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Abstract—The residue number system (RNS) is an
unconventional number system which can be used to achieve
high-performance hardware implementations of special-
purpose computation systems such as digital signal processors.
The moduli set {21, 2" 2"+1, 2°™'-1} has been recently
suggested for RNS to provide large dynamic range with low-
complexity, and enhancing the speed of internal RNS
arithmetic circuits. But, the residue-to-binary converter of this
moduli set relies on high conversion delay. In this paper, a new
residue-to-binary converter for the moduli set {2"-1, 2", 2"+1,
22"1_11 using an adder-based implementation of new Chinese
remainder theorem-1 (CRT-I) is presented. The proposed
converter is considerably faster than the original residue-to-
binary converter of the moduli set {2"-1, 2", 2"+1, 2*™'-1};
resulting in decreasing the total delay of the RNS system.

Index Terms—Residue Number System (RNS), residue-to-
binary converter, digital circuits, computer architecture, high-
speed computer arithmetic.

I. INTRODUCTION

The residue number system (RNS) is a carry-free number
system with capability of providing parallel arithmetic. The
potentiality of RNS to perform addition, subtraction and
multiplication without carry-propagation between residue
digits, makes it suitable for reducing the power dissipation
in high-performance digital computing systems [1]-[4]. The
RNS has a wide range of applications; especially in digital
signal processing computations such as FIR filters [5]-[8].

Each RNS system is based on moduli set, and includes
binary-to-residue converter, arithmetic unit which includes
parallel modulo arithmetic circuits, and residue-to-binary
converter [9], [10]. Among all of these, designing residue-
to-binary converter is the most complex process which
attracts researchers for many decades. The performance of
the residue-to-binary converter is drastically depends on the
moduli set as well as the selected conversion algorithm. As a
result, many special moduli sets and conversion algorithms
have been recommended for constructing residue-to-binary
converters.

The most prominent moduli set is {2"-1, 2", 2"+1} [11],
[12]. Moreover, modulo (2"+1)-free 3-moduli sets {2"'—1,
2"-1, 2"} [13], [14], {21, 2", 2""'—1} [15], [16] have been
introduced. Recently, it is shown that non-traditional 3-
moduli sets such as {2*", 2"-1, 2"'—1} and {2*", 2"-1, 2" '
1} [17] could significantly reduce the complexity of the
residue-to-binary converter. However, due to the increasing
demand of some applications for larger parallelism and
dynamic range, the Four-moduli sets {2"-1, 2", 2"+1,
2"1£1} [18]-[20] and {2"-3, 2"+1, 2"-1, 2™3} [21], [22]
were used as balanced moduli sets for RNS. However,
inefficient multiplicative inverses of these sets resulted in
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complex converter architectures. Due to this, the well-
formed moduli sets {2"-1, 2", 2"+1, 2*"+1} [23], {2"-1,
2"+1, 222, 2213} [24], {2"-1, 2", 2"+1, 2°™'~1} and (2"
1, 2"+1, 2*", 2*"+1} [25] have been considered in the recent
years. Although these sets do not include balanced moduli,
their multiplicative inverses are very simple. Moreover,
some five-moduli sets with popular moduli have been also
investigated in the recent years [26], [27].

It is expected that the moduli set {2"-1, 2", 2"+1, 2*""'—1}
plays an important role in designing efficient RNS systems
for using in the high-performance DSP and real-time
systems with high computation load, due to its particular
features. However, the residue-to-binary converter of this
moduli set that is presented in [25], has high conversion
delay, mainly because of using new Chinese remainder
theorem-2 (CRT-II), and its two-level hardware architecture.

In this paper, a fast one-level hardware design for the
residue-to-binary converter of the moduli set {2"-1, 2",
2"+1, 2°™'_1} through the use of new Chinese remainder
theorem-1 (CRT-I) is introduced. This new converter
considerably reduces the delay of residue-to-binary
conversion, compared to the converter of [25].

