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DYNAMICS OF A NONLINEAR DISCRETE
POPULATION MODEL WITH JUMPS

R. J. Higgins, C. M. Kent, V. L. Kocic, Y. Kostrov

Our aim is to investigate the global asymptotic behavior, the existence of
invariant intervals, oscillatory behavior, structure of semicycles, and period-
icity of a nonlinear discrete population model of the form z, ;= F(xn),
for n=0,1,...,where o> 0, and the function F is a positive piecewise
continuous function with two jump discontinuities satisfying some additional
conditions. The motivation for study of this general model was inspired
by the classical Williamson’s discontinuous population model, some recent
results about the dynamics of the discontinuous Beverton-Holt model, and
applications of discontinuous maps to the West Nile epidemic model.

In the first section we introduce the population model which is a focal point
of this paper. We provide background information including a summary
of related results, a comparison between characteristics of continuous and
discontinuous population models (with and without the Allee-type effect),
and a justification of hypotheses introduced in the model. In addition we
review some basic concepts and formulate known results which will be used
later in the paper. The second and third sections are dedicated to the study
of the dynamics and the qualitative analysis of solutions of the model in two
distinct cases. An example, illustrating the obtained results, together with
some computer experiments that provide deeper insight into the dynamics of
the model are presented in the fourth section. Finally, in the last section we
formulate three open problems and provide some concluding remarks.

1. INTRODUCTION

In recent years there has been increased interest in studying the dynamics
of discontinuous maps. The simplest discontinuous map is the one-dimensional
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piecewise linear map

ne + p, if z <0,
(1) x'—>{l/2$+ﬂ+)\, ifz>0,

where vy, v, 1, A € R. Such a simple map possesses complex and rich dynamics.
The summary of basic characteristics of (1) can be found in [12] and [24]. In sev-
eral papers [6, 7, 8, 10, 12, 14, 19, 20, 22, 23, 24] the study of the dynamics
was directed toward a detailed understanding of bifurcations and the structure of
periodic solutions. In continuous systems, the transition from regular to complex
dynamics (such as chaos) occurs through a sequence of bifurcations (for example,
period-doubling). In discontinuous systems, in contrast, more prevalent are non-
standard bifurcations such as a border-collision bifurcation with a sharp transition
from regular dynamics to chaos. Other exotic types of bifurcations such as pe-
riod adding bifurcations, period incriminating bifurcations, and Farey tree type
bifurcations are very common in this equation.

The discontinuous maps found applications in many different areas such as
neural networks [28, 29, 41, 42], flip-flop processes in the Lorenz flow [38, 39],
and economics [4].

The applications of discontinuous systems in mathematical biology are very
scarce. The following population model was originally introduced by WILLIAMSON
[37] (involving the age structure as well), and simplified by MAY and OSTER [30]
(see also [31, 32]):

AN, if N, <K,
(2) N1 = { ! =

AN, ifN,>K,

where 0 < A~ < 1 < A*, K > 0, and N,, > 0 represents population size in
generation n. FELSENSTEIN [18] analyzed some properties of model (2). Kocic [25]
investigated the oscillatory behavior, gave the detailed description of semicycles and
obtained some results about the existence of periodic orbits for the piecewise linear
equation of the form

(3) Tnt1 = (a — bh(zn — c))Tn,

where z¢p > 0 and a, b, and c are positive constants such that 0 < b <1 <a <b+1
and h is the Heaviside function h(t) = 0 for ¢ < 0 and h(t) = 1 for ¢ > 0. The
motivation for studying the dynamics of equation (3) came from the discrete model
of the West Nile-like epidemics (see [25] and references cited therein). Note that
equation (3) becomes Williamson’s population model (2) when A~ = a, AT = a—1b,
and K = c. Recently, in [26], the Beverton-Holt model with two discontinuities,

zn) + (r(zn) — Dy’

(4) $n+1:k( n=20,1,...,

where xg > 0 and r(z) = R+ Sh(z —T), k(x) = K + Lh(z — M), with L, S € R,
K > max{0,—L}, R > max{l,—S+1}, T, M > 0, and h is the Heaviside function,
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was introduced and studied. Depending on the values of parameters the model may
have two equilibria, one equilibrium, or no equilibria. Other discontinuous maps
with two discontinuities, including piecewise linear equations and some nonlinear
equations with quadratic nonlinearities, can be found in [34, 35, 36].

According to CULL [17], the discrete population model (without delay and
not exhibiting the Allee effect) is a difference equation

Tn41 :Qﬁ(l’n), n=0,1,...
where ¢ € C][0,0), [0,00)] and there exists a positive equilibrium Z such that

©(0) =0, ¢(x)>z forze(0,z),
ple)=z forx=27, @) <z forze (T, o)

and if ¢'(z,,) = 0 and xz,, < Z, then
o'(x) >0 forxe0,z), ¢'(z)<0 forz e (z,00)such that p(x) > 0.

The concept of permanence plays a very important role in population dy-
namics. A difference equation x,11 = f(z,), where f : [0,00) — [0, 00), is said to
be permanent (see, for example, [3, 27]) if there exist numbers 0 < C' < D < oo
such that for any initial condition 2y € (0,00) there exists a positive integer N
which depends on initial conditions such that

C<z,<D for n > N.

ANDERSON, HUTSON, and Law [3] considered the role of permanence in popula-
tion dynamics to be superior to that of asymptotic stability: ”The limitations of
asymptotic stability are well-known; the analysis tells us only what happens to the
community dynamics in the immediate neighborhood of the equilibrium under in-
vestigation. An unstable equilibrium would not necessarily imply that one or more
species will be driven to extinction, because all of the species might still coexist
on cyclical and chaotic orbits.” Also they mentioned [3]: ”In this note we consider
another alternative, that of permanence, which we believe to be superior to that of
asymptotic stability and which is relatively tractable.”

Clearly, Williamson’s population model (2) does not satisfty the hypotheses
of the population model according to Cull. In Williamson’s population model, the
function ¢ defined by

(x) = ATz, ifx < K,
PE=N A2, ifz>K,

(0 <A~ <1< At K >0)is discontinuous at z = K and does not have a positive
equilibrium. However, all other hypotheses are satisfied under the assumption
that the discontinuity K replace the equilibrium Z. Also, in [25] the existence
of an invariant interval was established for equation (3) which is equivalent to
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Williamson’s model (2). This implied the existence of permanence in Williamson’s
model. In other words in discontinuous population models, it is natural to have
discontinuities instead of equlibria and permanence instead of asymptotic stability.

