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Atomistic simulation of the structural and elastic properties of magnesite
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Abstract. Atomistic simulation was carried out to study the structural and elastic properties of MgCO3 magnesite
within the pressure range of the Earth’s mantle based on a novel force field. The lattice parameters and elastic
constants as a function of pressure up to 150 GPa are calculated. The results are in good agreement with the available
experimental data and previous theoretical results, showing no phase transition over the pressure range of interest.
We also found that magnesite exhibits a strong anisotropy throughout the lower mantle and that the nature of the
anisotropy changes significantly with depth.
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1. Introduction

Alkaline earth carbonates have been a subject of considerable
interest in the Earth Sciences. They are the most abundant
carbon-bearing species in the crust, representing a major
reservoir for carbon within the Earth’s mantle [1]. Among the
alkaline earth carbonates, MgCO3 magnesite is one of the most
extensively studied minerals. Numerous experimental [2–8]
and theoretical [2,9–11] studies have been dedicated to deter-
mining the stability of magnesite. However, it remains unclear
whether magnesite is stable or not over the entire pressure
and temperature range of the mantle.

Magnesite, being stable at ambient conditions [3,6], can be
transported deep into the Earth’s mantle through the subduc-
tion of oceanic lithosphere [12]. Recent experimental and
theoretical studies show that magnesite remains chemically
stable at high pressure and high temperature conditions of the
deep mantle, even though a number of structural transitions
in MgCO3 have been reported [3,9]. For example, Fiquet et al
[4] observed that magnesite undergoes a phase transition at
25 GPa. Isshiki et al [3] found that magnesite transforms to
an unknown form at pressures above 115 GPa. Skorodumova
et al [9] used ab initio calculations to determine that mag-
nesite can transform into a pyroxene structure at 113 GPa.
Oganov et al [10] performed simulations using the universal
structure prediction programme (USPEX) code based on
an evolutionary algorithm with ab initio free energy as
the fitness function and found that the post-magnesite phase
(the C2221 structure) is more stable than magnesite above
106 GPa. Further, using the same method and code between
82.4 and 138.1 GPa, Oganov et al [2] found that the most stable
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structure has a space group C2/m. Recently, Panero and
Kabbes [11] predicted that magnesite will undergo a struc-
tural transition to a pyroxene-like structure at 80–100 GPa.

To further understand the carbon cycle on a global scale,
it is important to investigate the stability of magnesite under
conditions similar to those of the Earth’s mantle. To bring
new insights on the stability and properties of magnesite at
high pressure, we examined the structural properties of mag-
nesite using interatomic potentials combined with a novel
force field over the entire pressure range of the mantle.

Additionally, knowledge of the elasticity of magnesite and
its pressure dependence helps us to understand seismological
observations of the Earth’s mantle. Empirical determination
of elastic properties in extreme conditions is, however, not an
easy task. The sound velocities and aggregate elastic proper-
ties of magnesite have only been measured at ambient con-
ditions [13,14]. In a theoretical study, Brik [15] investigated
the elastic properties of magnesite by means of the density
functional theory in the generalized gradient approximation
(GGA) and the local density approximation (LDA) at zero
pressure. Many of the elastic properties of magnesite are still
relatively poorly known.

2. Computational method

2.1 Interatomic potential calculations

Theoretical studies of materials require a model of the forces
acting between the atoms in a solid. The atomistic simula-
tion method uses interatomic potential functions to describe
the total energy of a system in terms of atomic coordinates.
Thus, the equilibrium positions of atoms or ions in a system
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are evaluated by minimizing the lattice energy until all the
strains acting on the crystal are removed. The lattice energy
can be defined as the sum of the electrostatic or Coulombic
forces acting between atoms and the short-range repulsive
forces produced by the overlap of nearest-neighbour electron
clouds and Van der Waals forces. These short-range forces
act between bonded and non-bonded atoms in the crystal,
where non-bonded interactions can be effectively modelled
by the Buckingham potential:

UBuck
ij = Aij exp(−rij /ρij ) − Cij r

−6
ij . (1)

