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1Abstract—The residue number system (RNS) is an 

unconventional number system which can be used to achieve 
high-performance hardware implementations of special-
purpose computation systems such as digital signal processors. 
The moduli set {2n–1, 2n, 2n+1, 22n+1–1} has been recently 
suggested for RNS to provide large dynamic range with low-
complexity, and enhancing the speed of internal RNS 
arithmetic circuits. But, the residue-to-binary converter of this 
moduli set relies on high conversion delay. In this paper, a new 
residue-to-binary converter for the moduli set {2n–1, 2n, 2n+1, 
22n+1–1} using an adder-based implementation of new Chinese 
remainder theorem-1 (CRT-I) is presented. The proposed 
converter is considerably faster than the original residue-to-
binary converter of the moduli set {2n–1, 2n, 2n+1, 22n+1–1}; 
resulting in decreasing the total delay of the RNS system. 
 

Index Terms—Residue Number System (RNS), residue-to-
binary converter, digital circuits, computer architecture, high-
speed computer arithmetic. 

I. INTRODUCTION 

The residue number system (RNS) is a carry-free number 
system with capability of providing parallel arithmetic. The 
potentiality of RNS to perform addition, subtraction and 
multiplication without carry-propagation between residue 
digits, makes it suitable for reducing the power dissipation 
in high-performance digital computing systems [1]-[4]. The 
RNS has a wide range of applications; especially in digital 
signal processing computations such as FIR filters [5]-[8].  

Each RNS system is based on moduli set, and includes 
binary-to-residue converter, arithmetic unit which includes 
parallel modulo arithmetic circuits, and residue-to-binary 
converter [9], [10]. Among all of these, designing residue-
to-binary converter is the most complex process which 
attracts researchers for many decades. The performance of 
the residue-to-binary converter is drastically depends on the 
moduli set as well as the selected conversion algorithm. As a 
result, many special moduli sets and conversion algorithms 
have been recommended for constructing residue-to-binary 
converters.  

The most prominent moduli set is {2n–1, 2n, 2n+1} [11], 
[12]. Moreover, modulo (2n+1)-free 3-moduli sets {2n–1–1, 
2n–1, 2n} [13], [14], {2n–1, 2n, 2n+1–1} [15], [16] have been 
introduced. Recently, it is shown that non-traditional 3-
moduli sets such as {22n, 2n–1, 2n+1–1} and {22n, 2n–1, 2n–1–
1} [17] could significantly reduce the complexity of the 
residue-to-binary converter. However, due to the increasing 
demand of some applications for larger parallelism and 
dynamic range, the Four-moduli sets {2n–1, 2n, 2n+1, 
2n+1±1} [18]-[20] and {2n–3, 2n+1, 2n–1, 2n+3} [21], [22] 
were used as balanced moduli sets for RNS. However, 
inefficient multiplicative inverses of these sets resulted in 

complex converter architectures. Due to this, the well-
formed moduli sets {2

 

 

 

n–1, 2n, 2n+1, 22n+1} [23], {2n–1, 
2n+1, 22n–2, 22n+1–3} [24], {2n–1, 2n, 2n+1, 22n+1–1} and {2n–
1, 2n+1, 22n, 22n+1} [25] have been considered in the recent 
years. Although these sets do not include balanced moduli, 
their multiplicative inverses are very simple. Moreover, 
some five-moduli sets with popular moduli have been also 
investigated in the recent years [26], [27]. 

It is expected that the moduli set {2n–1, 2n, 2n+1, 22n+1–1} 
plays an important role in designing efficient RNS systems 
for using in the high-performance DSP and real-time 
systems with high computation load, due to its particular 
features. However, the residue-to-binary converter of this 
moduli set that is presented in [25], has high conversion 
delay, mainly because of using new Chinese remainder 
theorem-2 (CRT-II), and its two-level hardware architecture.  

In this paper, a fast one-level hardware design for the 
residue-to-binary converter of the moduli set {2n–1, 2n, 
2n+1, 22n+1–1} through the use of new Chinese remainder 
theorem-1 (CRT-I) is introduced. This new converter 
considerably reduces the delay of residue-to-binary 
conversion, compared to the converter of [25]. 

In the next, a brief introduction to RNS and CRT-I is 
presented in Section II. Section III describes the CRT-I-
based conversion equations for the four-moduli set {2n–1, 
2n, 2n+1, 22n+1–1}. Hardware implementation of the residue-
to-binary conversion equations as well as complexity 
computation is presented in Section IV, and Section V is 
conclusion. 

II. BACKGROUND 

The RNS [1]-[3] is based on a moduli set {P1,P2, …,Pn} 
which consists of pair-wise relatively prime numbers. The 
dynamic range is defined as M=P1P2…Pn, which is refer to 
the interval of integer numbers that can be represented in 
RNS. A weighted number X<M has a unique representation 
in RNS as (x1, x2, …, xn) where

ii
iPii PxXPXx  0   , mod .             (1) 

In the RNS with the 4-moduli set {P1, P2, P3, P4}, and 
based on CRT-I algorithm [25],[28] the RNS number (x1, 
x2, x3, x4) can be converted into its corresponding weighted 
number by 
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The variable ki’s are called multiplicative inverses. The 
simple form of the multiplicative inverses (powers of two 
plus/minus one) could greatly reduce the hardware 
complexity of the residue-to-binary converter. Due to this, 
the moduli sets which can result in elegant multiplicative 
inverses are more popular than others. 

