each
responsible for partial file delivery to the primary
destination. As we use the fountain coding in the application
layer, packets do not need to be received in-order in the
primary destination. Indeed, it does not matter which
temporary destination delivers its packets first to the
primary destination, and the sequence of received packets in
the primary destination is not important. Furthermore, file
chunks can be downloaded in parallel from a variety of
temporary destinations. The primary destination, after
downloading the desired file thoroughly, can close all
connection without concerning packets where come from
and duplication of them [40]. This characteristic of fountain-
coded data is critical in our proposed architecture so that we
are able to use multiple temporary destinations trying to
send their data toward the primary destination in an
independent manner.

Figure 3. Operational procedure

V. SIMULATION

In this section, we show that fountain coding and S-CF
policy results in significantly improved performance in
terms of byte throughput and delivery ratio. We
implemented all parts of the proposed approach in
GloMoSim2.03 library-simulator [41]. The MAC layer is
IEEE 802.11 (the base of DSRC standard) and the
transmission range of vehicles is 250 m. The bandwidth is
set to 6 Mbps and we use SUMO [42] as mobility generator.

The results of this paper are for a highway scenario with 4
lanes in each direction and 30 km in length. The speed

 120

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

levels are 80, 100, and 120 with a probability of occurrence
of 25%, 50%, and 25% respectively. Furthermore, we use 30
minutes warm up to reach a normal distribution of vehicles
and 600 seconds for simulation time. It is assumed that the
original file is recovered by an overhead of 10% (note that
current fountain codes are able to achieve the overhead of
5% easily). The implementation of coding and decoding
algorithm for a special type of fountain codes is beyond the
scope of this paper. Hence, in the implemented scenario, the
sender vehicle sends out a sequence of packets to the
receiver. Whenever the receiver gets 110% of original file
packets (distinctive packets), no matter whether the order is
preserved or not, it sends back an ACK to the sender;
thereafter, sender stops sending out new packets preventing
imposing extra overhead to the network. Since vehicles
normally tend to start communication with neighboring
vehicles, in the conducted simulation, we choose 30 vehicle
pairs such that their hop count distance is around 7 or 8 at
the time of connection establishment. We simulate different
scenarios with these 30 selected pairs, and for each pair, we
repeat the simulation 10 times. The depicted results in
following figures are the average among of these
independent simulations. The following scenarios are
considered for evaluation the proposed architecture.

• FTP: in which each vehicle sends out file chunks of size
1KB using TCP. In the application layer, a standard
implementation of FTP protocol is used. Besides, standard
version of AODV [1] is used as the routing protocol.

• FOUNTAIN: in which each vehicle sends out file
chunks of 1KB using UDP. In application layer, coding and
decoding based on a sample of fountain codes like Raptor
[26], LT [27] is utilized, and in the network layer, standard
AODV is deployed. This scenario was proposed in [2].

• FOUNTAIN S-CF: in which fountain coding is used in
application layer and the proposed AODV-DTN algorithm is
used as the routing protocol. Details of the architecture of
this scenario have been explained in section 4.

Byte throughput is an important metric which should be
evaluated in VDTNs because there might be the necessity to
provide a kind of resume facility if a vehicle is not able to
finish file(s) download in one-step. One example could be
file download from multiple Road Side Units (RSU). To
determine the effect of FIFO queue size on byte throughput
in our proposed architecture, we measure byte throughput of
the FOUNTAIN S-CF when the FIFO queue size is limited
by different values (from 1MB to 10 MB). Fig. 4 shows that
when file size is small and FIFO queue size is maximized,
files have more chance to be thoroughly delivered.
However, as can be seen, when files enlarge while FIFO
queue size is kept small, the byte throughput is low. That is,
several packets are dropped. This issue is related to lack of
space in buffer; in other words, if there is no free space in
buffer and the connection between a source and temporary
destination is still available, packets will be dropped, hence
contributing to low byte throughput. However, for
alleviating the problem one can implement the buffer on
disk instead of RAM. Since the application is delay tolerant
then the imposed delay of retrieving file chunks from disk
can be tolerable. On the other side, a proper prefetching of
file chunks can decrease the imposed I/O delay noticeably.