The parameters Aij and ρij describe the repulsion between
two ions i and j at a separation distance of rij , and Cij is a
term included to model dispersion. For covalent materials,
the three-body potential represents the repulsion between
bond pairs, or even occasionally between lone pairs. Hence,
the form chosen is usually a harmonic one that penal-
izes deviation from the expected angle for the coordination
environment, such as 120◦ for a trigonal planar carbon atom:

UHarm
ijk = 0.5kθ (θ − θ0)

2. (2)

The four-body torsional potential is one that employs a har-
monic potential to describe the out-of-plane bending mode
of a central atom that has planar coordination geometry. It
has been used in the modelling of the carbonate anion. The
commonly used form is:

Uijkl = k2d
2 + k4d

4. (3)

To obtain the accurate values of the lattice dynamic prop-
erties and the elastic and dielectric constants, it is essential
to include ionic polarization along with the short-range
interactions. Polarization is included by using the shell model
[16], which treats each ion in terms of a core connected via a

harmonic spring constant to a massless having charge Y. The
free-ion polarizability α may be written as:

α = Y 2

k
. (4)

Finally, a Morse potential is used to describe the cova-
lent bonding of the C–O interaction in the carbonate group.
Coulombic interactions are excluded within the molecular
carbonate group.

The simulations in this work are performed in tandem with
extending the general utility lattice program (GULP) bulk
simulation code [17]. There have been numerous attempts
to derive a satisfactory force field for the description of
the polymorphs of magnesium carbonate. Of these, arguably
the most accurate in terms of the description of the structure
and physical properties of magnesite has been the potential
of Rohl et al [18] and Austen et al [19] and the potential
parameters are given in table 1. Energy minimizations are
performed at constant pressure, from 0 to 150 GPa, allow-
ing all individual ionic coordinates and lattice parameters to
vary. The search of the local minima adopts the Newton–
Raphson procedure, with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) scheme to update the Hessian.

2.2 Calculation of elastic constants

Under a linear elastic deformation, the mechanical properties
of crystals are described using Hooke’s law:

σ = Cε, (5)

where σ is the stress, ε the strain and C the elastic constant
(matrix). Expressed in its components, it becomes:

σij =
∑
kl

Cijklεkl, (6)

Table 1. Potential terms and parameters of magnesite used in simulations.

Buckingham: Aexp(−r/ρ) − C/r6 A (eV) ρ (Å) C (eV Å6) Cutoff (Å)
Ocore–Ocore 4030.300 0.245 0.000 2.5
Oshell–Oshell 64242.454 0.199 21.843 15.0
Mg–Ocore 1039.590 0.289 0.000 10.0
C–Mg 26164795.400 0.120 0.000 10.0

Morse: D
(
(1 − exp (−a (r − r0)))

2 − 1
)

D(eV) a (Å−1) r0 (Å)
C–Ocore 5.000 2.523 1.198 1 bond
Spring:0.5kcsr

2 kcs (eV Å−2)
Ocore–Oshell 52.740 0.6

Three-body: 0.5kθ (θ − θ0)
2 kθ (eV rad−2) θ (◦)

Ocore–C–Ocore 1.799 120.00 Bonded

Out of plane:k2d
2 + k4d

4 k2 (eV Å−2) k4 (eV Å−4)

C–Ocore–Ocore–Ocore 8.689 360 Bonded

Charges (e)
Mgcore +2.0 No cutoff
Ccore +1.343539
Ocore +1.018487
Oshell –2.133
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where i, j, k, l = 1, 2, 3, 4, σij is an element of the stress ten-
sor, εkl an element of the strain tensor and Cijkl are the elastic
constants. In the above expression, we can use the more com-
pact Voigt notation (11 = 1, 22 = 2, 33 = 3, 32 or 23 = 4, 31
or 13 = 5, 21 or 22 = 6), and the equation then becomes:

σα =
∑

β

cαβεβ. (7)

In Voigt notation, the strain tensor is:

ε̄ =
⎛
⎝

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎠ =

⎛
⎜⎝

ε1
1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

⎞
⎟⎠ . (8)