In the next, a brief introduction to RNS and CRT-I is
presented in Section II. Section III describes the CRT-I-
based conversion equations for the four-moduli set {2"-1,
2", 2"+1, 2°™1_1}. Hardware implementation of the residue-
to-binary conversion equations as well as complexity
computation is presented in Section IV, and Section V is
conclusion.

II. BACKGROUND

The RNS [1]-[3] is based on a moduli set {P{,P,, ...,Pn}
which consists of pair-wise relatively prime numbers. The
dynamic range is defined as M=P|P,...P,, which is refer to
the interval of integer numbers that can be represented in
RNS. A weighted number X<M has a unique representation
in RNS as (x4, X, ..., X;) where

Xi:XmodPi:|X|pi, 0<x <P. (1)

In the RNS with the 4-moduli set {P, P, P3, P4}, and
based on CRT-I algorithm [25],[28] the RNS number (X,
X2, X3, X4) can be converted into its corresponding weighted
number by

K (X, = X))+ K, Py (X5 = X,)

X=x+R 2)
+ KPPy (X4 — X5) BPP,
Where
|k1 x P1|P2P3P4 =1 ®)
ky xR x By, =1 )
37
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kxR xPxPyf, =1. )

The variable k;’s are called multiplicative inverses. The
simple form of the multiplicative inverses (powers of two
plus/minus one) could greatly reduce the hardware
complexity of the residue-to-binary converter. Due to this,
the moduli sets which can result in elegant multiplicative
inverses are more popular than others.

III. THE PROPOSED RESIDUE-TO-BINARY CONVERTER

In this section, we use the CRT-I formulas to achieve a
fast residue-to-binary converter for the moduli set {2", 2*""'—
1, 2"+1, 2"-1}. First, the needed multiplicative inverses are
calculated by the following Lemmas.

Lemma 1: The multiplicative inverse of 2" modulo (
1)x(2%"-1) is k;=—=2""+2"2""!

Proof: By considering (3), we have

‘kl x2"

2n+1
2 _

(22n+1 71)(22n -1

_ ‘(_23n+1 ApLEN 2n+1)>< N

(22n+1 71)(22n -1

_ ‘_(24n+1 _p2n+ 22n)
=D

Lemma 2: The multiplicative inverse of (2°""'-1)X2"
modulo (27"-1) is k,=2".
Proof: Substitution the required values in (4) results in

‘kz x2" % (22 )

gdn+l 20+l _o2n (6)

1

24n+l 722n+l 722n +1 =

220

n :|1><1
1

% (22n+1 _1) 1.

S ™
Lemma 3: The multiplicative inverse of (2"+1)X(2*""'—
1)X2" modulo (2"-1) is ky=2"".
Proof: Substitution the required values in (4) results in

‘k3 X« 2" (2™ 1) x (2" 4 1)

:‘2

920 _

2"-1

2" 2" (2™ X (2" + 1)

2"-1 .
=1 (®)
2"

Now, by considering {P,, P,, P5, P,}={2", 2*""'-1, 2"+1,
2"-1}, and substituting the values of multiplicative inverses
from Lemmas 1-3 to (2), we achieve the conversion
equation as

2" 1x1x2

(_23n+1+2n+2n+1)(X2_X1)
2
X =x +2" 42" 22" —1)(x, - x,)
n-1,~2n+1 n
2727 =12 +1)(x4—x3)(22n+lil)(22n71)
)

This equation can be simplified by the following
arithmetic properties, to achieve a high-performance
hardware design.

Property 1: Modulo (2°-1) multiplication of a residue
number by 2% where p and k are positive integers, is
equivalent to K bit circular left shifting [29].

Property 2: Modulo (2°-1) of a negative number is
accomplished by subtracting this number from (2°-1), i.e.
taking the one's complement of the number [29].

38
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Property 3: |aF’1|PlPZ =R x|a|P2 [30].