Figure 4. Byte throughput of FOUNTAIN S-CF with different buffer size

In Fig. 5, the byte throughputs of different protocols are

compared considering no limitation on the buffer size. As
can be seen, the FOUNTAIN S-CF’s throughput in terms of
byte count is higher than that of FOUNTAIN and FTP. By
taking advantage of fountain codes and S-CF policy, we can
transfer a larger number of bytes in comparison to other
scenarios. Since FTP should send packets in both direction
(i.e., data packets in one direction and ACK in reverse
direction), it causes collision and increment in load of the
network; therefore, byte throughput will be diminished. In
contrast, FOUNTAIN S-CF sends only data packets, without
ACKs; furthermore, the reason of this result is ascribed to
equivalent value of file chunks and reconstruction of the
original file from any subsequence of file chunks.

Figure 5. Byte throughput comparison

Another important metric for comfort applications which

should be analyzed is file delivery ratio; because regarding
their nature, vehicles can make use of such applications only
if the related files are downloaded completely. The plot of
delivery ratio in Fig. 6 shows FOUNTAIN S-CF has a
higher delivery ratio in comparison to other protocols. An
ordinary AODV has a limited buffer and cannot store many
packets in the network layer for a long time; indeed, if a
route is not established in a timely manner, all packets
should be dropped from the buffer. This behavior has impact

 121

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

on delivery ratio since fewer packets are delivered in FTP
and FOUNTAIN scenario.

Figure 6. File delivery ratio comparison

Fountain codes increase the possibility of recovering files

from out-of-ordered file chunks. The result of FOUNTAIN
reflects this setting previously investigated in [2]. This
feature can fade and cover the inefficiency of AODV in
VDTN; therefore, as can be seen in Fig. 6, FOUNTAIN
outperforms FTP. With respect to fountain coding
characteristic, vehicles can gather file chunks and pursue
their incomplete download form any vehicle they meet, in
any contact opportunity. As followed from Fig. 6,
FOUNTAIN S-CF scenario shows the best performance. In
fact, due to the existence of AODV-DTN algorithm in the
network layer, reception probability of file chunks is
improved. As mentioned in section 4, in the proposed
architecture, there might be several temporary destinations
each of which may have and carry different file chunks. As
a result, the chance of a complete file reception at the
primary destination is raised. As Fig. 6 illustrates,
FOUNTAIN S-CF scenario delivered more files compared
to other protocols when the file size increased. In other
word, the negative effect of file size on file delivery ratio in
the FOUNTAIN S-CF is less than other scenarios.

We compare download time in above-mentioned
scenarios and the results are obtained based on those files
that are received completely at the destination. As shown in
the Fig. 7, FOUNTAIN S-CF requires more time to
download files completely in comparison with FTP and
FOUNTAIN. However, as observed in Fig. 6, file delivery
ratio is higher in FOUNTAIN S-CF scenario. It is actually
expected that using AODV-DTN impose some extra delay
due to carrying packets until finding an opportunity to
deliver buffered packets to primary destination. Therefore,
in those applications where delay is not a critical concern,
FOUNTAIN S-CF can be a good candidate for file
exchange.

Figure 7. Time to download comparison

Fig. 8, 9, and 10 evaluate using the proposed architecture

when stationary (fixed) Road Side Units (RSUs) intend to
communicate with each other. This can be useful in many
applications (including comfort and life safety) when some
delay tolerant data are going to be exchanged between RSUs
in highways without the existence of infrastructure. We set
an experiment in which two RSUs with different distances
(from 1KM to 6KM) in a highway are considered. Data are
routed (or carried) using solely vehicles. When the distance
set to 1KM, the destination RSU is able to receive files with
different sizes thoroughly in FOUNTAIN S-CF and
FOUNTAN scenario. In contrast, FTP has a low byte
throughput because of its characteristics (i.e., need to
backchannel for acknowledgment). Generally, the overall
byte throughput may degrade as the distance between RSUs
increase, as it adds more path loss. However, the increment
of distance does not have a negative effect on FOUNTAIN
S-CF; it is due to using AODV-DTN algorithm which
practices S-CF policy. Data are sent by the source RSU, and
those vehicles which are moving along the source RSU start
to carry the packets to the destination RSU. When the carrier
vehicles pass by the destination RSU, they start to forward
their buffered packets to the destination.