In population dynamics, the ”Allee effect” is broadly defined (see [2]) as a
... positive relationship between any component of individual fitness and either
numbers or density of conspecifics.” Practically speaking, the Allee effect causes, at
low population densities, per capita birth rate decline. Under such a scenario, at low
population densities, the population may slide into extinction. There are various
scenarios in which the Allee effect appears in nature (see [16] and references cited
therein) and can be attributed to different reasons. These include, for example,
difficulties in finding mates when the population size is small, higher mortality rate
in juveniles when there are not enough adults to protect them from predation, or
uncontrollable harvesting, as in overfishing. On the other hand, the Allee effect
can be beneficial in some situations such as in controlling a population of fruit flies,
which are considered to be among the worst insect pests in agriculture [16]. The
technique used to control fruit flies is the release of sterile males, which creates the
Allee effect. Several discrete mathematical models exhibiting the Allee effect are
known and have been reported in the literature (see [13] and the references cited
therein). They all have the following common properties:

b

(i) existence of three equilibrium points: 0, T - Allee threshold, and K - carrying
capacity of the environment (0 < T < K);

(ii) equilibria 0 and K are stable, while T is unstable;

(iii) if the population size drops below T', then the population slides into extinction,
so it approaches 0.

Our main goal in this paper is to initiate the study of the dynamics of non-
linear discontinuous population models. We will focus on the model

(5) Tpt1 = Flx,), n=0,1,...,
where xg > 0 and the function F satisfies the following hypotheses:

(Hi)

f(z), ifxel0,a)
(6) F(z)=< g(z), ifx€la,b)
h(z), ifz € [b,00)

such that f € C[[0,a], [0,00)], g € C[[a,b], (0,00)], and h € C[[b, 0), (0, 00)].
(H3) The functions f, g, and h are increasing on their respective domains.
(H3) f(z) <z for x € (0,a], g(z) > z for = € [a,b], and h(z) < z for z € [b, 0).

(Hy) f(0) =0 and nggo h(z)=H > 0.
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This is a generic model, exhibiting some properties of an Allee-type effect.
Namely, the positive equilibria 7" and K in classical models with Allee effect are re-
placed with two discontinuities a and b in equation (5). This is in line with the way
Williamson’s model differs from classical population models. Our model, in particu-
lar the hypothesis (H3) resembles some properties of typical continuous population
model exhibiting Allee effect with two jump discontinuities in lieu of equilibria.
Some variations in hypotheses may lead to discontinuous population models which
may posses additional equilibria, in addition to discontinuities, similarly to discon-
tinuous Beverton-Holt model (4) [26]. Such considerations are outside of the scope
of this paper.

In order to accommodate characteristics of discontinuous models (which may
or may not have equilibria), we introduce a weaker version of the Allee-type effect:

(i) there exists at least one equilibrium point: 0;

(ii") there exists a point T' > 0 such that all solutions with initial conditions in
(0,T) are attracted to O;

(iii") all solutions with initial conditions in [T, c0) become trapped in an interval
[T, S], for some S > T.

In this paper in particular we will study the global asymptotic behavior, exis-
tence of invariant intervals (permanence), oscillation, and periodicity of a nonlinear
discrete population model with jumps (5).

A sequence {z,} is said to oscillate about zero or simply to oscillate if the
terms x,, are neither eventually all positive nor eventually all negative. Otherwise
the sequence is called nonoscillatory. A sequence {z,} is said to oscillate about
7 if the sequence {z,, — T} oscillates. A positive semicycle of {z,} with respect
to Z is a “string” of terms C; = {xj41, Ziy2, ..., Zm} such that z; > Z, for
i=101+1,...,m, with [ > —1 and m < oo and such that either [ = —1 or [ >
0 and z; < Z and either m = oo or m < oo and z,,41 < Z. A negative semicycle
of {x,} with respect to Z consists of a “string” of terms C_ = {z;41, ®j42,
...,x}, such that x; < &, fori = j+1,...,1, with j > —1 and [ < oo and such that
either j = —1 or j > 0 and z; > ¥ and either [ = co or [ < oo and 2;41 > Z. The
first semicycle of a solution starts with the term xy and is positive if g > Z and
negative if g < Z. A solution may have a finite number of semicycles or infinitely
many. The length of a semicycle is the number of terms in the semicycle.

Theorem A (Brouwer Fixed Point Theorem [40]). The continuous operator A :
M — M has at least one fized point when M is a compact, convex, nonempty set
in a finite dimensional normed space over K (K=R or K = C).

The following result is the special case of more general result, popularly known
as "M-m” Theorem (see for example [15] Theorem 1.6.5).

Theorem B. Let f € C ([a,b], [a, b]) be increasing and have the unique equilibrium
Z € [a,b]. Then Z attracts all solutions of the difference equation x,11 = f(zn),
with initial condition zg € [a, b].
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Section 2 is dedicated to the case when h(b) > a. Some of the results from
this section are generalizations of similar results for the discontinuous Beverton-Holt
model (4) studied recently in [26]. In Section 3 we focus on the case when h(b) < a.
An example, illustrating results from Sections 2 and 3, is introduced in Section 4. In
addition to theoretical results that follow from the general results, several computer
simulations indicate very complex and interesting dynamics. Finally, in Section 5
we present some open problems and concluding remarks.

2. THE CASE h(b) > a

In this section we study the existence of equilibria, their attractivity, and
some properties of solutions of equation (5) in the case when

(7) h(b) > a.
The next technical lemma will be useful in the sequel.

Lemma 1. Assume (Hy)— (Hy) are satisfied and xo € [0,a). Then the correspond-
ing solution {x,} is decreasing and converges to 0.

The proof is trivial and it is omitted.

Lemma 2. Assume (Hy)— (Hy) and (7) are satisfied. Then the following inequal-
ities hold: g(h(b)) > h(b) and h(g(b)) < g(b).

