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Abstract. Using an integral representation on infinite domains with a qua-
siconformal boundary the generalized Faber series for the functions in the
Bergman space A2(G) are defined and their approximative properties are in-
vestigated.

1. Introduction and New Results

Let G be a simple connected domain in the complex plane C and let ω be a
weight function given on G. For functions f analytic in G we set

A2(G,ω) :=



f :

∫∫

G

|f(z)|2 ω(z)dσz <∞


 ,

where dσz denotes the Lebesgue measure in the complex plane C.
If ω = 1, we denote A2(G) := A2(G, 1). The space A2(G) is called the Bergman

space on G. We refer to the spaces A2(G,ω) as “weighted Bergman spaces”. It
becomes a normed spaces if we define

‖f‖A2(G,ω) :=




∫∫

G

|f(z)|2 ω(z)dσz




1/2

.

Hereafter, we consider only the special weight ω(z) := 1/ |z|4 in this work.
Now let L be a finite quasiconformal curve in the complex plane C. We recall that

L is called a quasiconformal curve if there exists a quasiconformal homeomorphism
of the complex plane onto itself that maps a circle onto L. We denote by G1 and
G2 the bounded and unbounded complements of C \L, respectively. It is clear that
if f ∈ A2(G2), then it has zero in ∞ at least second order. As in the bounded case
[7, p. 5], A2(G2) is a Hilbert space with the inner product

〈f, g〉 :=
∫∫

G2

f(z)g(z)dσz,
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which can be easily verified. Moreover, the set of polynomials of 1/z are dense in
A2(G2) with respect to the norm

‖f‖A2(G2)
:= (〈f, f〉)1/2 .

Indeed, let f ∈ A2(G2). If we substitute z = 1/ζ and define

f(z) = f

(
1
ζ

)
=: f∗(ζ),

then G2 maps to a finite domain Gζ , and f∗ ∈ A2(Gζ), because
∫∫

Gζ

|f∗(ζ)|2 dσζ =
∫∫

G2

|f(z)|2 dσz

|z|4 ≤ c

∫∫

G2

|f(z)|2 dσz <∞,

with some constant c > 0. Since f has zero in ∞ at least second order, the point
ζ = 0 is the zero of f∗ at least second order and

∫∫

Gζ

∣∣∣∣
f∗(ζ)
ζ2

∣∣∣∣
2

dσζ =
∫∫

G2

|f(z)|2 dσz <∞.

Hence f∗(ζ)/ζ2 ∈ A2(Gζ). If Pn(ς) is a polynomial of ς, then we have
∫∫

Gζ

∣∣∣∣Pn(ζ)− f∗(ζ)
ζ2

∣∣∣∣
2

dσζ =
∫∫

Gζ

∣∣Pn(ζ)ζ2 − f∗(ζ)
∣∣2 1
|ζ|4 dσζ

=
∫∫

G2

∣∣∣∣Pn

(
1
z

)
1
z2
− f(z)

∣∣∣∣
2

dσz.

This implies that the set of polynomials of 1/z are dense in A2(G2), since the set
of polynomials Pn(ζ) are dense in A2(Gζ) with respect to the norm

‖f‖A2(Gζ) := (〈f, f〉)1/2 ,

(see, for example: [7, Ch. 1]). Also, for n = 1, 2, . . . there exists a polynomial
P ∗n(1/z) of 1/z, of degree ≤ n, such that En(f,G2) = ‖f − P ∗n‖A2(G2)

(see for
example, [6, p. 59, Theorem 1.1.]), where

En(f,G2) := Inf
{
‖f − P‖A2(G2)

: P is a polynomial of 1/z, of degree ≤ n
}

denotes the minimal error of approximation of f by polynomials of 1/z of degree
at most n. The polynomial P ∗n(1/z) is called the best approximant polynomial of
1/z to f ∈ A2(G2).