Figure 8. Effect of distance on FOUNTAIN S-CF`s byte throughput

 122

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

 123

Figure 9. Effect of distance on FOUNTAIN`s byte throughput

Figure 10. Effect of distance on FTP`s byte throughput

Figure 11. Inter-RSU throughput for different scenarios

Fig. 11 illustrates the comparison of mentioned protocols

when two RSUs are located 6KM far from each other. As
shown in Fig. 11, the distance of 6KM is a too long in such

a way that even in FOUNTAIN scenario the destination
RSU does not receive any of the transmitted packets.
Furthermore, FTP needs a stable connection which cannot
be provided because of fixed position of RSUs and mobility
of vehicles. However, in FONTAIN S-CF scenario all
packets can be carried and transmitted successfully. In Fig.
11, the byte throughput results are reported and as one can
see, the byte throughput is 110% of file sizes. This
difference is due to the 10% overhead which is imposed
because of the application of fountain codes in the
application layer.

VI. CONCLUSION

In this paper, we proposed architecture for file
transferring in VDTN. The proposed architecture included
using fountain coding in the application along with UDP in
the transport layer. We also proposed a novel DTN routing
algorithm based on the well-known AODV named as
AODV-DTN and used it as routing protocol in the proposed
architecture. The proposed approach achieves a higher
throughput along with a better reliability compared to other
approaches suggested thus far in the literature. Our results
depicted that, the delivery ratios are higher in the proposed
architecture compared to other alternative scenarios.
Furthermore, the negative effect of increasing file size on
file delivery ratio is lower in the proposed architecture. On
the other hand, download time increases due to S-CF policy
compared to other scenarios. We also showed that for long-
distanced delay tolerant inter-RSU communications, the
proposed architecture shows a very good performance
despite the failure of other alternative approaches. As a
result, our proposed architecture can be a good candidate for
delay tolerant file transferring in networks which suffer
from intermittent connectivity including VANETs. In future
works, we intend to control the TTL of the messages.

ACKNOWLEDGMENT

We want to express our sincere gratitude to Mr. Keywan
Zayer for his collaboration in preparing this article.

REFERENCES
[1] C. E. Perkins and E. M. Royer, “Ad-Hoc on-Demand Distance Vector

Routing,” in Second IEEE Workshop on Mobile Computing Systems
and Applications, 1999. Proceedings. WMCSA ’99, 1999, pp. 90–
100.

[2] S. Yousefi, T. Chahed, S. M. M. Langari, and K. Zayer, “Comfort
Applications in Vehicular Ad Hoc Networks Based on Fountain
Coding,” in Vehicular Technology Conference (VTC 2010-Spring),
2010 IEEE 71st, 2010, pp. 1–5.

[3] G. Xue, Y. Luo, J. Yu, and M. Li, “A Novel Vehicular Location
Prediction Based on Mobility Patterns for Routing in Urban Vanet,”
EURASIP Journal on Wireless Communications and Networking, vol.
2012, no. 1, p. 222, Jul. 2012.

[4] Q. Yuan, I. Cardei, and J. Wu, “An Efficient Prediction-Based
Routing in Disruption-Tolerant Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 1, pp. 19–31, 2012.

[5] F. Dang, X. Yang, and K. Long, “Spray and forward: Efficient routing
based on the Markov location prediction model for DTNs,” Sci. China
Inf. Sci., vol. 55, no. 2, pp. 433–440, Feb. 2012.

[6] D. Luo and J. Zhou, “An Improved Hybrid Location-Based Routing
Protocol for Ad Hoc Networks,” in 2011 7th International Conference
on Wireless Communications, Networking and Mobile Computing
(WiCOM), 2011, pp. 1–4.

