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Acarefully structured practical queue-modelling assignment improves the understanding of queueing theory
and teaches modelling and data-analysis skills. The assignment also demonstrates that it may be better to

use models to estimate operating characteristics such as mean waiting times, even in circumstances where the
system in question and the characteristics can be directly observed.
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1. Introduction
For most operations research (O.R.) techniques, a lec-
turer cannot expect students to carry out a complete
application of the technique, from gathering the data
to fitting the model. For many techniques, accessible
examples where the students can also collect the data
themselves simply do not exist.

Fortunately for queueing theory, examples of
queues are all around us. I gratefully seize this oppor-
tunity to demonstrate the relevance of what I teach.
For the last 20 years, I have had students in a 300-
level O.R. class find an actual queue, collect data from
it, and use the data to fit a theoretical model. They
compare values of the measured queue characteristics
with those predicted by the most appropriate model
that they can manage. In spite of the students’ limited
range of models, the small amount of data they have
time to collect, and their very limited knowledge of
statistics and probability, the results of the assignment
are often surprisingly good. The assignment exposes,
and I hope helps correct, a gap in our business stu-
dents’ education when it comes to practical data gath-
ering and analysis.

The ubiquity and accessibility of queues make them
important and attractive models in the O.R. cur-
riculum. In this journal, Mandelbaum and Zeltyn
(2010) have described the development of a ser-
vice engineering course largely based on queues,
which features extensive data analysis. Ingolfsson and
Grossman (2002) used spreadsheet simulations and
graphs to demonstrate emergent properties of queues,
also based on real data. The principal contribution of

this teaching note is to show how the simple assign-
ment described here is set up to have a strong forma-
tive component (Wikipedia 2011). Students are given
a prescribed set of steps to follow and programs to
use, and the assignment is structured so that along the
way there are some checks on the calculations (§7) to
ensure that the learning outcomes (§3) are achieved.
The conventional approach when fitting a model to
any kind of observable system would be to validate
it by showing that the fitted model produces simi-
lar results (e.g., mean waiting times in this case) to
those directly observed from an independent sample.
As we shall see in §5, this method does not actually
work here, or at least is very unreliable. Therefore,
I must rely on other comparisons, calculations and
demonstrations to achieve some of the learning out-
comes. The reason why this validation method does
not work, discussed in §5, shows students that even
modest models have advantages, possibly even over
direct observation of some characteristics.

2. The Students
The students, in a business school, have had two
statistics courses but nothing previously on applied
probability. We cover Markovian models, Erlang dis-
tributions (phase- or stage-type models), and the
Pollaczek-Khinchin (P-K) formula for M/G/1 queues
(Gross et al. 2008, §5.1) in this course. In preparation
for this assignment, we cover the basics of stochastic
processes, renewal and Poisson processes, and fitting
distributions to data, in three lectures plus a tutorial.
Almost all the material in §§3–6 of this note is dis-
tributed to the class before the assignment, either as
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part of the course reader for lectures (§§5, 7, and the
appendix), the tutorial (§6), or in the instructions for
the assignment (§§3 and 4). By structuring the prob-
lem, prescribing the steps, and providing suitable pro-
grams, I find that I can expect almost all of them to
successfully fit the parts of a queueing model and
practically explore the relationships between time and
state processes.

3. Organization of the Assignment
In the instructions, students are required to

Observe an actual queue. Collect enough data to fit
a theoretical queueing model to your situation. Anal-
yse the data following the steps described in lectures.
Estimate the interarrival time and service time distri-
butions from your data.

Fit what you feel to be the most appropriate theoret-
ical model (or models) of those we have studied.

Measure the operating characteristics: the mean
waiting time, the mean queue length, the state- and
waiting-time distributions, by direct calculation from
the data set and compare them with the theoretical
values from your model. Reflect on the agreement
between your observed and theoretical results.

Because the assignment does involve a number of
steps, I allow students to work in pairs if they wish.
Most do. They must seek permission from the rele-
vant organisation to measure any queue that is not in
a public space. Banks, especially, can be particularly
sensitive about strangers observing them, and are
probably best avoided. Students hand in the assign-
ment electronically, including data files and analyses,
so I can check their analyses if necessary. If the data
have been recorded on paper, I also ask to see the
original data sheets.

The two spreadsheets described in §5 are made
available as examples for students to copy or mod-
ify. A set of spreadsheets for calculating steady-state
queueing formulas, similar to those bundled with
most O.R. texts, and the program mek1.m (a Matlab
implementation of a simple direct approach to finding
the state- and waiting-time distributions for M/Ek/1
queues) are available for them to use. The derivation
of the formulas for mek1.m (in the appendix) is cov-
ered when we reach phase-type models by extend-
ing the derivation of the waiting-time distribution for
the M/M/1 queue. Matlab may seem a strange choice
for a business school, but most of my students have
already encountered it in math courses. For those who
have not, it only takes a brief demonstration to give
them enough skills to get results out of mek1.m. I also
use Matlab to teach Markov chains, where I find that
its matrix orientation makes it very effective.