According to Wallace [20], the internal energy of a crystal
under strain, ε̄ can be Taylor-expanded in powers of the strain
tensor with respect to the initial energy of the unstrained
crystal:

E(V, ε) = E(V0) +
6∑

α:1
σαα +

6∑
αβ:1

cαβεαξαεβξβ + · · · , (9)

where V and V0 are the distorted and fully relaxed unit cell
volumes, respectively. When introducing the Voigt notation,
one has to remember that the elements of the strain tensor, εα

are symmetric. To account for this, in the equation, the factor
ζα is equal to 1 if the Voigt index is 1, 2 or 3, and it is equal to
2 if the Voigt index is 4, 5 or 6. Therefore, the second-order
elastic constants are related to the strain second derivatives
of the total energy:

cαβ = 1

V0

∂2E

∂εα∂εβ

∣∣∣∣
0

. (10)

The first-, third-, and higher-order terms in the equation are
assumed to be zero, and this will be the case for pure linear
elastic strains. Note that these terms may not be exactly zero
in the calculations, but can be made close to zero with extremely
small strains. Therefore, small elastic strains, εα can be applied
to the fully relaxed unit cell lattice, and the elastic constants
can be determined from the resulting change in energy.

3. Results and discussion

3.1 Structural properties

Magnesite has a hexagonal crystal system with rhombohe-
dral symmetry and space group R3c; the primitive cell con-
tains two formula units. The calculations are performed using
the primitive cell. The optimized structural parameters of mag-
nesite are obtained by searching for the stable structure for a
minimum total energy as mentioned in the method of calcu-
lation. The optimized lattice parameters, bond lengths and
bond angles at zero pressure are shown in table 2 and com-
pared with the experimental [4,6,7,21–24] and theoretical
[9,15,25,26] results. The calculated lattice parameters are in
good agreement with the experimental data [4,6,7,21–24],
whereas the LDA results (especially the c constant) are some-
what underestimated and the GGA results are slightly over-
estimated. The calculated equation of state for magnesite
is shown in figure 1, along with the previous experimental
results [7,21,23,24]. The simulated equation of state is con-
sistent with the experimental results. Magnesite compresses
anisotropically, which is typical of all rhombohedral carbon-
ates, with the c axis being three times more compressible
than the a axis. Our calculated compression ratios differ
slightly from those reported by Ross [7], but agree with the
other experimental results [21,23,24]; the axial compress-
ibilities a/a0 and c/c0 show a smooth continuous decrease
with increasing pressure. Examination of these calculations
using the GULP code reveals that there is a reasonably good
agreement between the experimental and simulated structure,
which shows that the present potential parameters can be
used for further investigations at high pressures.

The structure of magnesite can be described as a distorted
NaCl structure [27]. A convenient parameter to describe the
degree of distortion from the NaCl structure is t = 4a/

√
2c,

where a and c are the lattice parameters. In an ideal NaCl
structure, t = 1. The calculated t value of magnesite is 0.881
at zero pressure. Structurally, the parameter a is related to
the Mg2+–Mg2+ distance and c is related to the Mg2+–
CO2+

3 distance. The low t values show that magnesite is less

Table 2. Lattice parameters, bond lengths and bond angles for magnesite.

Parameter Present work GGA LDA Experimental

Lattice parameters

a (Å) 4.647 4.7119 [15], 4.648 [15], 4.635 [4], 4.634 [7], 4.635 [21],
4.720 [25] 4.635 [25] 4.637 [22], 4.628 [23], 4.635 [24]

c(Å) 14.921 15.4076 [15], 14.775 [15], 15.03 [4], 15.178 [7], 15.016 [21],
15.331 [25] 14.693 [25] 15.023 [22], 15.055 [23], 15.024 [24]

V(Å3) 279.054 289.8 [9], 296.2 [15], 276.4 [15], 273.3 [25] 279.2 [6], 279.7 [4], 279.28 [7], 279.32 [21],
295.8 [25], 287.49 [26] 279.503 [22], 279.14 [23], 279.55 [24]

