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ERGODIC MEASURES FOR SECTIONAL-ANOSOV FLOWS

C.A. MORALES

Abstract. Let X be a sectional-Anosov flow. We prove that if the ergodic
measures of X are dense in the set of the invariant ones, then the closure of
the periodic orbits of X is a homoclinic class. In particular, every Venice mask
exhibits an invariant measure which cannot be approximated by ergodic ones.

1. Introduction

The sectional-Anosov flows [19] were introduced as a generalization of the Anosov
flows to include the geometric and multidimensional Lorenz attractors [2], [14],
[11] (and the examples in [20]). These flows have been widely studied in the recent
literature [3], [4], [5], [6], [7], [8], [10].

In this paper we will study those sectional-Anosov flows for which the ergodic
measures are dense in the set of the invariant ones. This hypothesis is verified in
many sectional-Anosov flows, although they have specification only in the Anosov
case [27]. Under such a hypothesis we will prove that the closure of the periodic
orbits is a homoclinic class. Consequently, a Venice mask ([16], [17]) has at least
one invariant measure which cannot be approximated by ergodic ones. Let us state
our results in a precise way.

Hereafter the term flow will refer to a C' vector field X defined on a compact
connected Riemannian manifold M inwardly transverse to the boundary oM (if
nonempty). The semiflow induced by X will be denoted by X;. We say that
A C M is invariant with respect to a flow X if X;(A) = A for every ¢t > 0. Every
invariant set is clearly contained in the maximal invariant set defined by

M(X) = (] Xe(M).
t>0

A compact invariant set A of X is transitive if A = w(z) for some z € A, where
w(x) ={y € M :y = lim,_, X¢, () for some sequence t,, — oo} denotes the
omega-limit set of z. A point x € M is a singularity or periodic if X(x) = 0 or
if there exists a minimal ¢ > 0 such that X;(z) = z. Denote by Per(X) the set
of periodic orbits of X. We say that X is transitive or has dense periodic orbits
depending on whether M (X) is transitive or the closure of the periodic points.

By a Borel probability measure of M we mean a c-additive measure p with
w(M) =1 defined in the Borelians of M. The set of Borel probability measures
of M is denoted by P. This set is a compact metric space if endowed with the
weak* topology, i.e., the topology defined by the convergence p,, — p if and only if
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[ ¢dpn, — [ ¢pdp for every continuous map ¢ : M — R. A Borel probability measure
 is invariant with respect to the flow X if u(X;(A)) = A for every measurable set
A and every t > 0. It turns out that the space P(X) of invariant measures of X is
a compact subset of P. We say that u € P(X) is ergodic if u(A) € {0,1} for every
measurable invariant set A of X.

On the other hand, a compact invariant set A of X has a dominated splitting with
respect to the tangent flow if there are a continuous invariant splitting Ta M = EGF
and positive numbers K, A such that

IDX (@)l - [1foll < Ke ™| DXe(2) foll - lleall,

for all x € At > 0,(ey, fz) € E; X F,. A compact invariant set A is partially
hyperbolic if it has a partially hyperbolic splitting, i.e., a dominated splitting Th M =
E®F with respect to the tangent flow whose dominated subbundle FE is contracting,
ie., |[DX;(z)vi|| < Ke v for every x € A, vS € ES and t > 0.

The Riemannian metric (-, -) of M induces what is called 2-Riemannian metric
(c.f. [22]) (-, -/-) defined by

(u,v/w), = (u, v)p - (w,w)p — (u,w)p - (v,w)y, Vpe M,Vu,v,weT,M.

Such a 2-Riemannian metric induces a 2-norm [13] defined by

lu, v|| =1/ ({u,u/v)p, Vpe€ M,Vu,veT,M.

It is the area of the paralellogram generated by u and v in T, M.
We say that the central subbundle F' of a dominated splitting TAM = E & F is
sectionally expanding if

IDXo(@)u, DXo(@)ol| = KM fuyoll, Vo € Ao € Fit > 0.

A singularity x of X is hyperbolic if DX (z) has no purely imaginary eigenvalues.