Four learning outcomes can be identified:
• the ability to measure and record real data;
• the ability to fit particular stochastic processes to

real data;

• the ability to distinguish between time and event
averages, to empirically validate Little’s formula and
other formulas for queueing characteristics, and to
plot state- and waiting-time distributions;

• An appreciation of the value of even modest
models in predicting emergent behaviour.

The average reported time to complete the assign-
ment is 16 hours.

4. Selecting the Queue
Some general advice in the assignment relates the
assumptions in the theoretical models that we have
studied to the properties of appropriate queues:

• The situation should be unconstrained—no
balking, reneging, abandonment, retrials, or state-
dependent behaviour.

• The situation must have a clearly defined queue,
with clearly defined service times, and each server
must serve and complete only one customer at a time.

Most fast-food stores, for example, do not sat-
isfy this assumption because the food is ordered
and collected in separate actions. Generally, “peo-
ple” queues can be a problem if there is com-
plex customer behaviour. Supermarkets with several
checkouts may not work well. Queue-selection deci-
sions are complex, lanes open and close, and bag-
gers move from lane to lane so that the service rate
changes. Cars are often better behaved. My students
find the queue of vehicles leaving a car park where
customers pay on exiting is often a reliable choice.
Queues at stop signs can work. Coffee shops, gas sta-
tions, and library issue desks are other possibilities.
Single-queue multiple-server models can work well,
even though the only practical models students have
are M/M/C or M/M/C/N , and the data-gathering
is more complex. However almost all the students
choose a single-server queue, so I will assume this
from now on. Some other points of advice are:

• All of our models assume Poisson arrivals. At
the least we must have renewal arrival processes,
so avoid systems where arrivals can be bunched—
such as road traffic downstream from traffic lights or
stop signs.

• Pick a time when it is reasonable to assume that
the arrival rate is constant. Modelling a café from
11 a.m. to 1 p.m. is usually not a good idea, because
it is pretty much guaranteed to break this rule with
different arrival rates from 11 a.m. to 12, and 12 to
1 p.m. Because queueing characteristics are nonlinear
(often hyperbolic in the traffic intensity), modelling
with averaged parameters does not give the average
answer.

• The arrival process must be independent of the
state of the system (fixed finite capacity is the one
possible exception) and of the service-time process.
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Examples that break this rule include ATMs in busy
shopping malls, which may be almost always busy
but have little queueing (state-dependent arrivals),
and drive-in fast-food stores where there is little space
between the ordering and food-collection windows
(blocking, balking, and non-Poisson arrivals at the
collection window).

• A traffic intensity of about �= 005 is good, giving
both some queueing and easy data collection.

5. Collecting the Data
Two questions immediately arise: What data should I
actually collect? How much data do I need? The first
question is almost always “How many observations
do I need?” As usual, the answer is “How small a
confidence interval for the mean do you want?” For
a negative exponential distribution, I can expand this
answer because the mean and standard deviation are
equal. Therefore, if I want a 95% confidence interval
for the mean to be (say) 10% of the mean (a relative
precision of 10%), then 001 ≈ 1096/

√
N , or N = 384.

As a result, we start the discussion from this number.
This sample size comes as a shock to most students,
and we usually compromise on at least 100 observa-
tions, but they are required to calculate confidence
intervals for the means of the service and interarrival
times and make some assessment of the errors such
small samples will produce. Often this sample size of
about 100 is in fact dictated by the essential require-
ment to limit data collection to a period during which
the arrival rate is constant (384 arrivals take 6.4 hours
if they arrive at one per minute.)

Now is a good time to introduce the fact that for
serially correlated quantities like queue lengths or
waiting times, the confidence intervals are orders of
magnitude larger. From the formulas in Daley (1968),
the expected number of customers needed to give
estimated mean waiting times with relative precisions
of 10% or 5% in some simple queueing models can be
calculated with the aid of Maple, as shown in Table 1.

Table 1 Expected Number of Observations to Reach Relative
Precisions of 10% and 5% for the Mean Waiting Time

M/E6/1 M/E3/1 M/M/1
Traffic
intensity 10 (%) 5 (%) 10 (%) 5 (%) 10 (%) 5 (%)

0.1 71768 311072 81723 341890 111671 461687
0.2 51230 201919 51975 231903 81547 341190
0.3 41805 191220 51551 221204 81276 331105
0.4 51140 201561 51975 231903 91134 361537
0.5 61170 241684 71192 281769 111140 441562
0.6 81334 331337 91710 381842 151110 601441
0.7 131121 521485 151249 601998 231677 941710
0.8 261604 1061418 301786 1231144 471443 1891775
0.9 971166 3881664 1111797 4471190 1701268 6811072

Therefore, if you want to measure the average wait-
ing time in an M/M/1 queue with a traffic inten-
sity of 0.9 to an accuracy of about ±5%, you will
need to observe about 681,072 customers, and the rea-
son for this is mostly because the waiting times are
highly correlated. If I have waited 20 minutes in a
queue, there is a good chance the person behind me
will also wait for a similar amount of time—in fact,
the correlation between my and their waiting time
in this situation is 0.99043 (Daley 1968). Observing
681,072 customers arriving at (say) one-minute inter-
vals, takes nearly four years if you work an eight-hour
day! Even for the quite likely situation of an M/E3/1
queue with a traffic intensity of 0.5, 5% accuracy will
require 28,769 observations—two months’ work. This
is starting to suggest that even if direct measurement
of characteristics like waiting times is possible, it may
not be practical.