Proof. Since h(b) > a and h(b) < b, by using (H3) we obtain g(h(b)) > h(b).
Similarly, since g(b) > b, by using (Hg) we obtain h(g(b)) < g(b).

The next result establishes the existence of an invariant interval for f.
Theorem 3. Assume (Hy) — (Hy) and (7) are satisfied. Let F be defined by (6)
Then the following statements are true:

(i) The interval I = [h(b),g(b)] is invariant under F, that is, F([h(D),g(b)]) C
[1(b), 9(b)]-

(i) If zo € [0,a), then {z,} is decreasing and converges to 0.

(iii) All positive solutions of equation (5) with initial conditions in [a,o0) become
trapped in an interval I.

(iv) All solutions with initial conditions in [a,00) strictly oscillate about b.

(v) No solution with initial condition in [a,00) converges.
Proof. (i) Using Lemma 2, for = € [h(b),b) C [a,b), we obtain
Fz) = g(z) < g(b),
F(z) = g(x) = g(h(b)) > h(b).
Similarly, for z € [b, g(b)] we find
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which implies F'([h(b), g(b)]) C [h(D), g(b)], and the proof of part (i) is complete.
(ii) Let 2o € (0,a). Then x1 = F(xo) = f(z0) < xo, so by induction the sequence
{zy} is decreasing, and since it is bounded, it converges to 0.

(iii) Observe that for € [a,00), F(z) > minge(q,00) F() = min{g(a), h(b)} >
a, so F(Ja,o0)) C [a,00). Assume, for the sake of contradiction, that {z,} is a
positive solution of equation (5) which is not trapped in the invariant interval
I = [h(b), g(b)]. Then, for every n, x, ¢ I. We will first consider the case when
h(b) > a. Let {z} and {z}} be subsequences of {x,} such that a < 2, < h(b)
and x7] > g(b). Clearly, at most one of the subsequences {2’} and {2/} may have
only a finite number of terms or no terms at all. Assume that {2/} has a finite
number of terms. Then, for sufficiently large n, z, < h(b) < b. Furthermore
Tpy1 = F(x,) = g(x,) > a, so the sequence {z,} is eventually increasing and
convergent. Let z = nh_)ngo Zn € |a, h(b)]. Then

= i s = i Fle) = Jim o) = 0
which contradicts (Hz). The similar conclusion follows when {z;} has only a finite
number of terms. So the remaining case is when both {x’;} and {2/} have infinitely
many terms. Let, for some m € N, z,,, < h(b) < b and 41 > ¢(b). Then

9(b) < xmy1 = F(zm) = g(zm) < g(b)-

This is a contradiction. Finally, in the case when h(b) = a, all terms of the sequence
{zn} satisfy x, > g(b), which is identical to the case (addressed above) when the
subsequence {z//} has infinitely many terms and the {z}} has no terms. That
completes the proof of part (iii).

(iv) Assume, for the sake of contradiction that there exists a nonoscillatory (about
b) solution {z,} of equation (5)). We will consider the case when z,, € [h(b),b) for
all n > Ny and for some positive integer Ny. The case when z,, € [b, g(b)] for all
n > N; for some positive integer N; is similar and it is omitted. Since x,, € [h(D),b)
then

Tny1 = F(mn) = g<xn) > Tnp;

so the sequence {z,} is eventually increasing and therefore convergent. Let & =
lim z, € [h(b),b]. Then
n—oo

w= lim zp41 = lim F(z,) = lin g(zn) = g(z),

which contradicts (Hzs).

(v) Assume, for the sake of contradiction, that the solution of equation (5) {z,}
converges to a limit x. Since all solutions of equation (5), other than those in the
interval [0, a), become trapped in an invariant interval I = [h(b), g(b)], without
loss of generality we may assume z,, € I. Since {z,} is oscillatory, let {z,, } be a
subsequence of {x,} consisting of the last terms in every negative semicycle. Then
{Zp,+1} is the subsequence of first terms in positive semicycles and kl;r& Ty, = <

b.
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On the other hand

x = lim x,, 41 = lim F(z,, )= lim g(z,,) = g(z),
k—o00 k—o0 k—o0

which is a contradiction because g(x) > x for = € [a, b]. The proof is complete. O

Next, we will define sequences {a,, } and {f3,,} which will be used in the study
of oscillations and semicycles of solutions of equation (5).

Lemma 4. Assume (Hy) — (Hy) and (7) are satisfied. Let {a,} and {B,} be
defined by

(8) an =g"(h(b)) and B =h"(g(b)), n=01,...

Then the following statements are true:
(i) There exists a nonnegative integer j such that

(9) ap <ap <...<a; <b< i
(ii) There exists a nonnegative integer m such that

(10) Bo>P1>...> Bm 20> Bt

Proof. We only prove part (i). The proof of part (ii) is similar and will be omitted.
Since ag = h(b) € [a,b) we find a; = g(ag) > ag. Furthermore, we have

a1 = g(a;) > oy, provided a; < b.

There are two possibilities. First, o; < b for all ¢ = 0,1,.... Then the sequence
{ay, } is increasing and bounded from above by b, so it converges. Let @ = lim .
n—oo

Then « € [h(b),b] and o = g(). This is a contradiction because the function g has
no fixed points in [h(b),]. So it remains that there exists a nonnegative integer j
such that (9) holds. This completes the proof of the lemma.

Theorem 5. Assume (Hy) — (Hy) and (7) are satisfied. Let {x,} be a positive
solution of equation (5) with initial conditions in [a,00). Then the following state-
ments are true:

(i) If g(h(b)) > b, then every negative semicycle relative to b, except perhaps the
first one, has exactly one term.

(ii) If h(g(b)) < b, then every positive semicycle relative to b, except perhaps the
first one, has exactly one term.

