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Abstract. An important exercise in the study of rational approximants is to derive their metric, especially in 
relation to the corresponding quasicrystal or the underlying clusters. Kuo’s model has been the widely accep-
ted model to calculate the metric of the decagonal approximants. Using an alternate model, the metric of the 
approximants and other complex structures with the icosahedral cluster are explained elsewhere. In this work 
a comparison is made between the two models bringing out their equivalence. Further, using the concept of 
average lattices, a modified model is proposed. 
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1. Introduction 

The discovery of quasicrystals (Shechtman et al 1984) 
marked such a major paradigm shift in the understanding 
of structure of ordered matter that time old tenets of crysta-
llography had to be drastically expanded. Soon after  
the discovery, the early descriptions of quasicrystalline 
diffraction patterns were based on three models: (i) quasi-
periodic tilings (Levine and Steinhardt 1984), (ii) icosa-
hedral glasses (Stephens 1989) and (iii) twinning effects 
(Pauling 1985). The icosahedral glass models were a 
compromise between the observed icosahedral symmetry 
and the impossibility to tile three-dimensional space with 
icosahedra, while the ability of a twinned aggregate to 
mimic a system of higher symmetry was the basis for the 
third kind of model. Currently cluster based models are 
gaining currency, wherein the role played by atoms initi-
ally is played by a cluster of atoms, which are hierarchi-
cally arranged (Janot 1997). However, it is important to 
take note of the recent discovery of Abe et al (1999), 
where they report a decagonal quasicrystal in the Mg–
Zn–Dy system without atomic clusters. 
 The next two major breakthroughs in the field came 
with the discovery of lower dimensional quasicrystals 
(Chattopadhyay et al 1985) and the realization of some 
well known complex crystals as rational approximants to 
quasicrystals (Elser and Henley 1985). Rational approxi-
mants coexist with quasicrystals in most samples and 
often it is difficult to distinguish higher order approxi-
mants from quasicrystals. When approximants form by 
the transformation from quasicrystals, the aggregate retains 
the symmetry of the parent quasicrystal. Hence an invol-

ved analysis is required to distinguish the cases of quasi-
crystals, rational approximants and twinned aggregates. 
Ranganathan et al (1997) have written a comprehensive 
review on decagonal quasicrystals and their rational approxi-
mants. 
 An important exercise in the study of rational approxi-
mants is to derive their metric, especially in relation to 
the corresponding quasicrystal or the underlying clusters. 
Two approaches can be used: (i) projection formalism, 
wherein a hyperdimensional cube is projected along a ratio-
nal slope (Henley 1985; Mandal and Lele 1994) and  
(ii) working in physical space and using the icosahedral 
clusters (Shoemaker and Shoemaker 1988). The latter  
approach has an intuitive appeal in that it allows the visua-
lization of icosahedral linkages. 
 The importance of the icosahedral cluster and its link-
ages in various complex crystalline structures finally 
leading to the quasicrystal have been studied in detail 
before. Shoemaker and Shoemaker (1988) described the 
various polyhedra with icosahedral symmetry and their 
occurrence in alloy phases like NaZn13, Mg2Zn11, MoAl12 
etc. In the present context their description of permeation 
of icosahedral order through vertex, edge and face shar-
ing and the different orientations of the icosahedron gene-
rated in the process are of relevance. They have stated: 
‘we may suspect that the sizes of the unit cells are deter-
mined in many cases, at least in part, by requirements 
imposed by the linking of icosahedra’. 
 Using the concept of ‘canonical cells’ Henley (1991) 
attempted to construct the structure of the icosahedral 
phase. Focusing on clusters connected by linkages and 
understanding the local environments, he has derived 
various geometrical properties of the lattice like packing 
fraction and coordination number and has tried to des-
cribe the structure of rational approximants. His model is 
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a nice merger between tiling based and cluster based 
models and the attempt to derive the lattice parameters of 
the crystal from the dimensions of the basic cluster is 
noteworthy. 
 Zhang and Kuo (1990a) proposed a model for obtain-
ing the rational approximants to the decagonal quasicrys-
tal by the projection formalism. This has been the widely 
accepted model so far. Anantharaman (1999) proposed an 
alternate model to explain approximants and other com-
plex structures with the icosahedral cluster. In this work a 
comparison is made between the two models bringing out 
their equivalence. Further, a modified model is proposed. 