[7] Y. Feng, H. Gong, M. Fan, M. Liu, and X. Wang, “A Distance-Aware
Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 13, Number 4, 2013

Sensor Networks,” Sensors, vol. 11, no. 12, pp. 4104–4117, Apr.
2011.

[8] S. Medjiah and T. Ahmed, “Orion Routing Protocol for Delay
Tolerant Networks,” in 2011 IEEE International Conference on
Communications (ICC), 2011, pp. 1–6.

[9] H. Idjmayyel, B. R. Qazi, and J. M. H. Elmirghani, “A Geographic
Based Routing Scheme for Vanets,” in Wireless And Optical
Communications Networks (WOCN), 2010 Seventh International
Conference On, 2010, pp. 1–5.

[10] M. Ramakrishna, “Dbr-Ls: Distance Based Routing Protocol Using
Location Service for Vanets,” in 2011 Annual IEEE India Conference
(INDICON), 2011, pp. 1–4.

[11] J. Liu, X. Jiang, H. Nishiyama, and N. Kato, “On the Delivery
Probability of Two-Hop Relay MANETs with Erasure Coding,” IEEE
Transactions on Communications, vol. 61, no. 4, pp. 1314–1326,
2013.

[12] V. N. G. J. Soares, F. Farahmand, and J. J. P. C. Rodrigues,
“Improving Vehicular Delay-Tolerant Network Performance with
Relay Nodes,” in Next Generation Internet Networks, 2009. NGI ’09,
2009, pp. 1–5.

[13] A. Lieskovsky, J. Janech, and T. Baca, “Data Replication in
Distributed Database Systems in Vanet Environment,” in 2011 IEEE
2nd International Conference on Software Engineering and Service
Science (ICSESS), 2011, pp. 304–307.

[14] F. Farahmand, I. Cerutti, A. N. Patel, J. P. Jue, and J. J. P. C.
Rodrigues, “Performance of Vehicular Delay-Tolerant Networks with
Relay Nodes,” Wireless Communications and Mobile Computing,
vol. 11, no. 7, pp. 929–938, 2011.

[15] A. Vahdat, and D. Becker. Epidemic routing for partially connected
ad hoc networks. Technical Report CS-200006, Duke University,
2000.

[16] E. Bulut, Z. Wang, and B. K. Szymanski, “Cost-Effective Multiperiod
Spraying for Routing in Delay-Tolerant Networks,” IEEE/ACM
Transactions on Networking, vol. 18, no. 5, pp. 1530–1543, 2010.

[17] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and Wait:
An Efficient Routing Scheme for Intermittently Connected Mobile
Networks,” in Proceedings of the 2005 ACM SIGCOMM workshop
on Delay-tolerant networking, New York, NY, USA, 2005, pp. 252–
259.

[18] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
Focus: Efficient Mobility-Assisted Routing for Heterogeneous and
Correlated Mobility,” in Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops, 2007.
PerCom Workshops ’07, 2007, pp. 79–85.

[19] E. Bulut, Z. Wang, and B. K. Szymanski, “Cost Efficient Erasure
Coding Based Routing in Delay Tolerant Networks,” in 2010 IEEE
International Conference on Communications (ICC), 2010, pp. 1–5.

[20] J. Widmer and J.-Y. Le Boudec, “Network Coding for Efficient
Communication in Extreme Networks,” in Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant networking, New
York, NY, USA, 2005, pp. 284–291.

[21] Q. Zhang, Z. Jin, Z. Zhang, and Y. Shu, “Network Coding for
Applications in the Delay Tolerant Network (DTN),” in 5th
International Conference on Mobile Ad-hoc and Sensor Networks,
2009. MSN ’09, 2009, pp. 376–380.

[22] Y. Lin, B. Li, and B. Liang, “Stochastic Analysis of Network Coding
in Epidemic Routing,” IEEE Journal on Selected Areas in
Communications, vol. 26, no. 5, pp. 794–808, 2008.

[23] Y. Liao, K. Tan, Z. Zhang, and L. Gao, “Estimation Based Erasure-
Coding Routing in Delay Tolerant Networks,” in Proceedings of the
2006 international conference on Wireless communications and
mobile computing, New York, NY, USA, 2006, pp. 557–562.

