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INTRODUCTION

It is often supposed that many subtidal and intertidal
organisms have a planktonic larval phase in order to
aid species dispersal (Scheltema 1971, noted that lar-
val dispersal was recognized by Alfred Russel Wallace
as far back as 1876). Thus, for many sessile organisms,
the connection between isolated adult populations
occurs at the larval stage, and, in recent times, there
have been many studies of this larval connection (for
a comprehensive review of larval connectivity, see
Cowen & Sponaugle 2009).

It has been common to use the term ‘dispersal’ or
‘spatial’ kernel to refer to the probability density func-
tion of the spatial distribution of larvae at a given time
after hatching (e.g. Siegel 2003). These spatial kernels
can be modelled in various ways, and can be used to
define dispersal length scales and/or make estimates
of whether populations are ‘open’ or ‘closed’. For ex -
ample, Rasmussen et al. (2009) use a numerical ocean
model to estimate the spatial distribution of larvae
and thence of the connection between populations of

mytilid mussels along the Southern California– Northern
Baja California coastline.

There are times when one is interested in the distri-
bution of the oceanic dispersal times between 2 iso-
lated populations, since there should be more connec-
tion when dispersal times are comparable to the larval
duration than when they are not. The simplest view of
this temporal connectivity is that isolated populations
will be connected only if the minimum dispersal time
is less than the larval duration. However, because of
variability in oceanic velocities, there is a continuous
distribution of dispersal times, and, as a consequence,
there is no unambiguous ‘minimum dispersal time’.
Instead, one has to specify a percentile of the distribu-
tion of dispersal times to be taken as a proxy for the
minimum dispersal time.

Thus, by analogy with the spatial kernel, this article
introduces the term ‘temporal kernel’ to refer to the
frequency histogram (i.e. probability density function)
of oceanic dispersal times between otherwise isolated
populations. The temporal kernel is purely a function
of ocean circulation, does not include larval mortality,
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and serves to describe the complete distribution of
potential larval dispersal times between 2 otherwise
isolated populations.

In the present article, we denote the percentile taken
to be a proxy for minimum dispersal time as the ‘mini-
mum percentile’. The value of the minimum percentile
will depend on the degree of connectivity of interest.
One can differentiate between ‘evolutionary’ and ‘eco-
logical (or demographic)’ connectivity, where the gene
flow needed for ecological connectivity may be ‘several
orders of magnitude larger’ than that for evolutionary
connectivity (Cowen & Sponaugle 2009). Thus, the
minimum percentile for evolutionary connectivity would
be expected to be lower than that for ecological con-
nectivity. For example, 3 common connectivity ques-
tions relate to whether isolated island populations
may eventually speciate (evolutionary connectivity); the
spread of invasive species (ecological); and whether
separate fish stocks can be managed independently
(ecological).

This was the approach taken by Chiswell (2009) in
the study of Cellana strigilis limpets, which are
thought to have a 3 to 10 d larval phase (Creese 1981).
Chiswell (2009) found that limpets at some island pairs
were considered the same species even though disper-
sal times were so long that the maximum larval dura-
tion was as low as the 10–4 percentile of the temporal
kernel. Thus, Chiswell (2009) concluded that the mini-
mum percentile for evolutionary connection could be
as low as the 10–4 percentile. This low value reflects
that very low levels of gene flow between populations
are sufficient to maintain species—for example, the
‘one-migrant-per-generation’ rule appears frequently
in studies of genetics (e.g. Mills & Allendorf 1996,
Mace & Lande 1991), and was attributed to the impor-
tance of extremely rare long-distance dispersal events
in maintaining genetic homogeneity between islands
(e.g. Kinlan et al. 2005).

The minimum percentile for any particular applica-
tion may be difficult to determine, but is likely to be
low (we discuss this in more detail later); thus, in the
present article, we discuss temporal kernels in terms of
a few general low percentiles of the dispersal kernel.

Temporal kernels can be derived from an individ-
ual-based model, where one releases many numerical
 larvae at a source location into a time-varying ocean
velocity field and compiles the histograms of dispersal
times to a destination. The time-varying ocean veloc-
ity can be derived either from direct observations of
the ocean circulation or from a numerical model.
However, there are several potential problems when
doing so. First, the numerical model or observations
may not capture the complete range of variability val-
ues in the ocean circulation—for example, due to dif-
ferent phases of El Niño Southern Oscillation (ENSO)

or the Pacific decadal oscillation. (For this reason, con-
nectivity simulations are sometimes run for different
oceanic conditions, e.g. Treml et al. (2008) ran a con-
nectivity model separately for strong El Niño, strong
La Niña and neutral years.) Second, it is often difficult
to accumulate enough arrivals to resolve the statistics
of the dispersal times. Chiswell (2009) illustrates this
with one example in which only 11 out of 5275
released particles arrived at the expected destination,
and made the comment that in order to numerically
resolve the low percentiles of arrivals, he would have
had to run his model with between 250 and 100 000
times more particles, which would be computationally
prohibitive.

It thus seems appropriate to consider whether  tem -
poral kernels can be determined from statistical
 considerations alone. Under certain assumptions,
the oceanic dispersal problem can be treated as a
1-dimensional advection–diffusion problem, where
the ocean physics is described by a mean velocity and
a random walk parameterised in terms of oceanic eddy
diffusivity (e.g. Okubo 1994). Developing such an
approach provides a theoretical framework in which to
interpret the results of model studies, and potentially
allows one to determine the statistics of dispersal with-
out having to resort to computing numerous ensembles
of particle-tracking simulations.