Another way of characterising this effect of corre-
lation is to show how bad the results are from direct
measurement on smaller samples. Figure 1 shows
the result of simulations of what happens if 1,000
observers were each to estimate the mean waiting
time by collecting samples of 100 successive waiting
times from an M/E3/1 queue with a traffic intensity
of 0.5.

The wide distribution of these estimated values
raises three interesting points. First, it shows it is dif-
ficult to prove that any particular queueing model
is right or wrong by direct observation of the queue
characteristics. Validation of the model can practically
only be done by showing that all of its parts (arrival
processes, service times, queue disciplines) are validly
modelled. Second, along with Table 1, it shows that
unless sample sizes are exceptionally large, a con-
fidence interval for the mean waiting time will be
so wide as to be useless (in addition, it shows that
the distribution of the average waiting times from
samples of 100 is still distinctly asymmetric; hence,

Figure 1 The Results of Directly Measuring Average Waiting Times in
an M/E3/1 Queue from Samples of 100 Waiting Times
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Figure 2 Estimating the Arrival Rate and Mean Service Time from
Samples of 100, Then Calculating Mean Waiting Times
from the P-K Formula
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An M /E3/1 queue with arrival rate = 1, 
   mean service time = 0.5.

a confidence interval will be difficult to calculate.)
Therefore, the conventional approach of validating
the model by showing that it produces similar results
to those directly observed from an independent sam-
ple of observations does not actually work here—or
at least is very unreliable.

A third point for discussion is that the uncertainty
in the results raises the possibility that if our queue
matches a theoretical model reasonably well, we will
do better by fitting the arrival and service distri-
butions and using the theoretical formula, than we
would by measuring the average queue length or
waiting time directly. Figure 2 shows the histogram
we get if the same 1,000 observers were to spend their
time estimating the arrival rate and mean service time
from samples of 100 observations and then used the
P-K formula to estimate the mean waiting time. The
histogram of estimated mean waiting times is much
narrower than that of the observed average waiting
times in Figure 1. Therefore, some good points can be
made for the value of using even modest models here.

The second question is “What data do I collect?”
Students should work out what they need to collect
before they start the assignment and design a form for
collecting it. The events in a queue are arrivals, entry
to service, and departures, so collecting the times of
these is one possibility. However, for the purposes
of this analysis, if customers are waiting, the depar-
ture time of one customer must correspond to the
entry to service time of the next, i.e., the times for
any dawdling at the service facility, time to move up
from the queue to the server,1 servers who talk to
colleagues, must be included in the “service times.”

1 There are, of course, numerous queueing models to exactly anal-
yse these situations, but they add too much complexity here. One
exception to this that students have used to analyse the situation
where a waiting customer takes an appreciable time to move up
to the server, whereas a customer arriving to an idle server goes

Therefore, for single-server queues, recording arrival
and departure times is both enough, and evades this
source of error.

If An, En, and Dn are the times of arrival, entry to
service, and departure for the nth customer, then all
the needed times can be found from:

1. the interarrival time between the n−1th and nth
customer is An −An−1;

2. En = max4An1Dn−15;
3. the service time of nth customer is Dn −En; and
4. the waiting time of the nth customer is En −An.
I encourage collection of the waiting-time data from

the same sample as will be used to estimate the
parameters. The uncertainty in the sampled average
waiting time is already large enough for the reasons
given above. As discussed previously, Table 1 and
Figure 1 show that validating the model from the
results of a small independent sample is unlikely to
work, whereas getting the queue characteristics from
the same sample allows exploration of how the char-
acteristics are made up from the data, and also gives
some handy checks on the calculations later on. Bet-
ter students do raise the possibility that they should
return to the system the next day to get a small
independent sample of waiting times for validation.
I of course support the idea in principle, but warn
them that as Figure 1 shows, the results of this are
often not very convincing.

Simultaneously recording the state (number of cus-
tomers in the system) at arrival and departure times
would be desirable, because we will need these data
to estimate the state distribution. This is, however,
often difficult and prone to errors if the system is
moving quickly. If they have not been collected, state
data can be reconstructed as follows. For general
queueing models the state distribution is estimated
by the fractions of time spent in particular states, and
L and Lq (the estimated mean number of customers
in the system, and in the queue) are time averages.
Therefore, we need the data to be able to calculate
these. Each arrival increases the state by 1, and each
departure reduces it by 1, so:

1. Put a column of 1s next to the arrival times and
−1s next to the departure times.

2. Merge the arrival and departure times into one
column, carrying along the 1s and −1s into the adja-
cent column.

3. Sort the single column of arrival and departure
times into increasing order by time, again carrying
along the relevant 1 or −1.

straight into service, is the variation on the P-K formula in Welch
(1964), which nicely handles queues where customers have an
appreciable move-up time.
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4. Now do partial sums of the column of 1s and
−1s. This is the state, and the difference between suc-
cessive times in the column of arrival and departure
times is the time spent in that state.