Next, we can consider the following bit-level
representations for the RNS number (X;, X, X3, X4)
corresponding to the moduli set {2", 2°"'—1, 2"+1, 2"-1}:

X = (Xpn1 X 02X %0), (10)
n bits
Xy = (X220 %220 17%2,1%20), (11)
2n+1 bits
X3 = (X30%3,017%31%3,0), (12)
n+1 bits
Xy = (Xgno Xan2Xa1%40); - (13)
n bits
In order to simplify (9), we can rewrite it as below
(_2n (22n+1 _ 1) 4 2n+1)(x2 _ X])
2n+1
X =x +2" 2" 27" = 1)(%; = X,)
n-1 2n+l n
+27 (2 D2 +1)(X, —X;) (212
(14)
Consequently, (14) can be rewritten again as
1
2" (X, — %))
2n+1
X =x +2" [+27" = 1)(-2"(x, = %))
n n-1,~n
27 (X = X,)+ 27 (27 +1D(X, = X3)) @My
(15)

Note that, X, and X, are always less than 2*""'—1 and 2",
respectively. So, we have

|x2 - x1|(22n+17” if X,-x 20
=X = 2n+l .

|x2 - x1|(22n+17” -2 -1) if x,—-x <0

(16)
Substituting (16) in (15) results in
n+1
2 |X2 - X1 H2n+ )

X =x +2" [+ 1) (h-2"(x, - x,)

2" = %) + 2" 2"+ 1)(x, = %))

0
h = { n+l1
-2 (18)

Similar to [13] and [16], we can reduce the size of
modulo operation from (2°"'-1)x(2*"-1) to (2°"~1) by using
Property 3, as follows

(22n+l _1)(22n -1)

amn

if x,-x20

if x,-%x <0

h-2"(x, - %)
X =x +2"(2"" — 1 [+2" (%, - x,)
el .(19)
+27 (27 +1)(x, —x3)22n71
n|4n+l
+2712 |X2 —X 920+l g (22 _1)22" -1y

is 2*™12, and also it is

The largest value of |X2 - X

22n+17]
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clear that
2" 22" Z 2y < 22" 2" -1 (20)
Therefore, we can rewrite (19) as
h-2"(x, - %)
X =x +2"2"" 2" (%, = x,)
. @D

22"+ DG =X)L

n n+l1
+2 x2 |x2—x1 o

Now, (21) can be easily simplified based on Properties 1
and 2. Hence, we rewrite (21) as follows

X =x +2"2"" -y 42" x 2™ (22)
Where
h—2"(x, = %) +2"(X; = X,)
= (23)
n-1 n
+27 (2 +1D)(X, = X3) 2
T:M—@fM44@+zﬁtl Q4)
X = L,l_l, X101 X2 X1 X0 (25)

hew
n+1 bits o b

Note that x;; means the jth bit of X;. Next, to simplify
(23), we evaluate each part of it separately as below

n+1
R, =|hzzt1 =‘— oo = —(0---0010---00)
n-2 n+1 22 (26)
=1---1101---11
[ S N —
n-2 n+l1
Rl = |2n Xl = 2” (()()0)(1 n—l'"xl lxl 0)
271 —_— 5 5
" n 2211 27
= X XX 000
n n
R, = |_2n+l X Pl _2n+1(xz,2n X2 2n-1"%2,1%2,0)

2n+1 220

(28)

n+l1 2n
=227 (Xo,00 27 X0 pn_1 X0 2n-2 %21 %0, 0)

2n 22n_1
It is clear that |22” o, = 1. So, (28) can be divided into
two parts as
n+l1 v
Ry = =27 (000X, 5p) =L 10X, L1 29)
2n-1 22N n-2 n+l
1
Ry = -2 (X2, 2n-1%2,2n-2"%2.1%2.0)
2n 22n_1
1
=2 (X2 2n-1"%2,n%2, 01X 2,02 %2,1%2,0) (30)
n+l1 n-1 220y