(iii) If
(11) h(g(b)) < b < g(h(b)),

then every semicycle relative to b, except perhaps the first one, has exactly one term.
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Proof. (i) Let z; be the last term in a positive semicycle such that x; € [b, h=1(b)).
Then z;41 = F(z;) = h(z;) > h(b) and xj41 = h(z;) < h(h7'(b)) = b, so
zjt+1 € [h(b),b) C [a,b) belongs to a negative semicycle. Furthermore, ;4o =
F(zji1) = g(xjp1) = g(h(b)) = b and zj12 = g(zj41) < g(b), so zj42 € [b,g(b)]
and it belongs to a positive semicycle. It remains to show that the last term of any
positive semicycle always belongs to the interval [b, h=!(b)). Assume for the sake of
contradiction that zy > h=1(b) > b is the last term of a positive semicycle. Then
Tpy1 = F(x) = h(zg) > h(h=1(b)) = b also belongs to the positive semicycle.
This is a contradiction because xj is the last term of the positive semicycle.
(ii) The proof is similar and it is omitted.
(iii) It follows directly from (i) and (ii). O
The next two lemmas establish some properties and the character of semicy-
cles of oscillatory solutions of equation (5).

Lemma 6. Assume (Hy) — (Hy) and (7) are satisfied and let

(12) g’ (h(b)) < b < g"TH(h(b)), for some positive integer j.
Furthermore, let {pl}fié and {qz}fié be finite sequences defined by
(13) pi=g' (b)), a=g7T(b), i=01,....5+1
and let

(14) P, =1pi,q), i=0,....5+1, and Q;=]|g,pit1), 1=0,...,7.
Then the following statements are true:

(i) po = h(b),q; = b,qj+1 = g(b), and the invariant interval for equation (5) is
I'=[po, gj+1]-

(i) pit1 = g(pi) and qip1 = g(@i), fori=0,1,...,j.

(iil) p; < ¢ < piy1 < Giy1, fori=0,1,...,7.

(iv) PNQ;=0,i 3, and (UZg ) U (U, Qi) U{gj1} = 1.

Proof. Parts (i) and (ii) follow directly from (13).

(iii) Since the function g is increasing, g7 * is also increasing. The statement

g'(h(b)) = pi < a; = g7*(b)
is equivalent to
g (h(b)) = g7 (g" (h(b) = ¢ '(pi) < ¢ H(ai) = ¢ (g TIT(b) = b
which is true because of (12). Similarly, the inequality
g7 (b) = ¢ < piv1 =g (h(b))
is equivalent to
b=g¢" " (g7T(b) = ¢’ (a:) < ¢ (pir1) = ¢ (g (R(D))) = ¢ (R(D))

which also follows from (12). Finally, (iv) follows from (i)-(iii) and (14).



254 R. J. Higgins, C. M. Kent, V. L. Kocic, Y. Kostrov

Lemma 7. Assume (Hy) — (Hy), (7), and (12) are satisfied and let the sequences
{pz}fié and {ql}fié and intervals P;, Q; be defined by (13) and (14), respectively.
Let {z,} be a solution of equation (5) with initial condition in [a,c0). Then the
following statements are true:

(i) If x,, € Py, then 21 € Piyq, 1=0,1,...,7.

(ii) If xp € Qy, then xpy1 € Qiv1, 1=0,1,...,5—1.
(iii) If x, € Pji1, then xpq1 € [po, h(g(b))).

(1) If 2 € Qs then @a11 € [po, h(g(b))).

(v) If x,, € Py, then

LL’nJﬂ‘EPZ‘C[h(b),b), 1 =0,1,...,7,
Tn+j+1 € Pjy1 C [b,g(b)),
Tntj+2 € [Po, h(g(b)))-

(vi) If x,, € Qo, then

xn+ZEQ'LC[h(b)7b) i:O71u"'7j_17

Tn4j € Qj C [bvg(b))v
Tnij1 € [po, h(g(h))).

(vil) If xy, = gj41, then x,11 = h(g(b)).
Proof. (i) Since a < p; < x,, < g; < b, where, from Lemma 6,
a < h(b)=po<pi=g'(h(d) <b for i=0,1,...,7,
and where
a<pi<q=g "0 <gITB)<b for i=0,1,...,5—1,

then

pit1 = 9(pi) < Tpt1 = g(zn) < 9(¢) = Git1-
(ii) The proof is similar to (i) and will be omitted.
(iii) Since z,, > pjy1 = ¢? T (h(b)) > b, then

Tny1 = F(xn) = h(x,) > h(b) = po.
Furthermore z,, < ¢;4+1 = g(b) implies
Tns1 = Plan) = hiza) < h(g(b)).
(iv) Clearly, x, > g; = b implies

Tny1 = F(xn) = h(xy) > h(b) = po.
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Next from g7 (h(b)) < b it follows that
o < pj1 =g (A(b)) = (g’ (h(D))) < g(b),

and similarly as in (iii) we obtain x,4+1 < h(g(b)).

(v) From (i) it follows that x,, € Py implies €,,11 € P, Tnt2 € Po, ..., Tnyj € Pj,
and Z,4j41 € Pji1. Furthermore, from (iii) we get 2,412 € [po,h(g(b))). The
proof of (vi) is similar to (v) and is omitted. The proof of (vii) is trivial. O

The following two lemmas are analogs to lemmas 6 and 7 so we formulate
them without proof.

Lemma 8. Assume (Hy) — (Hy) and (7) are satisfied and let

(15) R (g(b)) < b < h™(g(b)), for some positive integer m.
Furthermore, let {r;}74" and {s;}"5" be finite sequences defined by

(16) ri=h="b), s =h(g(h), i=0,1,...,m+1,

and let Ry = [r;,s;), 1 =0,...,m+1, and S; = [s;11,7;), 7=0,...,m.

Then the following statements are true:

(i) rmg1 = h(b), 7m =10, so=g(b), so the invariant interval for equation (5) is
I = [Tm+1,50].

(ii) rigy1 = h(r;) and sip1 = h(s;), fori=0,1,...,m.

(iil) rip1 < 8441 <15 < 84, fori=0,1,...,m.

(iv) RinS;=0,i#j and (U5 Ri) U (U Si) U{so} = 1.