A spreadsheet that illustrates this process, and
also shows one method of sorting out the times
spent in particular states, is Estimating State
Distributions.xlsx.2

If you have a package that can do plots in a “stair”
or “step” style—Minitab or Matlab, for example—
students may like to plot the state against time and
check that the average height of this graph is L. This
is not essential but is good to see.

Increasingly, students competent with Microsoft
Excel write macros to record times directly into a
spreadsheet. A simple one that records arrival and
departure times in the hr:min:sec format is attached
as Time Recorder.xlsm. Although this simplifies data
recording, students have to be careful to ensure that
no events are missed. Paper recording of arrival, entry
to service time, and departure times is possibly safer,
in that missed events are more likely to be spotted.

Although Excel is adequate for recording the data
and calculating interarrival and service times, a pro-
per statistical package makes data analysis and graph-
ing a lot easier. Of the major packages, Minitab seems
best at the tasks, although SPSS and SAS can do most
of them. In Excel it pays to first change the cell for-
mat to General to convert hr:min:sec data to fractions
of a 24-hour clock and to further convert this to, say,
decimal minutes. This gives numbers that are more
intuitive and that are also safer to use in formulas or
to cut and paste between the packages. An example
of what can happen when formats are mixed is that
if hr:min:sec data is squared in Excel, say to calcu-
late the variance of the service times for the P-K for-
mula, Excel automatically converts it to units of frac-
tions of a 24-hour-clock squared, so errors calculating
the P-K formula are possible here. The discussion of
Figure 5 in §6.1 also shows how the small size of times
measured in 24-hour-clock units has the potential to
mislead.

Students must do some analysis promptly after
they collect their data if they want to avoid unpleas-
ant surprises later. This should include histograms,
and a table of means, standard deviations, and coef-
ficients of variation (CV), for both the interarrival
and service times. For there to be any chance of a
Poisson arrival process, we need a CV close to 1.
An idea of how close “close to 1” is can be found
by using the fact that the reciprocal of the CV is
a scaled and shifted version of the statistic used
in the t-distribution. Therefore, for a process with

2 This and the other two supplemental files are available from
http://ite.pubs.informs.org/.

a CV of 1, 95% of the CVs estimated from sam-
ples of N observations should fall in an interval
81/41 + 1096/

√
N511/41 − 1096/

√
N59. For N = 100 this

interval is 8008361102449. Estimated arrival CVs out-
side this range should cause closer examination of the
data and the situation. At this point they should also
draw the plots for checking stationarity and indepen-
dence (Figures 4–6 in §§6.1 and 6.2) to guard against
being caught later by some of the data problems that
these figures may show up. If there are serious prob-
lems, the best advice at this point may be to either
re-collect the data or find another system, to guar-
antee that the formative aims of the assignment are
achieved.

6. Fitting the Parts of the Model
Good references for fitting and estimation from which
much of this section is adapted are the early edi-
tions of Gross and Harris (1st edition 1974, §7.1, 2nd
edition 1985, §6.6), Hall (1991, Chapters 2 and 3),
and Law (2007). Discrete-event simulation texts often
have similar material because the data analysis and
distribution-fitting requirements of queueing and sim-
ulation are similar. Monte Carlo and some discrete-
event simulation software come with automated
distribution fitters such as ExpertFit and Stat:Fit.
These do a good job of distribution fitting, but may
recommend distributions that are too complex to
be of value, or that allow negative interarrival or
service times.

Simplicity and automation are essential here if the
assignment is not to become too difficult.3 I teach esti-
mation by moments, graphical analysis, and the use
of whatever tests are included in the available statisti-
cal packages. Students estimate means (and variances)
only, and I avoid the mention of rates during the data
analysis phase because they can cause confusion, and
in any case students do not yet know that they have
any Poisson processes.

Because this is both a summative and formative
assignment, I give an explicit set of analysis steps
for students to follow, summarised in the flow chart
in Figure 3, and then work with them on any spe-
cific problems that these throw up. For example,
if a student finds that their service times have a
hyperexponential distribution, then I first get them
to complete the assignment with the best model they
have—M/M/1 in this case. Then I calculate the wait-
ing time and state distributions for an appropriate
M/H2/1 model, and give them the formulas for these
to improve their answer.

3 Much has been published on statistical analysis for queues. See,
for example, Bhat et al. (1997). However, the results are often very
specific to particular theoretical models, and are often difficult to
explain or implement at this level.
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Figure 3 A Flow Chart for the Modelling Process

1. Constant
rate or mean?

Process isn‘t speeding up
or slowing down

over time.

Renewal
processes.

3. Find a “reasonable” distribution for
service and interarrival times, taking
into account available theory, and
trade-off of difficulty vs. benefit.

We have a Poisson
arrival process and
can calculate mean
characteristics with

the P-K formula.

2. Successive intervals
(or service times)

 independent?

Yes Yes

Are
interarrival times

negative
exponential?

We hope yes

How To Do the Queue Assignment
(This will not cover all situations)

Enter data in Excel (if you wish).
Cut and paste to a statistical
package strongly advised.

Check
processes for

Are
service times negative

exponential?
(C.V. = 1).