Bond lengths (Å)

C–O bond 1.261 1.298 [25] 1.285 [25], 1.288 [7], 1.283 [22]
Mg–O bond 2.115 2.149 [25] 2.087 [25], 2.101 [7], 2.105 [22]
Three O–Mg–O 88.915, 91.055 88.263, 91.737 89.063, 90.937 88.252, 91.752,
bond angles 180.00 180 [25] 180 [25] 180 [22]
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Figure 1. Pressure dependence of the axial compressibilities
a/a0, c/c0 and the volume compressibility V/V0 of magnesite.
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Figure 2. Pressure dependence of the C–O bond length of
magnesite.

compact along the c axis than along the a axis. This could
partly explain the differences in relative compressibilities
between the two axes.

The calculated bond lengths and angles for magnesite at
zero pressure are summarized in table 2; results from avail-
able experimental [7,22] and theoretical [25] works are shown
for comparison. The calculated Mg–O bond length and the
O–Mg–O bond angles are consistent with the experimental
and theoretical data, while the C–O bond length is slightly
underestimated by 2%. The variation of the calculated C–O
and Mg–O bond lengths with pressure is shown in figures
2 and 3, respectively. Although, the calculated C–O bond
lengths differ slightly from the experimental results of Ross
[7] in figure 2, the C–O bond length is highly incompressible
between 0 and 7 GPa; this effect is also observed in the cal-
culations. Moreover, for the entire pressure range studied,
the calculated results are essentially in parallel with those of
Vočadlo [26], which were simulated using ab initio calcula-
tions based on density functional theory within the GGA. Our
simulated results are 3% lower than those of Vočadlo at the
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Figure 3. Pressure dependence of the Mg–O bond length of
magnesite.

same pressure, but do not agree with the experimental results
of Fiquet et al [6] show that the C–O bond length undergoes
first a slight expansion with increasing pressure and then a
strong compression above the threshold pressure of 60 GPa.
The calculated Mg–O bond lengths (figure 3) are in accor-
dance with the experimental results of Ross [7] and the sim-
ulated results of Vočadlo [26]. All the three studies show that
the Mg–O bond is significantly compressible throughout the
pressure range, while the observed results of Fiquet et al [6]
indicate that the Mg–O bonds cannot compress further above
60 GPa. As shown in figures 2 and 3, the calculated results
do not indicate any obvious discontinuities in the internal
structure through either the compression mechanism or dis-
continuous changes in bond lengths. Over the entire pres-
sure range studied, the compression curves are smooth and
continuous in all the cases. Hence, the present studies show
no evidence of any high-pressure phase transition within the
pressure range of the lower mantle, indicating that magnesite
is stable throughout the lower mantle pressure range.

3.2 Elastic properties

The elastic constants determine the response of the crystal to
external forces, as characterized by the bulk modulus, shear
modulus, Young’s modulus and Poisson’s ratio, and play an
important role in determining the strength of the materials.
The elastic constants provide valuable information about the
bonding characteristics between adjacent atomic planes and
the anisotropic character of the bonding and structural stabil-
ity. The elastic constants of the hexagonal phase magnesite
are calculated by the method described above. A necessary
condition for a crystal to be mechanically stable is that the
elastic energy must be positive, or alternatively, its elastic
stiffness matrix should satisfy the well-known Born stabil-
ity criteria [28]. For hexagonal crystals, the requirement of
mechanical stability leads to the following restrictions on its
elastic constants [20]:

c44 > 0, c11 > |c12| , (c11 + 2c12) c33 > 2c2
13. (11)
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The calculated elastic constants at zero pressure are tabulated
in table 3, where the available experimental results [13,14]
and other theoretical results [15,29] are included. It shows
that magnesite is mechanically stable in its crystal systems.
The calculated elastic constants are in good agreement with
the experimental results [13,14] and the theoretical results
[15]; as LDA tends to overbind the atoms in a crystal, the
LDA results are larger than the GGA results. The single-
crystal elastic properties of mantle minerals at high pressure
are essential for interpreting seismic wave velocities and their
lateral variations. The single-crystal elastic constants of mag-
nesite have not yet been measured in experiments at high
pressure; the present work predicts the high-pressure elas-
tic constants. Figure 4 shows that the predicted elastic con-
stants increase smoothly and monotonically with increasing
pressure.