Lemma 9. Assume (Hy)—(Hy) and (7) are satisfied and let the sequences {r;}7h!

and {s;}"51 be defined by (16). Let {x,} be a solution of equation (5) with initial
condition in [a,00). Then the following statements are true:

(i) If z,, € R;, then 41 € Riy1, 1=0,1,...,m.
(ii) If x,, € Sy, then 41 € Sivq, 1=0,1,...,m—1.
(iil) If v € Rpm+1, then xo41 € [g(R(D)), so).
(iv) If p, € Sp, then xp41 € [g(R(D)), so).
(v) If x,, € Ry, then
Tnyi € Ry C[byg(b)), i=0,1,...,m,
Tpymi1 € Ryy1 C [R(D), ),
Tntm+2 € [9(h(D)), s0)-
(vi) If z, € So, then
Tpyi €Si Clbygd), i=0,1,...,m—1,
Tntm € Sm C [R(b),)),
Tnimen € [9(h(0)), 50)
(vii) If z,, = so, then x,+1 = h(g(b)).
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The following theorem follows directly from lemmas 7 and 9. It provides the
detailed description of the structure of semicycles of equation (5).

Theorem 10. Assume (Hy)— (Hy) and (7) are satisfied and let {z,} be a solution
of equation (5) with initial condition in [a,00). Then the following statements are
true:

(i) If (12) holds, then every negative semicycle, except perhaps the first one, has
length at most j + 1.

(ii) If (15) holds, then every positive semicycle, except perhaps the first one, has
length at most m + 1.

The following theorem establishes some sufficient conditions for the existence
of periodic orbits of equation (5).

Theorem 11. Assume (Hy) — (Hy) and (7) are satisfied. Then the following
statements are true:

(i) If ¢/ (h(b)) = b, then the solution {x,} of equation (5) with initial condition
xo = b is periodic with period j + 1.
(ii) If h™(g(b)) = b, then the solution {x,} of equation (5) with initial condition
xo = b is periodic with period m + 1.

Proof. (i) Clearly, if g = b, then

1 F((E()) = F(b) = h(b) < b,
zo = F(z1) = g(h(b)) <D,...,
zjy1 = F(z;) = ¢ (h(b)) = b= 20
and the proof is complete. The proof of (ii) is similar and it is omitted. O

The next theorem gives sufficient conditions for the existence and attractivity
of period-2 solutions of equation (5).

Theorem 12. Assume (Hy) — (Hy) and (7) are satisfied. Let {x,} be a positive
solution of equation (5) with initial conditions in [a,00). Then the following state-
ments are true:

(i) If (11) is satisfied, then the equation (5) has at least two period-2 solutions
{z,h(z),Z,h(T),...} and {h(Z),Z, h(Z),Z,...}, where T is a fized point of the func-
tion k(x) = g(h(x)) in the interval [b, g(b)].
(i) If T is the unique fized point of the function k in the interval [b, g(b)], then the
following statements are true:

(a) the period-2 solution {Z,h(Z),Z,h(Z),...} attracts all solutions with initial
conditions in [b, g(b)];

(b) the period-2 solution {h(Z),Z,h(Z),Z,...} attracts all solutions with initial
conditions in [h(b),b);

(c) if h(b) > a then all solutions with initial conditions in [a, h(b))U(g(b), 00) are
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attracted to either {Z, h(Z),Z, h(Z),...} or {h(Z),T,h(T),T,...} period-2 solutions;
(d) if h(b) = a then all solutions with initial conditions in (g(b), 00) are attracted
to either {z, h(Z), T, h(Z),...} or {h(Z),Z,h(Z),T,...} period-2 solutions;
(e) all solutions of equation (5) with initial conditions in [a,c0) are attracted to
either {Z, h(Z),Z, h(T),...} or {h(Z),Z, h(Z),Z,...} period-2 solutions.

Proof. (i) First, we will show that the function k, defined by k(z) = g(h(z)) maps
the interval [b, g(b)] into itself. Since both g and h are increasing, by using (11), we
find

h([b, g(b)]) = [n(b), h(g(D))] C [A(D), 0]

and

k([b, 9(0)]) = g(h([b, 9(0)])) < g([1(b), b]) = [g(h(D)), 9(b)] C [b, g(b)].

Since g and h are continuous on intervals [h(b),b] C [a,b] and [b,g(b)] C [b,o0),
respectively, the composite function k is also continuous on [b, g(b)]. Then, according
to Brouwer’s Fixed Point Theorem, the function k has at least one fixed point Z in

[b, g(b)].
(ii) (a) Let g € [b, g(b)]. Consider the subsequence {x2;} of even numbered terms
of the corresponding solution {z,}. Clearly

T2i42 = F($2i+1) = F(F(J?Ql)) = g(h(xgl)) = k(in), = 0, 1, e

Since the function k maps [b,g(b)] into itself, it is increasing, and it is assumed
that & has the unique fixed point Z in [b, g(b)], by applying Theorem B, we obtain
that Z is the attractor of all subsequences {z2;} of solutions {z,} of equation (5)
with initial conditions in [b, g(b)]. To complete the proof we have to show that
h(Z) attracts all subsequences {x2;11} of odd-numbered terms of the solution {z,}
of equation (5). Since h is a continuous function on [b, g(b)], and z2;41 = h(z2;),
1=20,1,..., we obtain

hm T2i4+1 = hm h(.%gz) = h(ii’),
i—00 i—00

which completes the proof of part (ii)(a).
(ii)(b) The proof is similar to the proof of part (ii)(a) and it is omitted.

(ii)(c) Let a9 € [a,h(b)) U (g(b),c0) C [a,00). From Theorem 3(iv), It follows
that the corresponding solution {z,} will be eventually trapped in an invariant
interval I = [h(b),g(b)]. Let i be the smallest positive integer such that z;_; €
[a, (D)) U (g(b),00), and x; € I = [h(D),g(b)]. Then z,, € I = [h(b), g(b)], for n =
i,i+1,.... Also, z; belongs to either [h(b),b) or [b, g(b)]. Therefore, if x; € [b, g(b)]
the corresponding solution {z,} will be attracted to {Z, h(Z),Z, h(Z),...}, or if
x; € [h(b),b), the solution is attracted to {h(Z),Z, h(Z),Z,...}.

(ii)(d) The proof is similar to the case (ii)(c) and it is omitted.
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(ii)(e) It follows directly from parts (ii)(a)-(d) and the fact that
[a,00) = [a, h(b)) U [h(D),b) U[b,g(b)) U[g(b),00), when h(b) >a
[a,00) = [a,b) U[b,g(b)) U[g(b),o0), when h(b) =a

which completes the proof of the theorem.