Let D be the open unit disc and w = ϕ(z) be the conformal mapping of G1 onto
CD := C \D , normalized by the conditions

ϕ(0) = ∞ and lim
z→0

zϕ(z) > 0,

and let ψ be the inverse of ϕ. In the neighborhood of the origin we have the
expansion

ϕ(z) =
α

z
+ α0 + α1z + ldots+ αkz

k + . . . .
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Raising this function to the power m we obtain

[ϕ(z)]m = Fm(1/z) +Qm(z) for z ∈ G1, (1.1)

where Fm(1/z) denotes the polynomial of negative powers of z and the term Qm(z)
contains non-negative powers of z and is analytic in the domain G1. The polynomial
Fm(1/z) of negative powers of z is called the generalized Faber polynomial for the
domain G2. If z ∈ G2, then integrating in the positive direction along L, we have

Fm

(
1
z

)
= − 1

2πi

∫

L

[ϕ(ζ)]m

ζ − z
dζ = − 1

2πi

∫

|w|=1

wmψ′(w)
ψ(w)− z

dw.

This formula implies that the functions Fm (1/z), m = 1, 2, . . . are the Laurent
coefficients in the expansion of the function

ψ′(w)
ψ(w)− z

z ∈ G2, w ∈ CD

in the neighborhood of the point w = ∞, i.e. the following expansion holds

ψ′(w)
ψ(w)− z

=
∞∑

m=1

Fm

(
1
z

)
1

wm+1
z ∈ G2, w ∈ CD,

which converges absolutely and uniformly on compact subsets of G2 ×CD. Differ-
entiation of this equality with respect to z gives

ψ′(w)
(ψ(w)− z)2

=
∞∑

m=1

F ′m

(
1
z

) (
− 1
z2

)
1

wm+1

or
z2ψ′(w)

(ψ(w)− z)2
=

∞∑
m=1

− F ′m

(
1
z

)
1

wm+1
(1.2)

for every (z, w) ∈ G2× CD, where the series converges absolutely and uniformly on
compact subsets of G2× CD. More information for Faber and generalized Faber
polynomials can be found in [12, p. 255] and [7, p. 42].

In this work, for the first time, we obtain (Section 2, Lemma 2.1) an integral
representation on the infinite domain G2 with a quasiconformal boundary for a
function f ∈ A2(G2). By means of this integral representation in Section 2 we
define a generalized Faber series of a function f ∈ A2(G2) to be of the form

∞∑
m=1

am(f)F ′m

(
1
z

)
,

with the generalized Faber coefficients am(f), m = 1, 2, . . . .
Our main results are presented in the following theorems, which are proved in

Section 3.

Theorem 1.1. Let f ∈ A2(G2). If
∞∑

m=1

am(f)F ′m

(
1
z

)
(1.3)

is a generalized Faber series of f , then this series converges uniformly to f on the
compact subsets of G2.
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Corollary 1.2. Let Pn(1/z) be a polynomial of degree n of 1/z and
Pn(1/z) ∈ A2(G2). If am(Pn) are its generalized Faber coefficients, then am(Pn) =
0 for all m ≥ n+ 2 and

Pn

(
1
z

)
=

n+1∑
m=1

am(Pn)F ′m

(
1
z

)
.

A uniqueness theorem for the series
∞∑

m=1

am(f)F ′m

(
1
z

)
,

which converges to f ∈ A2(G2) with respect to the norm ‖·‖A2(G2)
is the following.

Theorem 1.3. Let {am} be a complex number sequence. If the series
∞∑

m=1

amF
′
m

(
1
z

)

converges to a function f ∈ A2(G2) in the norm ‖·‖A2(G2)
, then the

am, m = 1, 2, . . ., are the generalized Faber coefficients of f .

The following theorem estimates the error of the approximation of f ∈ A2(G2)
by the partial sums of the series (1.3) in the weighted norm ‖·‖A2(G2,ω) for the

special weight ω(z) := 1/ |z|4, regarding to the minimal error En(f,G2).

Theorem 1.4. If f ∈ A2(G2), ω(z) := 1/ |z|4 and

Sn

(
f,

1
z

)
=

n+1∑
m=1

amF
′
m

(
1
z

)

is the nth partial sum of its generalized Faber series
∞∑

m=1

amF
′
m

(
1
z

)
,

then
‖f − Sn(f, ·)‖A2(G2,ω) ≤

c

1− k2

√
nEn(f,G2),

for all natural numbers n and with a constant c independent of n.