Fit closest Erlang; use M /Ek /1
program to calculate theory
distributions; compare with

observed distributions.

Probably not, but we can
fit state and waiting-time

distributions by:

1 and 2 are often
related—fixing 1 may fix 2.

If there is a period when the rate
or mean is constant, you may be
able to use only data from this

and/or do a “peak-time” analysis.

If not, you may have to
re-collect data or choose

another situation.

No
No

If not, you may have to
choose another

situation.

Students need to check these three basic
assumptions:

1. The processes are stationary: i.e., the mean
time between events is constant as time passes.
Arrival processes, in particular, often do not have this
property.

2. Successive interarrival or service times are inde-
pendent (uncorrelated).

3. Interarrival and service times are compatible
with particular probability distributions.

If they get positive answers to 1 and 2, their results
are compatible with a renewal process, and if in

addition the “particular distribution” in 3 is negative
exponential, they have a Poisson process.

6.1. Testing for Stationarity
Following Hall (1991), we plot the arrival number
(vertical axis) against the arrival time (horizontal axis)
to check that the arrivals satisfy Assumption 1.

What we are looking for is that the slope of this
graph (the arrival rate) does not change over time.4

4 All the graphs from here on are taken, with permission, from
actual assignments. They have been left as the students submitted
them, aside from some minor editing of titles.
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Figure 4 An Unsatisfactory Plot of Arrival Number Against Arrival Time
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Figure 4 shows a considerable deviation from this
assumption. Up to 10 a.m., the arrival rate (at a
mobile phone service store at Christchurch Airport) is
0.51 customers per minute. After 10 a.m. it suddenly
increases to about 0.78 customers per minute, proba-
bly due to the arrival of an international flight. This
change could be confirmed statistically by estimat-
ing the two mean interarrival times separately and
using the usual t-test for differences in means of two
random samples. If unnoticed, this mixing of two or
more (possibly exponential) distributions with differ-
ent rates often manifests itself as an apparent hyper-
exponential distribution for interarrival times.

This is not good news. Because the formulas for
queueing characteristics are nonlinear, using average
parameters will not produce average answers. Fortu-
nately in this case, the student had enough data to fit
the model to the period from 10 a.m. onward.

Service times can be checked to see that there is
no gross change over time by plotting service times
against customer number, and checking the signifi-
cance of the slope of the trend line (Figure 5). Minitab
can fit a regression line automatically to this scat-
ter plot, but the significance needs to be checked by
doing a separate regression. The small values for the

Figure 5 Checking for Trends in Service Times
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Figure 6 Checking for Independence with a Plot of Autocorrelations
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service times, and hence the apparently zero slope of
this graph, are because the student has used fractions
of a 24-hour clock as units. These small values can
easily disguise a significant slope unless the test is
done. A sudden change in mean service times can be
tested by a t-test as for interarrival times.

6.2. Testing for Independence
A modest but easy check for correlation in service
or interarrival times can be done by using the time
series section of the package to plot the autocorrela-
tions for the first few lags. This can be explained to
students who have not done a forecasting course as
(approximately) the ordinary correlation of the series
with previous (lagged) values, plotted for a number
of lags. Figure 6 shows a satisfactory result, with all
or almost all of the autocorrelations within the accep-
tance region for the null hypothesis of no serial cor-
relation. I find one of the most common reasons for
autocorrelation in queues is state-dependent arrival
or service processes. (An ATM in a mall is an exam-
ple that may show both properties. Customers lurk
nearby, looking at the shops until the machine is idle,
or they punch the buttons faster if others are wait-
ing. A symptom of this is that the machine is almost
never idle but also never has a large queue.) Mod-
elling these attributes would mean estimating several
Poisson rates or service distributions instead of one,
so the data requirements increase significantly.

6.3. Testing for Assumption 3: Particular
Distributions

Many O.R. texts still recommend a chi-square test on
the counting (Poisson) distribution for testing for a
Poisson process. Because we have measured times of
events rather than counting the number of events in
an interval, this is not an intuitive idea. Also, a Pois-
son process is one of the few stochastic processes that
have a simple counting distribution, so the method
cannot be extended to other processes. A more direct
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Figure 7 Comparing the Sample cdf of Interarrival Times with That of
a Negative Exponential Distribution with the Same Mean
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approach is simply to see if the sample cumula-
tive distribution function (cdf) has the right shape.
Does it look like the proposed theoretical distribution
function? If nothing else, the sample and theoretical
cdfs can be just be plotted on the same graph and
compared by eye. This can be done with Excel. How-
ever Minitab has a nice “Empirical CDF” function
in the graph menu, which automatically draws this
graph for a wide range of distributions.

Even without Minitab, the Kolmogorov-Smirnov
test statistic for distributions (the maximum verti-
cal deviation of the sample cdf from the theoretical
cdf) is simple enough to calculate directly in Excel.
There are more sophisticated test statistics based on
the same idea. For example, the Anderson Darling
test statistic is a weighted sum of all these devia-
tions. In Minitab this is available in “Probability Plot,”
also down the graph menu. Thus, from Figure 8 the
Anderson Darling (“AD”) test statistic for the Figure 7
data is 0.879, and from the P -value of 0.164 we would
accept the null hypothesis that these data came from
a negative exponential distribution at the 16% level of

Figure 8 The Minitab P-P Plot for the Data in Figure 7
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significance. The clustering of points at small interar-
rival times is caused by the data being recorded only
to the nearest second and does not have much signif-
icance if the sample is large enough.