III. THE PROPOSED RESIDUE-TO-BINARY CONVERTER 

In this section, we use the CRT-I formulas to achieve a 
fast residue-to-binary converter for the moduli set {2n, 22n+1–
1, 2n+1, 2n–1}. First, the needed multiplicative inverses are 
calculated by the following Lemmas.  

Lemma 1: The multiplicative inverse of 2n modulo (22n+1–
1)×(22n–1) is k1=–23n+1+2n+2n+1. 

Proof: By considering (3), we have 
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Lemma 2: The multiplicative inverse of (22n+1–1)×2n  
modulo (22n–1) is k2=2n. 

Proof: Substitution the required values in (4) results in 
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Lemma 3: The multiplicative inverse of (2n+1)×(22n+1–

1)×2n   modulo (2n–1) is k3=2n–1. 
Proof: Substitution the required values in (4) results in 
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Now, by considering {P1, P2, P3, P4}={2n, 22n+1–1, 2n+1, 
2n–1}, and substituting the values of multiplicative inverses 
from Lemmas 1-3 to (2), we achieve the conversion 
equation as  
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(9) 
This equation can be simplified by the following 

arithmetic properties, to achieve a high-performance 
hardware design.  

Property 1: Modulo (2p–1) multiplication of a residue 
number by 2k, where p and k are positive integers, is 
equivalent to k bit circular left shifting [29]. 

Property 2: Modulo (2p–1) of a negative number is 
accomplished by subtracting this number from (2p–1), i.e. 
taking the one's complement of the number [29]. 

Property 3: 
1 2 2

1 1P P P
aP P a   [30]. 

Next, we can consider the following bit-level 
representations for the RNS number (x1, x2, x3, x4) 
corresponding to the moduli set {2n, 22n+1–1, 2n+1, 2n–1}: 
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In order to simplify (9), we can rewrite it as below 
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Consequently, (14) can be rewritten again as 
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Note that, x2 and x1 are always less than 22n+1–1 and 2n, 

respectively. So, we have 
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Substituting (16) in (15) results in 
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Similar to [13] and [16], we can reduce the size of 
modulo operation from (22n+1–1)×(22n–1) to (22n–1) by using 
Property 3, as follows 
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The largest value of  2 122 1 nx x  


1
 is 22n+1–2, and also it is 
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clear that 
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Therefore, we can rewrite (19) as 
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Now, (21) can be easily simplified based on Properties 1 
and 2. Hence, we rewrite (21) as follows 
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Note that xi,j means the jth bit of xi. Next, to simplify 
(23), we evaluate each part of it separately as below 
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Also, to substitute the needed modular multiplications by 
x4, with circular left shifting, we have 
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Before adding these simplified binary vectors, we can 
combine (29) and (33), since they have some constant bits 
with value of one. Hence, the following vectors can be used 
instead of (29) and (33), 
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Therefore, (23) can be calculated using this equation 
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Y

R R R R R R if x x








     


      
 .      (37) 

Finally, the main conversion equation, i.e. (22), can be 
rewritten as 

2 1 1
1

1 2 1
1 1

2 (2 1) 2 2

  2 (2 2 ) 2

n n n n

n n n n

X x Y T

x T Y Y x

 

 

    

      Z

)

     (38) 

Where 

1 2 3( 1Z Z Z Z            (39) 

 
1

1 2 1
1 1

2 1

2 0 00 0n
n

n n
n

Z T T T T

 


0 00                 (40) 


2 1

2 2 1 1 0
2 1

2

2 0n
n

n
n

Y YZ Y Y




00              (41) 

3 2 1
2 1

2

1 11 n
n

n

Y Y1 0Z Y Y


        .       (42) 
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Numerical Example: Consider the moduli set {8,127,9,7} 
which is an special case of the moduli set {2n, 22n+1–1, 2n+1, 
2n–1} for n=3. To convert the RNS number X=(5,31,8,4) 
into its corresponding weighted binary representation, we 
have 

1 25 (101)x    

2 231 (0011111)x    

3 28 (1000)x  
 

4 24 (100)x  
.
 

Based on (26) to (37), Y can be computed as 

1 2(101000) 40R    

22 2(001000) 8R    

31 2(100000) 32R    

32 2(111011) 59R    

4 2(010010) 18R    

63
40 8 32 59 18 31Y      

. 

Note that, R0 is not considered due to . Next, 

with considering (24), T can be obtained using 
2 1 0x x 

 
127

31 5 26T   
. 

Finally, based on (22), the final weighted number X can 
be simply calculated as  

5 8 127 31 8 16 26 34829X         . 
The result can be verified as below 

1 8
34829 5x    

2 127
34829 31x    

3 9
34829 8x    

4 7
34829 4x   . 