= X502 X1 %00 X 22017 X nXo 0t

n-1 n+l1

Also, for coefficients of X3, we have
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2n-1 _An-1 -1 ~2n-1
Ry =|(2"-2""" 2" o =|(2n 22", iy
(31)
-1 ~2n-1
= (2" 22" (X3 0 X5 0ot X5 1 %0)
nTnt e
n+l1 22N
-1
R31 = 2n (O‘“OOX}’n“'Xl]X&O)
n-1 n+l1 22N (32)
= X3 X3, %3000
| S v
n+1 n-t
R, = [-22""(0--00
n = (000X 3 X3 1X3.9)
n-1 n+l 220 (33)
=X 1;;Ll,is,n X3 Xy

n-1 —mmm—
n

Also, to substitute the needed modular multiplications by
X4, with circular left shifting, we have

R, =2 @"+1yx,

2211

n-1,~4n
=127 (27 DX 4 ot Xan-2Xa 1% 0)
Jandmn-2 MMl
n 22n_1

(34)

n-1
=27 (X4 01 Xa1%4,0 X 4 021 X4 1 %4, 0).

n n

22"

= X4,0 X4,n-1"'x4,1x4,0 X4,n-1"'X4,2X4,1

n n-1
Before adding these simplified binary vectors, we can
combine (29) and (33), since they have some constant bits
with value of one. Hence, the following vectors can be used
instead of (29) and (33),

Ry =[t1f =P, =0 (35)
p 220y
Ry, = 73,0 1;,llfz,znlya,n "'73,273,1 (36)
n-3 %f—/
n
Therefore, (23) can be calculated using this equation

R +R,,+R;+R:,+Ry ). 20 if X,—x;>0
_ Ri+Ry+R3; +RE; 4‘22 1 _ 27%=0 (37)

\R0+Rl+R22+R31+R3’2+R4\22n71 if X,—x<0

Finally, the main conversion equation, i.e. (22), can be
rewritten as

X =x +2"@"" -y + 2" x2™T G8)
=x +2" "M T 2" Y vy = x +2"2
Where
Z=27Z,+7Z,+(Z;+1) (39)
Z,=2""T=0---00T,, ---T,T,0---0Q (40)
n-1 T n+l
2n+1
Z,=2""y =Y, Y)Y, 0---00 (41)
2n+1
2n
23:\7:1...11?271...?1*0. (42)
2n+l1 Lz?]_/

39
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Numerical Example: Consider the moduli set {8,127,9,7}
which is an special case of the moduli set {2", 2*""'—1, 2"+1,
2"-1} for n=3. To convert the RNS number X=(5,31,8,4)
into its corresponding weighted binary representation, we
have

X, =5=(101),

X, =31=(0011111),
X, =8 = (1000),

X, = 4 = (100),

Based on (26) to (37), Y can be computed as
R, = (101000), =40

Ry, = (001000), =8
Ry, = (100000), =32
R}, = (111011), = 59
R, =(010010), =18
Y =[40+8+32+59+18| , =31

Note that, Ry is not considered due to X, —X; = 0. Next,

with considering (24), T can be obtained using

T =|31—5|127 =26

Finally, based on (22), the final weighted number X can
be simply calculated as
X =5+8x127x31+8x16x26 =34829

The result can be verified as below
X, =[34829] =5

=31

X, =[34829]

X, = [34829], =8

X, =[34829], =4.

IV. HARDWARE IMPLEMENTATION AND COMPLEXITY
COMPUTATION

Hardware architecture of the proposed residue-to-binary
converter for the moduli set {2n, 22n+1-1, 2n+1, 2n—1} is
depicted in Fig. 1. The main conversion equations which
should be realized in hardware are (24) and (37)-(39). First,
the operand preparation unit 1 (OPU 1) prepares the binary
vectors of (25) to (36) using some inverter gates and
changing the wiring of the input operands. Next, a (2n+1)-
bit carry-propagate adder (CPA) with end-around carry
(EAC) [31] is used to realize (24). Also, based on the
method of [13] and [16], (37) is also implemented using four
carry-save adders (CSAs) with EAC [31], [32] followed by
two CPAs with EAC, and a multiplexer (MUX) to obtain the
correct value of Y, according to the sign of x2—x1. Hence,
the select line of MUX is connected to the carry-out of
CPAL.