6.4. Fitting Service-Time Distributions
At this point you can choose to finish the assignment.
If the arrival process is reasonably Poisson, then the
observed average waiting time in the queue, Wq , can
be compared with the theoretical answer from the
P-K formula for an M/G/1 queue. And if the average
number of customers in the queue, Lq , has been cal-
culated from the state data the student can verify that
Lq ≈ �Wq . This relationship should be almost exact if
the observations ended with an empty queue.

However, I think the assignment works better and
accomplishes much more if students can carry on to
find theoretical state- and waiting-time distributions,
and compare them with the observed distributions.
Most of my students have never actually plotted dis-
tributions before, so simply doing this is a valuable
exercise. As Table 1 and Figure 1 suggest, the theoreti-
cal and observed values of the mean waiting time and
mean state often will not agree well, whereas the the-
oretical and observed waiting-time- and state distri-
butions usually fit each other much better, admittedly
caused in part by measuring the waiting times and
state probabilities from the same sample of customers.

To find state- and waiting-time distributions, stu-
dents must now fit a particular distribution to their
service times. Service times for the systems we
observe are usually less variable than negative expo-
nential, so we need a fitting family of distributions
with CVs < 1. The only practical family of distribu-
tions at this level are the Erlang-k distributions. The
parameter k is taken as the closest value to 1/CV2,
and adjacent values of k can also be tested. Minitab’s
Empirical CDF function does not know about Erlang
distributions, but it does know about Gamma distri-
butions, and they are the same thing for integer val-
ues of the shape parameter k. Often, values of k in
the range 4 to 9 give surprisingly good visual fits to
the observed service time cdf, and results like those
of Figure 9 are typical.

Frequently, however, the Anderson-Darling test
statistic will be statistically significant, because unlike
the negative exponential case there is usually no fun-
damental reason why an Erlang distribution should
fit. For students who are stuck on this point, I go
through these questions:

What is the chance you will actually do much bet-
ter if we could find a better fit for the service-time
distribution?

• The probability of zero customers in the system
will still match that calculated from the mean service
and interarrival times and hence is unchanged.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

1.
19

8.
22

3.
17

0]
 o

n 
12

 F
eb

ru
ar

y 
20

18
, a

t 0
5:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



McNickle: Teaching Note—Fitting a Theoretical Model to a Real Queue
INFORMS Transactions on Education 11(3), pp. 111–122, © 2011 INFORMS 119

Figure 9 Comparing Service Times with the Nearest Erlang
Distribution
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• If the arrival process is Poisson and we have
managed to accurately approximate the variance of
the service times, then from the P-K formula the mean
number of customers in the queue is also correct.

Therefore, how likely is it that the rest of the state
distribution can be too far off? Now consider the
trade-off between model complexity and increased
accuracy. What will the payoff be for the extra effort
in fitting a more complex distribution and solving the
resulting queueing model?

Very often this argument is accepted, and Figure 10
shows the comparison of the theoretical and observed
state distributions from the assignment whose service
times were used for Figure 9.

For this part of the assignment to work, stu-
dents need an efficient, reasonably easy to understand
method for calculating the state- and waiting-time
distributions for an M/Ek/1 queue. Most texts give
only a probability generating function for the state
distribution and a Laplace-Stieltjes transform for the
waiting-time distribution. Possibly as a result of this,

Figure 10 A Comparison of Observed and Theoretical State
Distributions
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most queueing packages give only the Pollaczek-
Khinchine mean values for this model, so I provide
a stand-alone program. The appendix and the Matlab
file mek1.m give an implementation of a method that
only relies on balance equations and probabilities to
work and hence can be explained at this level. The
basic theory behind this is covered when we discuss
Markovian models and the balance-equation method.

7. Results
When set up like this and carried through to this
point, the assignment is largely self-checking, helping
the students and saving me a lot of calculation and
reanalysis when marking.

• The estimated probability of no customers in the
system should be almost exactly that predicted by the-
ory −1−�. It is just a rearrangement of the same data
that went into calculating the service and interarrival
time means.

• The fraction of customers who do not wait
should be close to 1 - �, but need not be exact.

• Little’s formula will relate the observed values of
Lq and Wq almost exactly if the observations finished
with the server idle.

Figure 10 shows a typical fit of the observed and
theoretical state distributions. Estimating the state dis-
tribution and the parameters from the same data
ensures that the theoretical and estimated probabili-
ties that the system is empty have exactly the same
value, and usually the other theoretical and estimated
probabilities of the other states will not be too far off.
Thus, the student gets a more rewarding result than
that from comparing the theoretical and estimated
values of Lq and Wq . Figure 11 from another assign-
ment shows a comparison of the observed waiting-
time distribution with that produced by mek1.m.

Finally, you may see empirical CDFs or other
graphs as in Figure 12.