IV. HARDWARE IMPLEMENTATION AND COMPLEXITY 

COMPUTATION 

Hardware architecture of the proposed residue-to-binary 
converter for the moduli set {2n, 22n+1–1, 2n+1, 2n–1} is 
depicted in Fig. 1. The main conversion equations which 
should be realized in hardware are (24) and (37)-(39). First, 
the operand preparation unit 1 (OPU 1) prepares the binary 
vectors of (25) to (36) using some inverter gates and 
changing the wiring of the input operands. Next, a (2n+1)-
bit carry-propagate adder (CPA) with end-around carry 
(EAC) [31] is used to realize (24). Also, based on the 
method of [13] and [16], (37) is also implemented using four 
carry-save adders (CSAs) with EAC [31], [32] followed by 
two CPAs with EAC, and a multiplexer (MUX) to obtain the 
correct value of Y, according to the sign of x2–x1. Hence, 
the select line of MUX is connected to the carry-out of 
CPA1.  

 
 
 
 

TABLE I. DETAILS OF THE HARDWARE REQUIREMENTS OF 

THE PROPOSED REVERSE CONVERTER 

Part NOT FA 
XNOR 

/OR  
pairs 

XOR 
/AND 
pairs 

Delay 

OPU1 4n+2 – – – tNOT 

CPA1 – n n+1 – (4n+2)tFA 

CSA1 – n – n tFA 

CSA2 – n+1 – n–1 tFA 

CSA3 – n+2 n–2 – tFA 

CSA4 – – 1 2n–1 tFA 

CPA2 – 2n – – (4n)tFA 

CPA3 – 2n – – (4n)tFA 

OPU2 2n – – – tNOT + tMUX 

CSA5 – – 2n 2n+1 tFA 

CPA4 – 4n+1 – – (4n+1)tFA 

 
It should be noted that, some of the full adders (FAs) of 

the CSAs are reduced to pairs of XNOR/OR or XOR/AND 
gates, based on the number of constant bits of the operands. 
Moreover, implementation of (39) relies on a regular CSA 
followed by a simple CPA. Note that, before adding the 
output vectors of CSA5, the carry vector (C) of CSA5 
should be shifted to left, and then the most significant bit of 
the shifted carry vector will be ignored. Finally, realization 
of (38) can be done by a concatenation. Table I presents the 
details of the hardware requirements of the converter.  

Note that, although the total delay of CPA1 is (4n+2)tFA 
(tFA denotes the delay of one FA), the carry of first round 
addition of CPA1 will be available after (2n+1)tFA, and it is 
less than the delay of CPA2 or CPA3. Thus, the total delay 
of the proposed design can be obtained as follows 

Delay = tNOT + (4+4n)tFA + tMUX + tNOT + (1+4n+1)tFA  

 

ter can counteract the speed gain of RNS arithmetic 
unit.  

 
LE II. H  COMPARI

Co er 
Conversion  

                = (8n+6)tFA+2tNOT+tMUX .    

   (43) 

Now, we compare the hardware complexity of proposed 
design with the original residue-to-binary converter of the 
moduli set {2n–1, 2n, 2n+1, 22n+1–1} which has been 
proposed in [25].  Note that comprehensive comparison 
between the other existing converters for large dynamic 
range moduli sets have been presented in [25]. Table II 
shows the total hardware requirements and conversion 
delays of the converters in terms of FAs and logic gates. It 
can be seen that the proposed design is considerably faster 
than [25]; however, our converter relies on more hardware 
requirements. It should be noted that the delay of residue-to-
binary is very important in an RNS system. Because, as 
indicated in [9], increasing the delay of residue-to-binary 
conver

TAB ARDWARE COMPLEXITY SON 

nvert Hardware requirements 
delay 

[25] 
(8n+ AND  

(12n+5)tFA 

+  

2)AFA + (n–1)AXOR + (n–1)A
+ (4n+1)AXNOR +(4n+1)AOR   3tNOT+tMUX + (n)A+ (7n+1)A MUX2×1 NOT

Proposed (6n–1)AAND+(4n)AXNOR +(4n)AOR   
+ (6n+2)ANOT + (2n)AMUX2×1 

(8n+6)tFA 

+2tNOT+tMUX 

(12n+4)AFA + (6n–1)AXOR +  
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Figure 1. The proposed reverse converter 

 

V. CONCLUSION 

A new high-speed residue-to-binary converter for the 
moduli set {2n–1, 2n, 2n+1, 22n+1–1} is designed. The 
proposed converter has been implemented using full-adders 
and logic gates, with significantly lower conversion delay, 
compared to the original residue-to-binary converter of the 
moduli set {2n–1, 2n, 2n+1, 22n+1–1}. Therefore, it is 
expected that this new residue-to-binary converter increases 
the popularity and applicability of the moduli set {2n–1, 2n, 
2n+1, 22n+1–1} to use in RNS-based computation systems to 
provide speed enhancement. 
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