3. THE CASE h(b) < a

In this section we will examine the behavior of solutions of equation (5) in
the case when

(17) h(b) < a.

Lemma 13. Assume (H1)— (Hy) and (17) are satisfied. Then the following state-
ments are true:

(i) If 2o € [b,00), then there exists a positive integer k such that
To>T1>...>Tp_1>b>wp.

(ii) If xo € [a,b), then there exists a positive integer m such that
Lo <21 < .. < Type1 < b < x4,y.

Proof. We only prove part (i). The proof of (ii) is similar and is omitted. First
of all, if g = b, then by (17) 1 = h(zo) = h(b) < a < b, and we are done. So,
suppose that zg € (b,00). Assume for the sake of contradiction z) € (b,0), for
every nonnegative integer k. Then ) € (b,00), implies which x4 = F(x) =
h(zk) < xg, so the sequence {z, } is decreasing and bounded from below by b. Thus
{zn} converges to a limit « € [b, o). Since

Tpi1 = F(x,) = h(xy,)

by letting n — oo we obtain = h(z) < z, which contradicts (Hs), and the proof
is complete. O

The following lemma provides sufficient conditions when 0 is the global at-
tractor of all solutions.

Lemma 14. Assume (Hy) — (Hy) and (17) are satisfied and let H < a. Then all
solutions of equation (5) converge to 0.

Proof. If zy € [0,a), then from Lemma 1 it follows that the corresponding solution
{zn} converges to 0. If zy € [b,0), then 1 = F(xz9) = h(xg) < H < a and so
x1 € (0,a) and the corresponding solution converges to 0. Finally, if zy € [a, b), from
Lemma 13(ii), it follows that there exists a positive integer k such that zy € [b, 00);
50 zx41 € (0,a), and {x,} converges to 0. O
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The following technical lemma follows directly from the fact that the function
h is increasing and has an inverse A~ and Lemma 1. The proof is trivial and also
is omitted.

Lemma 15. Assume (Hy) — (Hy) and (17) are satisfied and let a < H < b. Then
the following statements are true:

(i) If zo € [b,h71(a)), then z; € [h(b),a) and the corresponding solution {x,}
converges to 0.

(ii) If zo € [h™*(a),00), then 1 € [a, H) C [a,b).

The next technical lemma will be useful in the sequel.

Lemma 16. Assume (Hy) — (Hy), (17), and
(18) H>b

are satisfied. Then the following statements are true:
(i) The function h=1, an inverse to h, is defined on the interval [h(b), H), and it is
increasing and satisfies h='(z) > x, for x € [h(b), H).

(ii) There ezists a positive integer k such that
a<hYa)<h2a)<...<h Y a) <H < h )

and 4 , '
h_”l(b) <h7*a)<h7Hb), i=1,...,k.

Proof. The proof of part (i) is trivial and it is omitted. To prove part (ii) assume for
the sake of contradiction h=*(a) < H, for every positive integer k. Since a < h~!(a),
it follows that

h7k+1 (a) < h7k+1 (hfl (a)) — hik(a)

and the sequence {h~"(a)} is increasing and bounded from above by H. Therefore
it converges to a limit @ < H. Since h=""1(a) = h(h~"(a)) by letting n — oo, we
obtain h(a) = @ < a, which is contradiction. The remaining part follows directly
from h(b) < a < b. O

Next, to understand the behavior of solutions of equation (5) with initial
conditions in [b, 00), we will introduce the following intervals, provided that their
endpoints are defined. Let

(19) I =[h"D),h " (a)), and JI=[h""(a),h 1)), i=0,1,....

The following lemma summarizes some properties of intervals Iih and JP.

Lemma 17. Assume (Hy) — (Hy), (17), and (18) are satisfied and let intervals
I and J! be given by (19) provided they are well defined. Then the following
statements are true:

(i) 17, J) C [byo0), IF NI =0 and JP O I} =0, fori,j=0,1,... and i # j.

(2 (2
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(ii) I} NJP =0 fori,j=0,1,....
(iii) There exists a positive integer k such that either H € I}, or H € J!'_,.
(iv) For k from part (iii)
F(IMN=1I',, FUJMH=J",, i=1..k-1,
F(I(})L) = F([o, h_l(a)) = [h(b),a) C [0,a),
F(Jg) = F([h™"(a), A" (b)) = [a,0).
(v) If H € I}'_,, for some positive integer k, then F([h=F(b), 00)) = [h~kT1(b), H) C
.
(vi) If H € J}_,, for some positive integer k, then F([h=F(a),00)) = [h**1(a), H) C
T

(vii) For k from part (iii)

k—1 k—1
U@rual clboo) and F(h7'(b),0)) C | UTp).
i=0 =0

Proof. The proof of parts (i) and (ii) follows directly from the definition of intervals
I and J! and the fact that h~! is an increasing function. Part (iii) follows directly
from Lemma 16 (ii). The proof of part (iv) follows from the definition of intervals
Il and J!* and the facts that I, J* C [b,00) and F(x) = h(z), for z € [b,o0). Next,

1%

for part (v), since H € I |, then h=*T1(b) < H < h™*(a), and so
F([p"(b),00)) = [h="1(0), H) € [p741(0), A7 (@) € Iy

The proof of part (vi) is similar to the proof of part (v) and it is omitted. Finally,
part (vii) follows from the definition of intervals I and J! and parts (i) and (iv) -
(vi). This completes the proof of the lemma.

The next theorem describes the behavior of solutions with their initial condi-
tion in [b, 00). The proof follows directly from the previous lemma and it is omitted.

Theorem 18. Assume (Hi) — (Hy), (17), and (18) are satisfied and let intervals
Il and J! be given by (19). For the initial condition o € [b,o0) the following
statements are true:

(i) Let H € I}' | for some positive integer k. Then
(a) if mo € [h7F(b), 00), then

h h h
x1 €l _j,x0€ ) o, .. .,xp €15 and xRt € [A(D),a),

and the corresponding solution {x,} converges to 0;
(b) if o € I, where m < k, then

zp eIl yapelh o x, €Il and x,, € [h(b),a),
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and the corresponding solution {x,} converges to 0;
() if zo € JM_,, where m < k, then

v €JN s apeJl oz 1 €JY and x,, € [a,D).