2. Kuo’s model 

Orthorhombic approximants have been discovered for 
icosahedral, decagonal and hexagonal quasicrystals. Kuo 
using linear phason strain theory first studied the trans-
formation of decagonal quasicrystal to an one-dimensional 
quasicrystal (Zhang and Kuo 1990a) and then proceeded 
to derive the lattice parameters for the orthorhombic approxi-
mants to the decagonal phase within the same framework 
(Zhang and Kuo 1990b). The theory attempts to account 
for the observed lattice parameters for cubic, orthorhom-
bic and monoclinic approximants. 
 The lattice parameters for the orthorhombic approxi-
mants to the decagonal phase are given by (Zhang and 
Kuo 1990b): 

a = aD = √5 aR τn+1/(1 + τ2)1/2, (1) 

c = aP = √5 aR τn, 

where, aR is the edge length of the Penrose rhombus, aD 
the lattice parameter along the original true two-fold of 
the decagonal quasicrystal, aP the lattice parameter along 
the direction orthogonal to aD and τ  the golden mean 
( = (1 + √5)/2). 
 Based on equal or unequal order of approximations 
along ‘a’ and ‘c’ the orthorhombic approximants to the 
decagonal phase can be classified into two types: the 
Taylor and Robinson approximants. As seen from (1), 
there is a τ inflation of lattice parameters from one order 
of approximant to another (table 1). The common periodi-
cities observed along the ‘b’ axis for the decagonal quasi-
crystal are 1, 2, 3 and 4. A rare periodicity of 9 is also 
observed (Okabe et al 1992). The lattice parameter along 
this periodic axis is inherited by the corresponding ortho-
rhombic rational approximant. 

3. Anantharaman’s model 

Anantharaman (1999) used the icosahedral cluster as the 
basic building unit. Starting with an orthorhombic cell, 
which essentially contains an icosahedron, various struc-
tures (crystalline, approximant and quasicrystalline) are 

generated by putting together an integral number of basic 
cells. These vertex, edge and face sharing icosahedra are 
assumed to suffer distortions to give rise to cubic, 
tetragonal, hexagonal, rhombohedral or monoclinic stru-
ctures. Interplanar spacing data from Debye–Scherrer 
diffraction experiments of Al–Cu–Fe icosahedral quasi-
crystal is compared with the model. 

4. Comparison between Anantharaman’s and  
Kuo’s models 

In the current analysis the orthorhombic approximants to 
the decagonal quasicrystal are considered and a compari-
son is made between Anantharaman’s and Kuo’s (Zhang 
and Kuo 1990a) models. Further, a modified model based 
on Anantharaman’s approach is proposed, which can ex-
plain the discrepancies arising out of Anantharaman’s 
model and bring it closer to Kuo’s model. 
 For a detailed analysis of Anantharaman’s model we 
start with the table 4 in his paper (Anantharaman 1999). 
The table differentiates between three classes of cluster 
compounds adding up to thirty-six: crystalline, quasicrys-
talline (icosahedral and decagonal) and rational approxi-
mants. For consistency with that accepted in literature, 
further discussion is restricted to the twenty-eight phases 
listed under crystalline (item numbers 1–10) and rational 
approximants (item numbers 18–35). The phases identi-
fied as crystalline by Anantharaman are in fact rational 
approximants to the decagonal phase with the exception 
of ε-Al4Cr which is a hexagonal approximant. For a fruit-
ful comparison between Anantharaman’s and Kuo’s 
models we set aside the ε-Al4Cr phase. For comparison 
of Kuo’s values of lattice parameters for the decagonal 
approximants with that of Anantharaman’s, the ‘a’ and 
‘c’ in Anantharaman’s table have been re-listed taking 
into account the orientation of the true two-fold axis in 
the corresponding decagonal phase (table 2). The cases of 
switch between aD and aP (rows 5–7 in Anantharaman’s 
table) are also now in good match with integral multi-
pliers (table 3). Notwithstanding certain anomalies it can 
be seen that the various ‘m’ and ‘n’ (the modified values 
are listed as m′ and n′) values can be correlated with 
various orders of approximants under Kuo’s scheme. 

Table 1. Lattice parameters derived from Kuo’s 
model (Zhang and Kuo 1990b). 
    