Similar results for the bounded domains with a quasiconformal boundary were
stated and proved in [8] and [5], respectively. These problems in the weghted cases
were studied in [9] and [10].

We shall use c, c1, . . ., to denote constants depending only on parameters that
are not important for the questions of interest.

2. Definitions and Some Auxiliary Results

In [4], V.I. Belyi gave the following integral representation for the functions f
analytic and bounded in the domain G1

f(z) = − 1
π

∫∫

G2

(f ◦ y)(ζ)
(ζ − z)2

yζ(ζ)dσζ , z ∈ G1.
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Here y(z) is a K-quasiconformal reflection across the boundary L, i.e., a sense-
reversing K-quasiconformal involution of the extended complex plane keeping every
point of L fixed, such that y(G1) = G2, y(G2) = G1, y(0) = ∞ and y(∞) = 0.
Such a mapping of the plane does exist [11, p. 99]. As follows from Ahlfors theorem
[1, p. 80] the reflection y(z) can always be chosen canonical in the sense that it is
differentiable on C almost everywhere, except possibly at the points of the curve
L, and for any sufficiently small fixed δ > 0 it satisfies the relations

|yς |+ |yς | ≤ c1, if ζ ∈ {ζ | δ < |ς| < 1/δ, ς /∈ L}
|yς |+ |yς | ≤ c2 |ς|−2

, if |ς| ≥ 1/δ or |ς| ≤ δ,

with some constants c1 and c2, independent of ζ.
Considering only the canonical quasiconformal reflections, I.M. Batchaev [3] gen-

eralized the integral representation above to functions f ∈ A2(G1). The accurate
proof of the Batchaev’s result is given in [2, p. 110, Th. 4.4]. A similar integral
representation can also be obtained for functions f ∈ A2(G2). The following result
holds.

Lemma 2.1. Let f ∈ A2(G2). If y(z) is a canonical quasiconformal reflection
with respect to L, then

f(z) = − 1
π

∫∫

G1

(f ◦ y)(ζ)z2

(ζ − z)2[y(ζ)]2
yζ(ζ)dσζ , z ∈ G2. (2.1)

Proof. Let y(z) a canonical quasiconformal reflection and f ∈ A2(G2). If we
substitute ζ = 1/u for ζ ∈ G2 and define

f(ζ) = f (1/u) =: f∗(u),

then G2 maps to a finite domain Gu and f∗ ∈ A2(Gu). If y∗(t) is a canonical
quasiconformal reflection with respect to ∂Gu, then from the Batchaev’s result we
have

f∗(t) = − 1
π

∫∫

CGu

(f∗ ◦ y∗) (u)
(u− t)2

y∗u(u)dσu, t ∈ Gu,

where CGu := CrGu. Substituting u = 1/ζ in this integral representation we get

f(z) = f(1/t) = f∗(t) = − 1
π

∫∫

G1

(f∗ ◦ y∗) (1/ς)
(1/ς − 1/z)2

y∗u (1/ς) Jdσζ

=
1
π

∫∫

G1

f [1/y∗ (1/ζ)]z2

(ζ − z)2
y∗

ζ
(1/ς) dσζ , z ∈ G2.

If we define
y(ζ) :=

1
y∗ (1/ς)

,

then y(ζ) becomes a canonical quasiconformal reflection with respect to L. Conse-
quently, for f ∈ A2(G2) we get

f(z) = − 1
π

∫∫

G1

(f ◦ y)(ζ)z2

(ζ − z)2[y(ζ)]2
yζ(ζ)dσζ , z ∈ G2.
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¤
From now on, the reflection y(z) will be a canonical K-quasiconformal reflection

with respect to L.
Let f ∈ A2(G2). Substituting ζ = ψ(w) in (2.1), we get

f(z) = − 1
π

∫∫

CD

f
(
y(ψ(w))

)
ψ′(w)yζ

(
ψ(w)

)

[y
(
ψ(w)

)
]2

· z2ψ′(w)(
ψ(w)− z

)2 dσw, z ∈ G2. (2.2)

Thus, if we define the coefficients am(f), m = 1, 2, . . ., by

am(f) :=
1
π

∫∫

CD

f
(
y(ψ(w))

)
ψ′(w)

wm+1[y
(
ψ(w)

)
]2
yζ

(
ψ(w)

)
dσw, (2.3)

then, by (1.2) and (2.2), we can associate a formal series
∑∞

m=1 am(f)F ′m(1/z) with
the function f ∈ A2(G2), i.e.,

f(z) ∼
∞∑

m=1

am(f)F ′m (1/z) .