There appear to be no service times with lengths
between 0.6 and 1, 1.6 and 2, and 2.6 and 3. This is the

Figure 11 Observed and Theoretical Waiting-Time Distributions
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Figure 12 Problems with Data Recording
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unfortunate consequence of students recording their
data on paper in minutes and seconds, perhaps with
a dot separating the minutes and seconds, and then
returning to the data some time later (possibly the
night before the assignment is due) and thinking it
was recorded in decimal minutes! I get about one of
these a year.

8. Outcomes and Conclusions
About 95% of the class do a good job. They select an
appropriate model and correctly carry out the steps to
fit it. About 85% find something like a Poisson arrival
process. Usually the theoretical model gives a larger
value for the mean queue length or waiting time than
they observed. Over a sample of 60 assignments, the
average discrepancy was 12%. Reasons for this bias
probably include:

(i) we have estimated the mean waiting time over a
fixed number of arrivals and then used the same sam-
ple to estimate the Poisson arrival rate, rather than
counting the number of arrivals in an interval of fixed
length;

(ii) with 100 observations the distribution of sam-
ple average waiting times is still very asymmetric, as
Figure 1 suggests, so underestimation is more likely;
and

(iii) students almost always start and finish their
data gathering with an empty queue.
Although this biases the results, I do not discourage
it since it means that the empirical versions of Little’s
formula work perfectly. Better students who raise this
issue are encouraged to start their data collection from
a preset (say, the 5th) arrival as a gesture towards
solving this problem. Finally,

(iv) I think many of the situations students observe
are actually finite capacity (but of unknown size).
Servers speed up or customers don’t join when the
queue is large. But over small samples these effects
are impossible to detect or measure.

Simulations have shown that biases (i), (ii), and (iii)
almost disappear for sample sizes of 500 or more. So
they are largely artefacts of the small sample sizes
that are all we can afford to collect. I ask students to
reflect on why their result is an over- or underestimate
in their case, not forgetting the variability they can
expect in the observed queue characteristics described
in §5. We discuss these effects after the assignments
are returned.

Could the assignment also be used for a graduate
class? Yes, definitely. I have done this. If the stu-
dents have come from an applied math or O.R. back-
ground with little experience of fitting models to data
I believe they could greatly benefit from the assign-
ment as it stands, presented as an easy exercise. It
can be made a bit more challenging by not providing
the spreadsheets or mek1.m, and further by extending
the range of possible theoretical queueing models to
whatever you have covered.

Does it work? In a review of the undergraduate
O.R. degree this was the only assignment specifi-
cally mentioned by past students. Every year there
are several positive comments included in the assign-
ment answers, usually along the lines that this assign-
ment made queueing models much clearer. My other
assignments in this course do not attract similar com-
ments! I see students using the methods they learn in
this assignment to do assignments in other courses in
operations management and quality control, suggest-
ing that the first two learning outcomes are attained.

Supplementary Material
Files that accompany this paper can be found and
downloaded from http://ite.pubs.informs.org/.
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Appendix A. Matlab Implementation of a Direct
Method for Finding the State and Waiting-Time
Distributions for An M/Ek/1 Queue
Normally, the textbook analysis of an M/Ek/1 queue ends
up with a probability-generating function for the state
distribution, or possibly an explicit form that involves
either the roots of a polynomial of order k or potentially
large binomial coefficients, and a Laplace transform of the
waiting-time density. Neither is very satisfactory for expla-
nation or calculation, especially to students with modest
math skills. The extreme accuracy of packages such as
Matlab or Maple, however, make an alternative possible,
which once might have seemed like numerical suicide but
now appears more accurate than using the analytical solu-
tions. This method is certainly not original. Bits of it can
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Figure A.1 A Balance Diagram for M/Ek/1
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be found scattered through the queueing literature. For
example, it is hinted at in Gross et al. (2008, p. 135), but
not exploited there, although the state calculation method
appears to be used in the latest version (3.1) of their soft-
ware, QTSPlus. In a survey of 35 queueing books, I could
only find the method described in books by Tijms (e.g., in
a more general form in Tijms 2003a). When restricted to
M/Ek/1, it can be satisfactorily explained at this level as one
of the many extensions to the balance-equation method, and
packaged into a reasonably user-friendly program in Mat-
lab. This has been tested in class for two years, although
a simpler version that does the state distribution only has
been used for five years.

As usual, we start from the fact that an Erlang-k random
variable has the same distribution as the sum of k negative
exponentially distributed stages. I will use � to be the rate
of one of the stages, i.e., the mean service time is s = k/�.
Therefore, the traffic intensity is � = �s = k�/s. Using this
definition of � rather than s = 1/� simplifies the notation
a bit. The steady-state balance diagram for the number of
stages of service is in Figure A.1.