    
N Fm/Fm–1 aD aP         
1  1/0  0⋅76  0⋅90 
2   1/1   1⋅23  1⋅45 
3  2/1  1⋅99  2⋅34 
4  3/2  3⋅23  3⋅79 
5  5/3  5⋅22  6⋅13 
6  8/5  8⋅44  9⋅92 
7 13/8 13⋅65 16⋅04 
8  21/13 22⋅09 25⋅96 
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 In the model of Anantharaman, wherein periodic stack-
ing of the basic unit cell has been adopted, the increased 
order of the approximant is reflected as Fibonacci sequence 
of ‘m’ and ‘n’ values. The paper fails to address the rea-
son behind these special values taken by the multiplying 
factors. This can be seen by the close correspondence of 
the lattice parameters of these phases with that derived  
by Kuo’s formula. In this work a τ  deflation has been 
used on the values derived by (1) to include phases with 
smaller lattice parameters in the analysis. 

5. The average lattice 

Even after the advent of quasicrystals, recourse is often 
taken to the intuitively appealing concept of a periodic 
lattice in diverse ways. The advantage that the well deve-
loped tools of crystallography can be put to use is an 
added benefit. Modulation of a basic lattice, displacively 
or occupationally, can be used to generate a variety of 
structures. Modulation functions incommensurate with 
the basic lattice gives rise to aperiodic structures. Godreche 

Table 2. Correlation between order of approximant (Kuo’s) and Anantharaman’s ‘m’ and ‘o’ values. 
                        
    a (nm)  

(aD) 
b 

(nm) 
c (nm)  

(aP) 
 

(d, p) 
 

o′ 
 

m′ 
 
x 

 
y 

                        
1 Robinson (1952) R Al21Mn3Cu2 0⋅772 1⋅250 2⋅42 (1/0, 2/1)  3 6 3  8 
2 Robinson (1954) R Al31Mn6Ni2 0⋅755 1⋅250 2⋅380 (1/0, 2/1)  3 6 3  8 
3 Damjanovic (1961) R Al27Mn7Zn5 0⋅778 1⋅260 2⋅380 (1/0, 2/1)  3 6 3  8 
4 Ellner (1995) R Al10Fe3 0⋅775 0⋅403 2⋅377 (1/0, 2/1)  3 6 3  8 
5 Taylor (1960)* T Al13Mn4 (Al10Mn3) 1⋅259 1⋅242 1⋅48 (1/1, 1/1)  3** 6** 5  5 
6 Burkhardt et al (1996)* R Al13Co4 (Al10Co3) 0⋅816 1⋅234 1⋅445 (1/0, 1/1)  2** 6** 3**  5 
7 Hiraga et al (1993)* T Al3Mn (Al28Mn11) 1⋅243 1⋅251 1⋅483 (1/1, 1/1)  3** 6** 5  5 
8 Li et al (1994) R Al3Co (Al28Co11) 1⋅250 1⋅250 0⋅810 (1/1, 1/0)  5 2 5  3 
9 Ma et al (1990) R Al3Pd 1⋅230 1⋅670 2⋅340 (1/1, 2/1)  5 6 5  8 

            
18 Li and Kuo (1992a) R Π-Al4Mn 0⋅770 1⋅26 2⋅360 (1/0, 2/1)  3 6 3  8 
19 Van Tendeloo et al (1988) R C3 I-Al60Mn11Ni4 3⋅270 1⋅240 2⋅400 (3/2, 2/1) 13 6 13  8 
20 Zhang et al (1995) R Al75Pd13Ru12 3⋅280 1⋅669 2⋅388 (3/2, 2/1) 13 6 13  8 
21 Yu et al (1993) R C-1 Al70Co15Ni10Tb5 5⋅460 1⋅600 2⋅280 (5/3, 2/1) 21** 6** 21**  8 
22 Yu et al (1993) R C-2 Al70Co15Ni10Tb5 8⋅400 0⋅400 6⋅100 (8/5, 5/3) 34 16** 34** 21 
23 Yu et al (1994) T C-3 Al70Co15Ni10Tb5 3⋅200 1⋅600 3⋅680 (3/2, 3/2) 13 9 13 13 
24 Yu et al (1994) T C-4 Al70Co15Ni10Tb5 2⋅000 1⋅600 2⋅360 (2/1, 2/1)  8 6  8  8 
25 Yu et al (1994) R C-5 Al70Co15Ni10Tb5 1⋅260 1⋅600 2⋅300 (1/1, 2/1)  5 6  3  8 
26 Okabe et al (1992) R I-Al70Cr20Cu10 3⋅300 3⋅780 2⋅400 (3/2, 2/1) 13 6 13  8 
27 Okabe et al (1992) R II-Al70Cr20Cu10 2⋅040 3⋅780 9⋅420 (2/1, 8/5)  8 24**  8 34** 