We call this formal series a generalized Faber series of f ∈ A2(G2), and the coeffi-
cients am(f), m = 1, 2, . . ., generalized Faber coefficients of f .

Lemma 2.2. Let {Fm(1/z)}, m = 1, 2, . . ., be the generalized Faber polynomials
of 1/z for G2. Then

n∑
m=1

∥∥F ′m,z

∥∥2

A2(G2)

m
≤ nπ.

Proof. Since y(ζ) is a canonical K-quasiconformal mapping of the extended com-

plex plane onto itself, we have
∣∣∣yζ

∣∣∣ /
∣∣yζ

∣∣ ≤ k and
∣∣yζ

∣∣2−
∣∣∣yζ

∣∣∣
2

> 0. Also, it is known

that
∣∣∣yζ

∣∣∣ = |yζ | and
∣∣yζ

∣∣ =
∣∣∣yζ

∣∣∣. Therefore, |yζ | /
∣∣∣yζ

∣∣∣ ≤ k and
∣∣∣yζ

∣∣∣
2

− |yζ |2 > 0.
Hence ∫∫

G1

|(f ◦ y)(ζ)|2
∣∣∣yζ(ζ)

∣∣∣
2

dσζ

=
∫∫

G1

|(f ◦ y)(ζ)|2
(

1− |yζ |2 /
∣∣∣yζ

∣∣∣
2
)−1 (∣∣∣yζ

∣∣∣
2

− |yζ |2
)
dσζ

≤ 1
1− k2

∫∫

G1

|(f ◦ y)(ζ)|2
(∣∣∣yζ

∣∣∣
2

− |yζ |2
)
dσζ .

Since
(
|yζ |2 −

∣∣∣yζ

∣∣∣
2
)

is the Jacobian of y(ζ), substituting ζ for y(ζ) on the right

side of the last inequality we get
∫∫

G1

|(f ◦ y)(ζ)|2
∣∣∣yζ(ζ)

∣∣∣
2

dσζ ≤
‖f‖2A2(G2)

1− k2
.

¤
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3. Proofs of the New Results

Proof of Theorem 1.1. Let M be a compact subset of G2 and y(z) a canonical
K-quasiconformal reflection with respect to L. Since by Lemma 2.1

f(z) = − 1
π

∫∫

G1

(f ◦ y)(ζ)z2

(ζ − z)2[y(ζ)]2
yζ(ζ)dσζ

= − 1
π

∫∫

CD

f
(
y(ψ(w))

)
ψ′(w)yζ

(
ψ(w)

)

[y
(
ψ(w)

)
]2

· z2ψ′(w)(
ψ(w)− z

)2 dσw, for z ∈M,

by means of (2.3), Hölder’s inequality and Lemma 4 we obtain
∣∣∣∣∣f(z)−

n∑
m=1

am(f)F ′m (1/z)

∣∣∣∣∣

≤
c3 ‖f‖A2(G2)

π
√

1− k2




∫∫

CD

∣∣∣∣∣
z2ψ′(w)

(ψ(w)− z)2
+

n∑
m=1

F ′m (1/z)
wm+1

∣∣∣∣∣

2

dσw




1/2

, (3.1)

for every z ∈M, where the constant c3 depends only on L.
Let 1 < r < R <∞. In view of (1.2)