[24] E. Altman and F. De Pellegrini, “Forward Correction and Fountain
Codes in Delay-Tolerant Networks,” IEEE/ACM Transactions on
Networking, vol. 19, no. 1, pp. 1–13, 2011.

[25] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,” in
Proceedings of the ACM SIGCOMM ’98 conference on
Applications, technologies, architectures, and protocols for computer
communication, New York, NY, USA, 1998, pp. 56–67.

[26] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[27] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings, 2002, pp. 271–
280.

[28] P. Maymounkov, “Online codes,” Technical report, New York
University, 2002.

[29] M. Asteris and A. G. Dimakis, “Repairable Fountain codes,” in 2012
IEEE International Symposium on Information Theory Proceedings
(ISIT), 2012, pp. 1752–1756.

[30] K. Kasai, D. Declercq, and K. Sakaniwa, “Fountain Coding via
Multiplicatively Repeated Non-Binary LDPC Codes,” IEEE
Transactions on Communications, vol. 60, no. 8, pp. 2077–2083,
2012.

[31] J. du Toit and R. Wolhuter, “A Practical Implementation of Fountain
Codes over WiMAX Networks with an Optimised Probabilistic
Degree Distribution,” presented at the ICSNC 2011, The Sixth
International Conference on Systems and Networks Communications,
2011, pp. 32–37.

[32] F. Xie and X. Lin, “Design of Fountain Codes with Differential
Evolution,” in 2010 6th International Conference on Wireless
Communications Networking and Mobile Computing (WiCOM),
2010, pp. 1–4.

[33] L. Xuehong, X. Fei, and L. Jiaru, “Designing of Fountain Codes in
Cooperative Relay Systems,” in 2010 Second International
Conference on Networks Security Wireless Communications and
Trusted Computing (NSWCTC), 2010, vol. 2, pp. 146–149.

[34] D. J. C. MacKay, “Fountain codes,” Communications, IEE
Proceedings-, vol. 152, no. 6, pp. 1062–1068, 2005.

[35] V. Palma, E. Mammi, A. M. Vegni, and A. Neri, “A Fountain Codes-
Based Data Dissemination Technique in Vehicular Ad-Hoc
Networks,” in 2011 11th International Conference on ITS
Telecommunications (ITST), 2011, pp. 750–755.

[36] H. Chen, R. Maunder, and L. Hanzo, “Fountain-Code Aided File
Transfer in 802.11 WLANs,” in Vehicular Technology Conference
Fall (VTC 2009-Fall), 2009 IEEE 70th, 2009, pp. 1–5.

[37] A. Ksentini and T. Chahed, “Extending the Ad Hoc Horizon in Dense
802.11 Networks Using Fountain Codes,” in Fourth International
Conference on Systems and Networks Communications, 2009.
ICSNC ’09, 2009, pp. 63–67.

[38] Y. Dai, P. Yang, G. Chen, and J. Wu, “CFP: Integration of Fountain
Codes and Optimal Probabilistic Forwarding in DTNs,” in 2010 IEEE
Global Telecommunications Conference (GLOBECOM 2010), 2010,
pp. 1–5.

[39] Z. Zhou, H. Mo, Y. Zhu, Z. Peng, J. Huang, and J.-H. Cui, “Fountain
code based Adaptive multi-hop Reliable data transfer for underwater
acoustic networks,” in 2012 IEEE International Conference on
Communications (ICC), 2012, pp. 6396–6400.

[40] M. Mitzenmacher, “Digital Fountains: A Survey and Look Forward,”
in IEEE Information Theory Workshop, 2004, 2004, pp. 271–276.

[41] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for
parallel simulation of large-scale wireless networks,” in Twelfth
Workshop on Parallel and Distributed Simulation, 1998. PADS 98.
Proceedings, 1998, pp. 154–161.

[42] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO -
Simulation of Urban MObility - an Overview,” presented at the
SIMUL 2011, The Third International Conference on Advances in
System Simulation, 2011, pp. 55–60.

 124

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:52 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