28 Wu et al (1996) R I-Al67Cu18 Cr25 0⋅780 1⋅240 2⋅370 (1/0, 2/1)  3 6  3  8 
29 Wu et al (1996) R II-Al67Cu18 Cr25 1⋅970 3⋅720 6⋅140 (2/1, 5/3)  8 16**  8 21 
30 Liao et al (1992) T I-Al65Cu20 Co15 1⋅970 0⋅400 2⋅330 (2/1, 2/1)  8 6  8  8 
31 Liao et al (1992) R II-Al65Cu20 Co15 5⋅200 0⋅410 3⋅800 (5/3, 3/2) 21 10** 21 13 
32 Launois et al (1990) R III-Al65Cu20 Fe15 (I) 3⋅188 0⋅827 9⋅811 (3/2, 8/5) 13** 24** 13** 34 

33 Launois et al (1990) R IV-Al65Cu20 Co15 8⋅440 0⋅410 6⋅140 (8/5, 5/3) 34 16** 34 21 
34 Dong et al (1992) R Al65Cu20 Fe15 (I) 3⋅250 1⋅228 2⋅365 (3/2, 2/1) 13 6 13  8 
35 Dong et al (1992) R Al65Cu20 Fe10 Cr5 2⋅010 1⋅227 6⋅194 (2/1, 5/3)  8 16**  8 21 
            
37 Li and Kuo (1992b) T Y-AlMnCu 1⋅26 1⋅24 1⋅48 (1/1, 1/1)  5  6**  5  5 
38 Li et al (1992) T Y-Al3Mn 1⋅256 1⋅247 1⋅487 (1/1, 1/1)  5  6**  5  5 
39 Hiraga et al (1993) T Al70Pd5Mn25 1⋅251 1⋅243 1⋅483 (1/1, 1/1)  5  6**  5  5 
40 Van Tendeloo et al (1988) R C3,II-AlMnNi 1⋅26 1⋅24 2⋅68 (1/1, 2/1)  5  7**  5  8** 
            
            
Key: numbers in the first column correspond to item numbers in table 4 from Anantharaman (1999); *the ‘a’ and ‘c’ values are such that 
a = aD and c = aP; **not exact match. 
 

Table 3. Recalculation of the multiplying factors based on the revised list. 
                      
 Reference Alloy a b c (d, p) m o m′ o′ 
                      
5 Taylor (1960) Al13Mn4 (Al10Mn3)  1⋅242+   1⋅259+ 1⋅479  (1/1, 1/1) 3 6 5 5 
6 Burkhardt et al (1996) Al13Co4 (Al10Co3) 0⋅816  1⋅234  1⋅445  (1/0, 1/1) 2 6 3 5 
7 Hiraga et al (1993) Al3Mn (Al28Mn11) 1⋅243  1⋅251  1⋅483  (1/1, 1/1) 3 6 5 5 
           
           
 



S  Ranganathan  and  Anandh  Subramaniam 

 

630

and Oguey (1990) used the projection method to obtain 
average lattices for quasiperiodic structures. Baranidharan 
(1997) has systematically introduced the concept of the 
average lattice and has suggested a method of applying 
the same to the icosahedral quasicrystal. 
 It can be shown that (table 4) the occurrence of Fibonacci 
numbers for multiplying factors and the postulation of 
basic lattice parameter are closely linked. If successive τ 
inflated values of a unit lattice parameter are divided by 
the corresponding Fibonacci number (of cells) the result-
ing sequence converges to a constant value (akin to the 
ratio of successive terms in a standard Fibonacci sequence): 
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 This value to which the ratio converges can be numeri-
cally used as a fundamental unit and integral multiples of 
this unit approximates the approximant parameter better 
with increasing order of the approximant. Various τ infla-
ted or deflated values of the one derived in (1) can be 
considered as a lattice parameter as well. Wolny (1998) 
considered an average cell parameter of 1⋅382 ( = 1 + 1/τ2) 
in his study of diffraction properties of one-dimensional 
average lattices. 
 Steurer and Haibach (1999) considered the construc-
tion of average lattices in detail and have derived the aver-
age lattice parameter for 1D, 2D and 3D quasiperiodic 
lattices. For the Penrose tiling they have derived 