The effective elastic moduli of polycrystalline aggregates
are usually calculated by two approximations following Voigt
[30] and Reuss [31], in which, uniform strain or stress are
assumed, respectively, throughout the polycrystal. Hill [32]
showed that the Voigt and Reuss averages are limits and sug-
gested that the actual effective moduli can be approximated

Table 3. Elastic constants (GPa) of magnesite at zero pressure.

Present GGA LDA HF
work [15] [15] [29] Exp.

c11 247.7 223.1 263.9
c33 155.1 118.2 144.5 187 156 [13], 159 [14]
c44 50.8 42.7 57.2
c66 77.2 83.5 96.0
c12 93.2 56.0 71.8
c13 77.7 35.9 66.9
c11 + c12 340.9 279.1 335.7 392 334 [13], 361 [14]
B 123.7 81.8 110.8 125 110 [13], 117 [14]
G 61.0 59.6 70.3
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Figure 4. Pressure dependence of the elastic constants of
magnesite.

by the arithmetic mean of the two bounds. Based on the pre-
dicted elastic constants, the calculated bulk modulus B and
shear modulus G of magnesite at zero pressure are given in
table 3. The calculated bulk modulus slightly overestimates
the experimental results and is in excellent agreement with
the theoretical results of Hartree–Fock (HF) [29].

To predict the brittle and ductile behaviour of solids, Pugh
[33] introduced a simple relationship that empirically links
the plastic properties of materials with their elastic moduli.
The shear modulus G represents the resistance to plastic
deformation, while the bulk modulus B represents the resis-
tance to fracture. A high B/G ratio is associated with duc-
tility, whereas a low value corresponds to a brittle nature.
The critical value that separates ductile and brittle materials
is around 1.75; i.e., if B/G > 1.75, the material behaves in a
ductile manner; otherwise, the material behaves in a brittle
manner. In the case of the hexagonal phase magnesite, the
calculated value of B/G is 2.03, classifying this material as
ductile.

Poisson’s ratio σ = (3B − 2G)/(2(3B + G)) is associated
with the volume change during uniaxial deformation. If σ =
0.5, no volume change occurs during elastic deformation.
The calculated Poisson’s ratio of magnesite at zero pressure
is 0.29; the low σ value means that a large volume change is
associated with its deformation. In addition, σ provides more
information about the characteristics of the bonding forces
than any of the other elastic constants [34]. It has been proven
that σ = 0.25 is the lower limit for central-force solids and
0.5 is the upper limit, which corresponds to infinite elastic
anisotropy [35]. The low σ value for magnesite indicates that
the interatomic forces in the compound are non-central.

Knowledge of the elastic coefficients opens a way of eval-
uating the linear compressibilities. The ratio between the lin-
ear compressibility coefficients kc/ka of a hexagonal crystal
can be expressed as kc/ka = (c11 + c12 − 2c13)/(c33 − c13).
When kc/ka > 1, the compressibility for magnesite along the
c axis is larger than the a axis and the reverse is true when
kc/ka < 1. Our calculations show that the kc/ka of magnesite
is 2.39 at zero pressure, which means that the compressibility
along the c axis is much greater than the a axis.

The evolution of elastic anisotropy of deep Earth minerals
with increasing pressure and temperature is of fundamental
importance for the understanding of the seismic anisotropy
of the Earth’s interior. To quantify the anisotropy of the elas-
tic properties of magnesite, different criteria are employed.
To investigate the contribution of the linear bulk modulus to
the elastic anisotropy of magnesite, the bulk modulus along
the crystal axes is calculated, and defined as Bi = idP /di,
i = a, c [36]. The calculated linear bulk modulus along the
two directions a and c is seen in figure 5, where the lin-
ear bulk moduli of the two directions increase with rising
pressure. Bc varies rapidly as the pressure increases and Ba

increases comparatively slow with pressure. This indicates
that the mechanical anisotropy of magnesite increases grad-
ually with rising pressure. Moreover, it is interesting to note
that the directional bulk modulus at high pressure is largest
along the c axis, and smallest along the a axis, indicating
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that the compressibility along the c axis is the smallest, while
along the a axis, it is largest.