40
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TABLE I. DETAILS OF THE HARDWARE REQUIREMENTS OF
THE PROPOSED REVERSE CONVERTER

XNOR XOR
Part NOT FA /O_R /AND Delay
pairs pairs
OPU1 4n+2 - - - tnor
CPAl - n n+l - (4n+2)tra
CSA1 - n - n tra
CSA2 - n+1 - n-1 tra
CSA3 - n+2 n-2 - tra
CSA4 - - 1 2n-1 tra
CPA2 - 2n - - (4n)tea
CPA3 - 2n - - (4n)tea
OPU2 2n - - - tyor + tvux
CSAS - - 2n 2n+1 tra
CPA4 - 4n+1 - - (4n+1)tpa

It should be noted that, some of the full adders (FAs) of
the CSAs are reduced to pairs of XNOR/OR or XOR/AND
gates, based on the number of constant bits of the operands.
Moreover, implementation of (39) relies on a regular CSA
followed by a simple CPA. Note that, before adding the
output vectors of CSAS5, the carry vector (C) of CSAS
should be shifted to left, and then the most significant bit of
the shifted carry vector will be ignored. Finally, realization
of (38) can be done by a concatenation. Table I presents the
details of the hardware requirements of the converter.

Note that, although the total delay of CPA1 is (4n+2)tps
(tpa denotes the delay of one FA), the carry of first round
addition of CPA1 will be available after (2n+1)tg,, and it is
less than the delay of CPA2 or CPA3. Thus, the total delay
of the proposed design can be obtained as follows

Delay = tyor + (4+4N)tps + tyux + tvor + (1+H40+1Dtgs

= (8N+6)tpa2tnormux -

(43)

Now, we compare the hardware complexity of proposed
design with the original residue-to-binary converter of the
moduli set {2n—1, 2n, 2n+1, 22n+1-1} which has been
proposed in [25]. Note that comprehensive comparison
between the other existing converters for large dynamic
range moduli sets have been presented in [25]. Table II
shows the total hardware requirements and conversion
delays of the converters in terms of FAs and logic gates. It
can be seen that the proposed design is considerably faster
than [25]; however, our converter relies on more hardware
requirements. It should be noted that the delay of residue-to-
binary is very important in an RNS system. Because, as
indicated in [9], increasing the delay of residue-to-binary
converter can counteract the speed gain of RNS arithmetic
unit.

TABLE II. HARDWARE COMPLEXITY COMPARISON

Converter Hardware requirements Cog‘éf;';'on
(8n+2)Aga + (N-1)Axor + ("-1)Aanp
[25] + (4n+1)Axnor H(4N+1)Aor +(31t2n+2tFA
+ (7n+1)Anor + (N)Amuxax NOTTIMUX
(12n+4)Aga + (6n—1)Axor + P
Proposed (6n—1)A anpH(4N)A xnor H(4N)Aor ot thFA
+ (6n+2)Axor + (2NAmuxe NOTTEMUX




Advances in Electrical and Computer Engineering

X X,
/n% 2n +%

n

Volume 11, Number 2, 2011

X3 X4
u% %

Operand Preparation Unit 1

R, Ry, L

~12n
A

R, P
P ~12n
A A A\ 4
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X
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(modulo (22n+1—1) adder)

T

//

2n +1

v

A4

2n-bit CSA4 with EAC
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A
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(modu

lo (22"-1) adder)

y
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A
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Figure 1. The proposed reverse converter

V. CONCLUSION

A new high-speed residue-to-binary converter for the
moduli set {2"-1, 2", 2"+1, 2°"'—1} is designed. The
proposed converter has been implemented using full-adders
and logic gates, with significantly lower conversion delay,
compared to the original residue-to-binary converter of the
moduli set {2"-1, 2", 2™1, 2*™'-1}. Therefore, it is
expected that this new residue-to-binary converter increases
the popularity and applicability of the moduli set {2"-1, 2",
2"+1, 21} to use in RNS-based computation systems to
provide speed enhancement.
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