avg
1a = (3 – τ) ar  avg

2a = (3 – τ)3/2 ar/τ, (3) 

where, avg
1a  is parallel to aD and avg

2a  is parallel to aP. 
Let 

(3 – τ) = (1 + 1/τ2) = xavg = 1⋅3819, (4) 

with, √xavg = 1⋅1755 . . . (and sin–1(√xavg /2) = 36°) being 
the smaller diagonal of the fat rhombus in the Penrose 
tiling. This length scale is obtained by a section along a1 

in the Penrose tiling and forms a small unit in the Fibo-
nacci sequence. 
 
Comparing with Kuo’s model 
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Hence the τ factor deflation is seen along a1 in Steurer’s 
model as compared to Kuo’s model. 
 Anantharaman though implicitly has used the concept 
of an average lattice parameter, but, he has failed to take 
into account the occurrence of two different units in the 
Fibonacci sequence in the actual structure. 

6. A modified model 

The idea of Anantharaman can be modified by starting 
with a different set of lattice parameters as in table 5. 
Taking into account the additional τ factor deflation 
along a1 these new values are derived from Steurer’s values 
as follows 

   amod = avg
avg
1 / xa τ ≈ 0⋅25  and   cmod = avg

avg
1 /xc ≈ 0⋅29. 

 Also, the new set of values are integrally related to 
Kuo’s values and the multiplying factors derived by their 
use are listed in table 2. The anomalous occurrence of non-
Fibonacci numbers for the multipliers in Anantharaman’s 
model are now accounted for and the idea of an average 
basic cell can be understood within the framework of quasi-
crystallography. 

Table 4. Derivation of average lattice parameter based on τ 
inflation of the lattice parameter and the Fibonacci sequence. 
        
Order of 
rational  
approximant (n)  

 
Repeating  
units (Fn) 

RAS to  
quasiperiodic  
unit cell (τn–1) 

Average lattice 
(Anantharaman) 

(τn–1/Fn)         
1  1 1 
2  1  τ = 1⋅618 1⋅618.. 
3  2 τ2 = 2⋅618 1⋅309.. 
4  3 τ3 = 4⋅236  1⋅412.. 
5  5 τ4 = 6⋅854 1⋅370.. 
6  8 τ5 = 11⋅09 1⋅386.. 
7 13 τ6 = 17⋅94 1⋅380.. 
8 21 τ7 = 29⋅03 1⋅382.. 
n → ∞ ∞ ∞ 1 + 1/τ2 

        

Table 5. Comparison of orthorhombic unit cell dimensions 
from Kuo’s model (Wu et al 1996), Anantharaman’s model 
(1999) and the modified model. 
    
    
 
Kuo’s model 

Steurer’s model 
(Penrose tiling) 

Anantharaman’s  
model 

Modified  
model 

        
a = aD′ = 0⋅76 a1

avg = 0⋅55 cTRA = 0⋅25 amod = 0⋅25 
b = b = 0⋅4 – bTRA = 0⋅419 bmod = 0⋅4 
c = aP′ = 0⋅90 a2

avg = 0⋅40 aTRA = 0⋅40 cmod = 0⋅29 
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7. Conclusions 

Anantharaman has restated Kuo’s ideas by invoking an 
integrally assembled orthorhombic unit cell in the Fibo-
nacci sequence. As seen in table 4 with increasing order 
of the approximant the ‘average lattice parameter’ of the 
fundamental cell converges, thus forming an apparently 
convincing argument towards a fundamental cell and 
masking the occurrence of τ. A modified model based on 
Anantharaman’s idea can be envisaged which can better 
explain the lattice parameter data for orthorhombic app-
roximants. Finally, the most important aspect is that  
the actual structural arrangement follows the Fibonacci 
sequence within the unit cell in a recursive and non-
repetitive mode. 
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