∫∫

r<|w|<R

∣∣∣∣∣
z2ψ′(w)(
ψ(w)− z

)2 +
n∑

m=1

F ′m (1/z)
wm+1

∣∣∣∣∣

2

dσw

=
∫∫

r<|w|<R

∣∣∣∣∣
∞∑

m=n+1

F ′m (1/z)
wm+1

∣∣∣∣∣

2

dσw

= π

∞∑
m=n+1

1
m

(
1
r2m

− 1
R2m

)
|F ′m (1/z)|2

≤ 4π
∞∑

m=n+1

|F ′m (1/z)|2
m+ 1

and by letting r → 1+ and R→∞ we get
∫∫

CD

∣∣∣∣∣
z2ψ′(w)(
ψ(w)− z

)2 +
n∑

m=1

F ′m (1/z)
wm+1

∣∣∣∣∣

2

dσw ≤ 4π
∞∑

m=n+1

|F ′m (1/z)|2
m+ 1

. (3.2)

Therefore, by (3.1), (3.2) and Lemma 3 we conclude that
∞∑

m=1

am(f)F ′m (1/z)

converges uniformly to f on M .

Proof of Corollary 1.2. Let z ∈ G2. By Theorem 1.1 we have

Pn (1/z) =
∞∑

m=1

am(Pn)F ′m (1/z) .
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On the other hand, Pn(1/z) can be written in the form

Pn (1/z) =
n+1∑

k=1

AkF
′
k (1/z) ,

with the specific coefficients Ak, k = 1, 2, . . . , n + 1. Let y(z) be a canonical K-
quasiconformal reflection relative to L. Since y(z) is identical on L, by Green’s
formulae we get

am(Pn) =
1
π

∫∫

CD

Pn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw

=
n+1∑

k=1

Ak

π

∫∫

CD

F ′k
[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ(ψ(w))dσw

=
n+1∑

k=1

Ak

π

∫∫

CD

− ∂

∂w

(
Fk [1/y(ψ(w))]

wm+1

)
dσw

=
n+1∑

k=1

Ak

2πi

∫

|w|=1

Fk [1/ψ(w)]
wm+1

dw.

By (1.1)
Fm [1/ψ(w)] = wm −Qm

(
ψ(w)

)
,

where Qm

(
ψ(w)

)
is analytic in CD, and then

1
2πi

∫

|w|=1

Fk [1/ψ(w)]
wm+1

dw = QATOPD

{
1, if k = m,

0, if k 6= m,
(3.3)

which implies that am(Pn) = Am, for m = 1, . . . , n + 1, and am(Pn) = 0 for all
m ≥ n+ 2. Hence

Pn (1/z) =
n+1∑
m=1

am (Pn)F ′m (1/z) .

Proof of Theorem 1.3. Let y(z) be a canonical K-quasiconformal reflection
relative to L and

Sn (f, 1/z) :=
n+1∑
m=1

amF
′
m (1/z)

be the nth partial sum of
∞∑

m=1

amF
′
m (1/z) .

Using (3.3) it can be shown that

lim
n→∞

1
π

∫∫

CD

Sn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw = am, m = 1, 2, . . . . (3.4)
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If m and n are natural numbers, then by using Hölder’s inequality and Lemma 4
we get

|am(f)− am| ≤ 1
π

∣∣∣∣∣∣∣

∫∫

CD

f(y(ψ(w)))− Sn [1/y(ψ(w))]ψ′(w)
wm+1[y(ψ(w))]2

yζ(ψ(w))dσw

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
1
π

∫∫

CD

Sn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw − am

∣∣∣∣∣∣∣
≤ 1
π




∫∫

CD

dσw

|w|2m+2




1/2

×




∫∫

CD

∣∣f(
y(ψ(w))

)− Sn

[
1/y

(
ψ(w)

)]∣∣2 |ψ′(w)|2
∣∣∣yζ

(
ψ(w)

)∣∣∣
2

∣∣y(ψ(w)
)∣∣4 dσw




1/2

+

∣∣∣∣∣∣∣
1
π

∫∫

CD

Sn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw − am

∣∣∣∣∣∣∣

≤ c4√
mπ




∫∫

G1

∣∣((f − Sn) ◦ y)(ζ)
∣∣2

∣∣∣yζ(ζ)
∣∣∣
2

dσζ




1/2

+

∣∣∣∣∣∣∣
1
π

∫∫

CD

Sn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw − am

∣∣∣∣∣∣∣

≤
c4 ‖f − Sn‖A2(G2)√

mπ(1− k2)

+

∣∣∣∣∣∣∣
1
π

∫∫

CD

Sn

[
1/y

(
ψ(w)

)]
ψ′(w)

wm+1[y
(
ψ(w)

)
]2

yζ

(
ψ(w)

)
dσw − am

∣∣∣∣∣∣∣
. (3.5)

Since lim
n→∞

‖f − Sn‖A2(G2)
= 0, (3.4) and (3.5) show that am(f) = am, m =

1, 2, . . . .