Following [18], we say that a partially hyperbolic set A is sectional-hyperbolic if
its singularities are hyperbolic and if its central subbundle is sectionally expanding.
We say that a flow is sectional-Anosov if its maximal invariant set is sectional-
hyperbolic [19].

Let « be a periodic point of X. Denote by w(z) the minimal positive number
satisfying X ;) (z) = 2. Clearly 1 is an eigenvalue of DX (,)(x) with eigenvector
X (). If the remainder eigenvalues of DX (,)(x) have modulus different from 1,
then we say that the orbit O(z) = {X(x) : t € R} (or the point x) is a hyperbolic
periodic orbit (resp. hyperbolic periodic point) of X. A flow is star if it cannot be
approximated in the C' topology by flows with nonhyperbolic periodic points or
singularities.

The Invariant Manifold Theory [15] asserts that through any hyperbolic periodic
point = of a flow X there passes a pair of invariant manifolds, the so-called strong
stable and unstable manifolds W**(x) and W**(x), tangent at x to the eigenspaces
corresponding to the eigenvalue of modulus less and bigger than 1 respectively.
Saturating them with the flow we obtain the stable and unstable manifolds W#(x)
and W*(z) respectively. We say that O is a homoclinic orbit (associated to a
periodic saddle ) if O C W*(x) N W*(x) \ O(z). If, additionally, dim(7,W*(z) N
T,W*(z)) = 1, then we say that O is a transverse homoclinic orbit (associated to x).
We define the homoclinic class H(x) associated to x as the closure of the transverse
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homoclinic orbits associated to x. A compact invariant set is a homoclinic class if
it coincides with the homoclinic class associated to some periodic saddle.
With these definitions we can state our main result.

Theorem 1.1. Let X be a sectional-Anosov flow. If the ergodic measures of X are
dense in P(X), then Cl(Per(X)) is a homoclinic class.

From this result we obtain that certain sectional-Anosov flows exhibit an invari-
ant measure far from the ergodic ones. Recall that a Venice mask is a sectional-
Anosov flow which has dense periodic orbits but is not transitive. Examples of
Venice masks with only one singularity were first exhibited in [9]. Examples with
two or more singularities were discovered recently by Lopez and Sanchez [16], [17].
It is known that the maximal invariant set of any three-dimensional Venice mask
with only one singularity is the union of two homoclinic classes which intersect
along the unstable manifold of a singularity [21]. Hence every three-dimensional
Venice mask with only one singularity exhibits an invariant measure which cannot
be approximated by ergodic ones. Here we will prove that the latter property is
true not only for the three-dimensional Venice masks with only one singularity but
also for every Venice mask. More precisely, we will prove the following corollary.

Corollary 1.2. Every Venice mask exhibits an invariant measure which cannot be
approximated by ergodic ones.

These results motivate the search for necessary and sufficient conditions for the
denseness of the ergodic measures (of a sectional-Anosov flow) in the set of the
invariant ones.

2. Proofs

The following lemma is a flow-version of a result due to Parthasarathy [23]. For
any flow X denote by Pe4(X) the ergodic members of P(X). A residual subset of
a metric space is a subset containing the intersection of countably many open and
dense subsets.

Lemma 2.1. For every flow X, Pery(X) is dense in P(X) if and only if Perg(X)
is residual in P(X).

Proof. It suffices to prove that if P.,4(X) is dense in P(X), then Pery(X) is
residual in P(X). For this we follow the proof of Proposition 5.1 in [1].
Assume that Pe,4(X) is dense in P(X). Given a continuous function ¢ : M — R

we define
1
=N U{pereo: [ |7 [ venends- [ <1}
We claim every p € P(X) satisfying the limit

leNt t>1
1 t
lim f/ Y(Xs(2))ds = /¢ Ydu(z for p-ae. z€ M (2.1)

t—oo t

belongs to Py (X). Indeed, take p € P(X) satisfying this limit and define the family
of measurable maps ¢, : N — R by

_t/otqp(x
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By (2.1) and Birkhoff’s Theorem we have that ¢, converges pointwise to the con-
stant function [ (z)du(z). On the other hand, N is compact and 1 is continuous
so there is C' > 0 such that |[¢(z)] < C for every z € N. Then, |[¢,(2)| < C for all
(t,z) € RT x N and so

lim
t—o00

uz) ~ [ @)@ dulz) = 0

by Lebesgue’s Dominated Convergence Theorem. From this we get p € Py(X)
proving the claim.
Next we observe that for any given [ € NT the set

or=U{nere: [ |7 [ vexends- [ o)

t>1

du(z) < ;}

is open in P(X). Moreover, every ergodic measure of X satisfies (2.1) and so
belongs to Py (X) by the previous claim. Then, since the set of ergodic measures
is dense by hypothesis, we obtain that Py (X) is also dense in P(X). We conclude
that Py (X) is residual in P(X), for every continuous map ¢ : N — R.