So if 8pn1n = 01 0 0 0 1�9 is the probability distribution for
the number of exponential stages present in steady state,
then

�p0 =�p11 or p1 = 4�/�5p0

4�+�5p1 =�p21 or p2 = 44�+�5/�5p1

000

4�+�5pk−1 =�pk1 or pk = 44�+�5/�5pk−1

4�+�5pk =�pk+1 +�p01 or pk+1 = 44�+�5/�5pk−4�/�5p0

4�+�5pk+1 =�pk+2 +�p11 or pk+2 = 44�+�5/�5pk+1 −4�/�5p1

000

However, as for any conventional single-server queue, we
know that p0 = 1 − � = 1 − �s (zero customers is the same
thing as zero stages of service), so the probabilities can all be
calculated iteratively out as far as we need from the right-
hand set of equations.

These stage probabilities are converted to state probabili-
ties, of the number of customers in the system, by adding
up appropriate terms. Call these 8qn1n= 01 0 0 0 1�9. So,

q0 = p0

q1 = p1 + p2 + · · · + pk−1

q2 = pk + pk+1 + · · · + p2k−1

000

By conditioning on the number of stages of service that an
arriving customer sees waiting to be served, and using the
fact that an arriving customer sees the steady-state distribu-
tion of the number of stages,

P4wq ≤ t5= p0 + p1E14t5+ p2E24t5+ · · · 1

where wq is the waiting time in the queue, and Er 4t5 is the
cumulative distribution function for an Erlang-r distribu-
tion, so

P4wq ≤ t5 = p0 + p141 − e−�t5+ p2

(

1 −

1
∑

j=0

e−�t4�t5j

j!

)

+ p3

(

1 −

2
∑

j=0

e−�t4�t5j

j!

)

+ · · · 0

This expression is exactly the same as one that can be used
for deriving the waiting time in an M/M/1 queue (see
(Gross et al. 2008, p. 65) for a slightly different form), except
that here 8pn1n = 01 0 0 0 1�9 is the distribution of the num-
ber of stages rather than the state distribution. Therefore, in
class I simply extend the M/M/1 waiting-time derivation.
Rearranging and collecting terms gives

P4wq ≤ t5 = 1 − 41 − po5e
−�t

− 41 − p0 − p15e
−�t4�t5

− 41 − p0 − p1 − p25
e−�t4�t52

2!
− · · · 0

Figure A.2 mek1.m Output

–5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

State distribution of an M /E3/1 queue,
Arrival rate =1, Mean service time = 0.5

Number of customers

P
ro

ba
bi

lit
y

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.6

0.8

1.0

Waiting time distribution of an M /E3/1 queue,
Arrival rate = 1, Mean service time = 0.5

Time

P
ro

ba
bi

lit
y

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

1.
19

8.
22

3.
17

0]
 o

n 
12

 F
eb

ru
ar

y 
20

18
, a

t 0
5:

58
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



McNickle: Teaching Note—Fitting a Theoretical Model to a Real Queue
122 INFORMS Transactions on Education 11(3), pp. 111–122, © 2011 INFORMS

This is a simpler form of expression 5.5.6 in Tijms (2003a).
It is the sum of a power series with monotonically reducing
coefficients and exponential terms, and hence should have
good convergence properties. From the rearranged form it
can also be seen that the early coefficients also do not reflect
the fact that the stage distribution has been truncated. It
lends itself to efficient programming, so provided enough
terms in the stage distribution have been calculated, the
results should be fast and accurate. The constraint on the
calculation appears to be Matlab’s sensible refusal to calcu-
late e−�t for values of �t > 740, so mek1.m will only calcu-
late the waiting-time distribution out as far as the expected
value of 740 stages of service.

Verification

The State Distribution. Programming the balance equa-
tions in Maple, which for rational values of � and � can cal-
culate the probabilities as exact rational numbers, showed
no error greater than 10−14 for a range of �, �, and k values,
and out as far as 60 stages, when compared with mek1.m. As
well as providing verification of the program, this showed
that there is no evidence that the iterative calculation of the
state probabilities is causing errors to build up excessively
before the tail values of the distribution become very small.

The Waiting-Time Distribution. The Laplace-Stieltjes
transform of the waiting-time distribution is

W s
q =

41 −�5s

s −�+�4�/4�+ s55k
0

Maple is capable of inverting this (invlaplace) if given
the Laplace-transform version (drop the “s” from the
numerator), for moderate values of k, so, for example, for
k = 2 and a= �+ 4�, b =

√
�a,

P4wq ≤ t5 = 1 − 2
((

a4�+�5 sinh4bt/25

+�a cosh4bt/25
)

e44�−2�5t/2)/�a0

A comparison with the M/M/1 waiting-time distribution,
and that for k = 2, showed no difference greater than 10−12

out as far as the 99th percentile or �= 740. For k = 5110120,
and traffic intensities up to 0.99 the maximum observed
error was 10−6, with much smaller error values for moderate

traffic intensities. The results were also checked against
QTSPlus and MCQueue (Tijms 2003b).

The Matlab Program. mek1.m is a Matlab.m file that cal-
culates the state and waiting-time distributions using the
method described above. All the input is from the screen
and the main output is graphs of these distributions.

The Matlab diary function is used to also capture
the coordinates for these graphs in files called State.txt
and Waiting.txt, respectively, for exporting them to other
packages.

The program can also be modified to a genuine finite
capacity M/Ek/1/N solver by making some minor changes
to the section that calculates the stage distribution, reflecting
the truncation of the balance diagram.
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