The acoustic velocities can be obtained from elastic con-
stants by the Christoffel equation

(
cijklnjnk − Mδil

)
μi = 0;

the acoustic anisotropy can be described as �i = Mi(nx)/

Mi(100). By solving the Christoffel equation for the hexago-
nal magnesite, the anisotropy of the compressional (P) wave
is obtained from �P = c33/c11. The anisotropies of the polar-
ized wave were perpendicular to the basal plane (S1) and
the polarized basal plane (S2) are calculated as �S1 = (c11

+ c33 − 2c13)/(4c44) and �S2 = c44/c66, respectively. The
calculated pressure dependences of the anisotropies P, S1
and S2 for the three types of elastic waves of magnesite are
illustrated in figure 6. While P and S2 increase with pressure,
S1 decreases sharply as the pressure increases (because the
elastic constants c11 and c33 are affected by pressure). The
anisotropy is dependent only on the symmetry of the crystal.
The structure of the crystal changes under applied pressures
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Figure 5. Pressure dependence of the linear bulk moduli of
magnesite.
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because of the variations of c/a at various pressures. There-
fore, the elastic anisotropy is different due to the variations
of the elastic constants with pressure.

The elastic anisotropy of crystals is also important for their
applications. The elastic anisotropy of the low-symmetry
crystal can be described by the percentage anisotropy in the
compressibility (AB) and shear (AG) [37]. For AB and AG,
the values of 0 and 1 represent the elastic isotropy and the
largest anisotropy, respectively. The pressure dependences of
the percentage anisotropy in the compressibility and shear of
magnesite are presented in figure 7. The calculated AB and
AG indicate very little elastic anisotropy. At lower pressures,
AB and AG have a trend of gradual decline with increasing
pressure, then the curves rise when the pressure increases
continually.

The anisotropy of the crystal can also be measured by
the coefficients A− and A+ calculated for each symmetry
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magnesite.
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plane and axis; [ijk] and (ijk) denote the symmetry axis and
plane, respectively. These factors are derived from the elastic
constants by the following simple relationships [38]

A
[100]
− = c44 (c11 + 2c13 + c33)/

(
c11c33 − c2

13

)
, (12)

A
[100],(010)
+ = 2c44/(c11 − c13), (13)

A
[001],(010)
+ = 2c44/(c33 − c13). (14)

The calculated anisotropy factors are shown in figure 8.
A

[100],(010)
+ varies rapidly as pressure increases and A

[100]
−

increases comparatively slow with pressure. However,
A

[001],(010)
+ has an ascending trend at the lower pressure range,

then turns to a slightly descending trend at the higher pres-
sure range. This may indicate an increasing role of the aniso-
tropic properties of magnesite in deep earth conditions,
especially for magnesite with large-scale alignment of crys-
tals caused by long-term laminar flows in the earth’s interior.

4. Conclusions

The structural and elastic properties of magnesite were stud-
ied by atomistic simulation based on transferable empirical
interatomic potentials combined with a novel force field over
the entire pressure range of the mantle. The calculated struc-
tural parameters agree well with experimental and theoretical
results. We found that the CO3 groups are rigid incompress-
ible units, while the Mg–O bond length undergoes significant
compression. The calculation shows no phase transition over
the entire pressure range studied, i.e., magnesite may be
stable throughout the lower mantle. The predicted over-
all high-pressure elastic behaviour shows that the struc-
ture is quite anisotropic and that the anisotropy is strongly
pressure-dependent. These results may have interesting
implications for magnesite buried in the deep mantle in sub-
duction zones and for the global carbon cycle; these may be
revealed in future experimental and theoretical works.
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