Now let C°(N) be the space of continuous maps from N to R and let ¢, be a
countable dense subset of C°(N). We have just proved that each Py, (X) is residual
in P(X) and so (,cy Py, (X) is also residual in P(X). Using standard approxi-
mation arguments one can show (), Py, (X) C Perg(X). Since oy Py, (X) is
residual in P(X), we are done. O

The second lemma is a general fact about star flows, i.e., flows which cannot be
approximated in the C! topology by ones with nonhyperbolic periodic points or
singularities.

Define the support supp(p) of a measure p as the set of points z for which
w(U) > 0 for any neighborhood U of x.

The measure center of a flow X (c.f. [28]) the union of the supports of its
invariant measures, i.e.,

AX)= |J supp(v).
veP(X)

Notice that A(X) C M(X) and A(X) = M(X) if and only if M(X) is the support
of an invariant measure (by the results in [1]). We also have that A(X) is contained
in the nonwandering set Q(X) but, in general, A(X) # Q(X) even for sectional-
Anosov flows (for an example see [7]).

With these definitions we can state the following result.

Lemma 2.2. The measure center of a star flow for which the ergodic measures are
dense in the set of the invariant ones is either a singularity or a homoclinic class.

Proof. Let X be a star flow. By Proposition 5.4 in [1] there is a residual subset of
invariant measures whose support is A(X). Now assume that the ergodic measures
are dense in the set of invariant measures. Then, the set of ergodic measures of
X is residual in P(X) by Lemma 2.1. Since the intersection of residual subsets of
a compact metric space (like P(X)) is residual (and so nonempty), we can choose
an ergodic measure p satisfying supp(p) = A(X). Let Sing(X) denote the set of
singularities of X. If pu(Sing(X)) > 0, then p is the Dirac measure supported on
a singularity o. In this case we obtain A(X) = {o} and we are done. Otherwise,
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1(Sing(X)) = 0 and then, by Theorem 5.4 in [26], there is homoclinic class H of
X such that supp(n) C H. Since the periodic orbits are dense on any homoclinic
class, and every periodic orbit is the support of an invariant measure, we also have
H C A(X). Consequently, A(X) = H and we are done. O

There are star flows for which both the ergodic measures are dense in the set of the
invariant ones and the measure center is a singularity [25].
Now we can prove our results.

Proof of Theorem 1.1. Let X be a sectional-Anosov flow for which the ergodic mea-
sures are dense in the set of the invariant ones. Since every sectional-Anosov flow
is star, we can apply Lemma 2.2 to obtain that its the measure center is either a
singularity or a homoclinic class. Since every sectional-Anosov flow has homoclinic
(and hence periodic) points [3], we have that the former alternative cannot occur.
Then, the measure center is a homoclinic class. On the other hand, since each
periodic orbit is the support of an invariant measure, we obtain that Cl(Per (X)) is
contained in the measure center. Since the periodic orbits are dense in any homo-
clinic class, we conclude that Cl(Per(X)) coincides with the measure center and
so it is a homoclinic class. This ends the proof. (I

Proof of Corollary 1.2. Suppose by contradiction that there is a Venice mask X
for which every invariant measure can be approximated by ergodic ones. Then, the
set of ergodic measures of X is dense in P(X) and so Cl(Per(X)) is a homoclinic
class by Theorem 1.1. Since X has dense periodic orbits, M(X) = Cl(Per(X))
and so M (X) is a homoclinic class. Since homoclinic classes are transitive sets, we
conclude that M (X) (and so X) are transitive which is absurd. This concludes the
proof. O
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