Proof of Theorem 1.4. Let y(z) be a canonical K-quasiconformal reflection with
respect to L, and P ∗n(1/z) the best approximant polynomial to f ∈ A2(G2) in
the norm ‖·‖A2(G2)

. For z ∈ G2, by means of Hölder’s inequality, Lemma 4 and
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Corollary 1.2 we obtain

|f(z)− Sn (f, 1/z)| ≤ |f(z)− P ∗n (1/z)|+ |P ∗n(1/z)− Sn (f, 1/z)|

≤ |f(z)− P ∗n (1/z)|+
∣∣∣∣∣
n+1∑
m=1

(
am(P ∗n)− am(f)

)
F ′m (1/z)

∣∣∣∣∣

≤ |f(z)− P ∗n (1/z)|

+
1
π

∣∣∣∣∣∣∣

∫∫

CD

(f ◦ y − P ∗n ◦ y)
(
ψ(w)

)
ψ′(w)yζ

(
ψ(w)

)

[y
(
ψ(w)

)
]2

n+1∑
m=1

F ′m (1/z)
wm+1

dσw

∣∣∣∣∣∣∣

≤ |f(z)− P ∗n (1/z)|

+
1
π




∫∫

CD

∣∣(f ◦ y − P ∗n ◦ y)
(
ψ(w)

)∣∣2 |ψ′(w)|2
∣∣∣yζ

(
ψ(w)

)∣∣∣
2

∣∣y(ψ(w)
)∣∣4 dσw




1/2

×




∫∫

CD

∣∣∣∣∣
n+1∑
m=1

F ′m (1/z)
wm+1

∣∣∣∣∣

2

dσw




1/2

≤ |f(z)− P ∗n (1/z)|+ c5
π




∫∫

G1

|(f ◦ y − P ∗n ◦ y)(ζ)|2
∣∣∣yζ(ζ)

∣∣∣
2

dσζ




1/2

×
(
π

n+1∑
m=1

|F ′m(1/z)|2
m

)1/2

≤ |f(z)− P ∗n (1/z)|+ c5√
π(1− k2)

‖f − P ∗n‖A2(G2)

(
n+1∑
m=1

|F ′m(1/z)|2
m

)1/2

= |f(z)− P ∗n (1/z)|+ c5√
π(1− k2)

En(f,G2)

(
n+1∑
m=1

|F ′m (1/z)|2
m

)1/2

for all natural numbers n. This shows that

|f(z)− Sn (f, 1/z)|2 ≤ 2 |f(z)− P ∗n (1/z)|2 +
2c5

π(1− k2)
E2

n(f,G2)
n+1∑
m=1

|F ′m (1/z)|2
m

.
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Multiplying both sides by 1/ |z|4 and take into account that 1/ |z|4 ≤ c6 for z ∈ G2

and with a constant c6, we get

|f(z)− Sn (f, 1/z)|2 1
|z|4

≤ c7 |f(z)− P ∗n (1/z)|2 +
c8

π(1− k2)
E2

n(f,G2)
n+1∑
m=1

∣∣F ′m,z (1/z)
∣∣2

m
.

Now, by integrating both sides over G2 and by virtue of Lemma 2.2 we get

‖f(z)− Sn(f, ·)‖2A2(G2,ω) ≤ c7E
2
n(f,G2) +

c8
π(1− k2)

E2
n(f,G2)

n+1∑
m=1

∥∥F ′m,z

∥∥2

A2(G2)

m

≤
(
c7 +

c8(n+ 1)
1− k2

)
E2

n(f,G2)

≤ c9n

1− k2
E2

n(f,G2),

i.e.,

‖f(z)− Sn(f, ·)‖A2(G2,ω) ≤
c

1− k2

√
nEn(f,G2)

for all natural numbers n.
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