(ii) Let H € J}_, for some positive integer k. Then
(a) if mo € [h"*"(a), 00), then

T1 € J]?_l,SCQ € J,?_l, e, Tk € J(’} and iy € [a,b);

(b) if mg € J_|, where m < k, then

h h h .

1€ Jy 9,22 €y gy Tmo1 €Jy  and Ty, € [a,b);
(c) if mg € I, where m < k, then

I I If and h(b
T1 €dyy 9,22 €4y 35-- 3 Tm—1 €Ly an Ty € [h(D),a),
and the corresponding solution {x,} converges to 0.

Next we will focus on the case when initial conditions are in the interval [a, b).

Theorem 19. Assume (Hy)— (Hy) and (17) are satisfied and let xq € [a,b). Then
there exists a positive integer k such that

a<xzg<x1<...<TR_1 <b< .

Furthermore, either there exists a positive integer £ such that xy4e € [R(D),a) or
there exists a positive integer m such that Ti4m € [a,b).

Proof. Assume for the sake of contradiction zj € [a,b) for every nonnegative
integer k. Then zj, € [a,b) implies xxy1 = F(x) = g(zr) > zk, so the sequence
{zn} is increasing and bounded from above by b, and therefore converges to a limit
x € [a,b]. Since xp41 = F(z,) = g(x,), by letting n — oo, we obtain x = g(x) > =z,
which is a contradiction. The remaining part follows directly from Theorem 18,
which completes the proof.

4. EXAMPLE

In this section we present an example which illustrates the previous results.
Consider the difference equation

(20) Tp1 = F(x,), n=0,1,...,

where xg > 0 and the function F' is defined by
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x2/2, if x €[0,1)
(21) F(z) =< 22z, if x € [1,2)

ar/(1+2x), ifze€l2,00)

with @ > 0. So in our case we have

(22) f(x) = %x27 g(x) = 2v2z, h(z) = %, a=1,b=2, H= lim h(z) = o,

Tr—r00

and hypotheses (Hy) - (Hy) are satisfied provided a < 3. Condition (7) becomes
(23) a>3/2.
In this example we have

) = (20 = and g((9) = 22000 - oo,

Therefore condition (11) becomes 3/4 < a < 5/2. The following corollaries sum-
marize the properties of solutions of equation (20)-(21). They follow from Lemmas
1, 14, and 15 and Theorems 3, 5, 10, 11, 12, and 19.

Corollary 20. Consider equation (20), with F is defined by (21), and assume
(24) 3/2 <a<3.

Then the following statements are true:
(i) If o € (0,1), then the corresponding solution decreases and converges to 0.

(ii) Equation (20) with (21) has the invariant interval I = [2a/3,4] and all solutions
with initial conditions in [1,00) become trapped in the invariant interval I.

(iil) All solutions with initial conditions in [1,00) strictly oscillate about 2 and no
solution converges.

(iv) If
(25) 3/2<a<b/2,

then every semicycle, except perhaps the first one, of the solution with initial con-
dition in [1,00), has length 1. Furthermore, there exist two period-2 cycles,

! P ” "o
Cy={a", 2", 2" 2",.. .} and Cy ={a", 2", 2" 2", .. .}

-1+ 1+ 32« el
2

where ' = 2,00) and 2" = a — % €1[1,2).

(v) Every solution of the given equation with initial conditions in [1,00) is attracted
to either CY or Cy .

(vi) If « = 5/2, then there are two attractive period-2 cycles

Cy=1{4,2,4,2,...} and C; = {2,4,2,4,...}.
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The following table provides the intervals for parameter o and the corre-
sponding maximum length of semicycles. These numerical values of endpoints of
all intervals, except the first one, are obtained by numerically solving the equations

h"(g(2)) =2, where m=1,2,...,

for «o. The first interval follows from condition (25).

n Tn Semicycle
10 | 1.6838956235 -
Interval for a; Max length of 11 | 3.6703085685 +
[equivalent to semicycles 12 | 1.9804210915 —
condition (15)] Negat. | Posit. 13 | 3.9803729388 +
(1.5,2.5) 1 1 14 | 2.0140137956 +
(2.5,2.87083) 1 2 15 | 1.6839056186 —

(2.87083,2.96071) 1 3 16 | 3.6703194614

(2.96071,2.98736) 1 4 17 | 1.9804223499 —
(2.98736, 2.99585) 1 5 18 | 3.9803742035 +
(2.99585, 2.99862) 1 6 19 | 2.0140139240 +
(2.99862,2.99954) 1 7 20 | 1.6839056542 —
(2.99954, 2.99985) 1 8 21 | 3.6703195002 +
(2.99985, 2.99995) 1 9 22 | 1.9804223544 —
(2.99995, 2.99998) 1 10 23 | 3.9803742080 +
(2.99998, 2.99999) 1 11 24 | 2.0140139245 +

Table 1. Lengths of semicycles in terms of « Table 2. Time series for oo = 2.52

The next result describes the behavior of solutions when « < 3/2.

Corollary 21. Consider equation (20), with F' defined by (21), and assume
(26) o < 3/2.

Then the following statements are true:
(i) If a < 1, then all solutions of the given equation converge to 0.
(ii) Let 1 < a < 3/2. If xp € [2,1/(a—1)), then z1 € [2a/3, 1) and the corresponding
solution converges to 0. If xg € [1/(av — 1), 00), then 1 € [1,a) C [1,2).
(iil) If zo € [1,2), then there exists a positive integer k such that

1<zg<z1<...<7h1 <2< 180

Furthermore, either there exists a positive integer £ such that xr1¢ € [20/3,1) or
there exists a positive integer m such that xgy., € [1,2).

Time series of the solution {z,}, for different values of o are shown on Fig-
ure 1. Note that for a = 1.25 the corresponding solution converges to 0. Also, for
o = 2.52 positive semicycles have length either 1 or 2 while for a = 2.75, posi-
tive semicycles have length 2. Both values of a belong to the interval where the
maximum length of positive semicycles is 2.
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In all cases, except for @ = 1.25, the terms where we have “peaks” are the
greatest terms in positive semicycles. All terms between two “peaks” belong to
the corresponding positive semicycle, except the last one (the one which precedes
the next “peak”) which belongs to the negative semicycle. In some cases, as,

a=1.25 a=24 a = 2.52

a=2.75 a=29 a = 2.975

R U S [T U G S S S .
( } (
. . 4
a=2.99 a = 2.996 a = 2.999

| |
' [ I I
rI el \\a...] L\*»....IJ ‘\ [
J / J
4 4 4

a = 2.9997 a = 2.9999 a = 2.99997

Figure 1. Time series of {z,} for n =0,1,...,30, and different values of parameter «;
initial condition xg = 1.1.

for example, when o = 2.52, the graph could be slightly misleading due to the fact
that some terms in positive and negative semicycles are very close to 2 in value.
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Table 2 contains values of terms from consecutive few semicycles which additionally
clarifies the observations and is in accordance to the theoretical result that positive
semicycles have length 1 or 2, while negative semicycles have length 1.

The bifurcation diagram for « € (0,3) is given in Figure 2. According to
Corollaries 20 and 21 the attractive period-2 cycle exists for a € (1.5,2.5], while
for a € (0, 1], all positive solutions converge to 0. However, for a € (1,1.5], there
is no conclusion about the asymptotic behavior of solutions. From the bifurcation
diagram one can observe that there exists a value ., € (1,1.5] where the behavior
of the solution changes from convergence to 0 to convergence to period-2 cycle.

Experimentally we found a critical value for « to be ay, =~ 1.3535533906.

Also, from the bifurcation diagram we observe that for a > 2.5 and close to
2.5 there exists an attractive period-5 cycle and when « increases, an attractive
period-3 cycle appears.

Actually, for a@ > 2.5 the situation is more complex. Namely, for o = 2.544,
an attractive period-3 exists and when « decreases to 2.5, the equation undergoes
series of bifurcations where attractive periodic cycles of the periods 5, 7, 9, 11,
and so on appear. As « approaches the value 2.5 from the right, periods of the
attractive cycles increases. Finally, when « crosses the value 2.5, the attractive
period-2 cycle appears. Figure 3 illustrates the sequence of bifurcations showing
the time series for attractive periodic cycles.

Figure 2. Bifurcation diagram of equation (20) with (21) for « € (0, 3). Values x,, for
500 < n < 1000, are ploted for 500 values of a.
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o = 2.4999999 a = 2.500001 o = 2.50001

a = 2.501 a = 2.505 a=2.544

Figure 3. Time series for {z,}, 200 < n < 250 of {z,} indicate the presence of
attractive periodic cycles for different values of «

Attractive period-3 cycles exist for o € (2.544,2.878286) where the interval
is experimentally determined. When « decreases to 2.878286 again a series of
bifurcations takes place where attractive periodic cycles of periods 4, 7, 10, 13, 16
and so on appear. Figure 4 illustrates the described behavior.

o = 2.8708286 o = 2.8708287 o = 2.87082878
SIRTERIERIEREE SEREEREEEEEE
NN EEERNEEERERE
UV AL U L
NN RRRVARRYARTE NRVAYRY AYRYRVAYATANE

o = 2.8709 o =2.872 o= 2875

Figure 4. Time series for {z,}, 200 < n < 250 of {z,} indicate the presence of
attractive periodic cycles for different values of «
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5. CONCLUDING REMARKS

In the case when condition (7) holds equation (5) with (6) exhibits the char-
acteristics of the Modified Allee Effect. Namely, if the initial conditions are from
(0,a), according to Lemma 1, all solutions decrease to 0. Also, from Theorem 3,
it follows that all solutions with initial conditions from [a, o0), become eventually
trapped in the invariant interval I. However, in the case when condition (17) holds,
the situation is more complex. Again, when initial conditions are in (0, a), the equi-
librium 0 attracts corresponding solutions. But with initial conditions in [a, o),
the situation is not clear. It is possible that some solutions are attracted to 0, while
others remain in the interval [a, c0). Lemmas 14, 15, and 16 and Theorems 18 and
19 are good illustrations of the complexity of the dynamics in this case. This leads
us to the first open problem that requires attention.

Open Problem 1. Consider equation
Tpi1 = F(xn), n=01,...,

where z¢g > 0, F satisfies hypotheses (Hy) — (Ha4), and assume that condition
h(b) < a holds.

(i) Find an invariant interval, if such exists, which is contained in the interval
[a, c0).

(ii) Obtain the detailed description of the basin of attraction of the equilibrium 0.

In the case when (7) and (11) are satisfied, according to Theorem 5 (iii) all
solutions with initial conditions in [a,00) are oscillatory with semicycles (positive
and negative) of length 1. Also, in Theorem 12, under the same conditions, the
existence of attractive period-2 cycles was established. Furthermore, Theorem 10
provides the upper bounds for the length of negative and positive semicycles when
conditions (12) and (15) are satisfied, respectively. It is natural to explore further
the connections between length of semicycles and the existence of periodic attractive
solutions of higher periods. In the example, computer experiments indicated that
there is a relationship between the length of semicycles and attractive periodic
orbits. So we formulate the following open problem.

Open Problem 2. Consider equation
xn—i-l:F(-Tn), n=0,1,...,

where g > 0, F satisfies hypotheses (Hy) — (Hy), and assume that condition
h(b) > a holds.

(i) Obtain the conditions for existence and attractivity of periodic solutions of pe-
riods greater than 2.

(ii) Analyze the existence and the structure of periodic orbits of equation (5) with
(6).

Finally, for the example introduced in Section 4, there are several interesting
questions to be addressed.
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Open Problem 3. Consider equation

x2 /2, if z, €10,1)
Tpyl = 24/2x,, if , €[1,2)
oy /(1 +zy), ifz, €[2,00)

where zg > 0 and a > 0.

(i) Find the exact value for .. and show that for a < ag all positive solutions

are

attracted to 0 and for a > a¢- all positive solutions with initial conditions in

[1,00) are trapped in an invariant interval I = [2a/3,4].

(i)

Study bifurcations of the given equation.

(iii) Ezamine the existence, characteristics, and attractivity of periodic cycles.
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