A 1-dimensional random walk, where the ocean
velocity has a Gaussian distribution, is analogous to
Brownian motion; thus, we suggest that the dispersal
time between 2 isolated populations is analogous to
the ‘first-passage time’ for Brownian motion as de -
scribed by Schrödinger (1915). If so, the temporal ker-
nels are described by the inverse Gaussian function
(Folks & Chhikara 1978), and the problem to be solved
is to derive the inverse Gaussian solutions of the tem-
poral kernel as a function of mean velocity and eddy
diffusivity.

In the present article, we use the solutions for the
spatial kernel of a random-walk model, which are ana-
lytic, Gaussian and well known (e.g. Largier 2003), to
derive solutions for the temporal kernel. We derive
exact analytic solutions for the percentiles of the tem-
poral kernel as a function of mean velocity and eddy
diffusivity. These percentiles are numerically shown to
be equivalent to those of the first-passage time-inverse
Gaussian solutions. It would be both convenient and
(by analogy with the spatial solutions) appealing to be
able to specify the temporal kernel analytically in
terms of its distribution parameters (mean and stan-
dard deviation). Unfortunately, the inverse Gaussian
function has the property that there is no analytic
expression that allows one to derive the distribution
parameters from the percentiles, so there is no exact
solution for these distribution parameters as a function
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of ocean statistics. There are, however, analytic solu-
tions for the distribution parameters that are valid only
in the limit of large population separation, and so, as
described in Supplements 1 & 2 (at www. int-res. com/
 articles/  suppl/  b012p205_supp.  pdf), we evaluate these
approximate solutions against numerically determined
exact values for realistic ocean conditions using Monte-
Carlo simulations.
Thus, the main aims of the present article are:

(1) to introduce the term ‘temporal kernel’
(2) to show that for a Gaussian-distributed random-

walk ocean, the temporal kernel can be described by
an inverse Gaussian distribution

(3) to derive analytic expressions for the temporal
kernel as functions of the ocean statistics, along with
their sensitivity to uncertainties in ocean parameters.

This article proceeds as follows. The next section
reviews the solutions for the spatial kernel. These solu-
tions are then used to derive solutions for the temporal
kernel. We then discuss the practical use of temporal
kernels. In practice, the most uncertain ocean parame-
ter is likely to be eddy diffusivity, so we show how the
low percentiles are sensitive to these uncertainties in
eddy diffusivity. Finally, we discuss the choice of the
relevant percentile used to interpret connectivity.

SPATIAL KERNEL

Fig. 1 schematically illustrates the 1-dimensional
connectivity problem, showing the spatial and tempo-
ral solutions, respectively. The spatial solution refers to
the distribution of larvae originating from a source at
some given time, t, after hatching. Usually this time

would be the larval duration for the species of interest.
The temporal solution deals with the distribution of
dispersal times between source and destination popu-
lations at a fixed separation, D.

We assume the velocity field can be described as a
mean flow plus random walk, where the random walk
has a Gaussian distribution and is designed to simulate
the ocean’s mesoscale eddy variability. This mesoscale
eddy variability can be regarded as a diffusive process
parameterised in terms of eddy diffusivity, K. Thus, the
1-dimensional Lagrangian velocity, u (i.e. the velocity
seen by an individual larva), can be described as a
Markov 1 random walk (e.g. Rupolo 2007) in the pres-
ence of a mean flow:

u(t) =  u0 + u’(t) (1)

where u0 is the mean velocity and u’ is the random
walk. This random walk is specified to be normally dis-
tributed, have variance u1

2 and a Lagrangian decorre-
lation timescale, TL. The Lagrangian decorrelation
timescale is the integral of the Lagrangian velocity
autocorrelation function, and is a measure of the spec-
trum of the eddy processes that lead to diffusion in the
ocean—larger TL corresponds to a more red spectrum.
The eddy diffusivity, K, is the product of Lagrangian
decorrelation timescale multiplied by the velocity vari-
ance (e.g. Rupolo 2007):

K =  u1
2TL (2)

Thus, the ocean can be statistically represented to
the first order by a mean velocity and eddy diffusivity.

The spatial and temporal kernels can be derived us-
ing solutions to the classic single-particle dispersion
problem (e.g. Babiano et al. 1987). In the single-particle
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Fig. 1. Schematic showing 1-
dimensional connectivity prob-
lems, which are referred to as
(A) spatial and (B) temporal
problems. The spatial kernel,
S(x)|t, is the distribution of
 larvae from a source at some
given time, t. Spatial kernels
are Gaussian. The temporal
kernel, T(t)|D, is the distribu-
tion of dispersal times between
source and destination at a
fixed separation, D. Temporal
kernels are inverse Gaussian
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problem, one repeatedly releases a single particle at
the source at some prescribed time interval. The disper-
sal statistics are computed from ensemble averages of
many releases. Each release is independent (i.e. each
particle has no memory of preceding releases), so that
the time interval of release should be longer than the
decorrelation timescale of the ocean velocities. For ex-
ample, one might use a numerical model to simulate the
release of a single particle from a particular island
every month over 100 yr, and use the 1200 resulting tra-
jectories to compute the dispersal statistics.

For single-particle dispersion, the distribution of dis-
placement, x, at a given time, t, i.e. the spatial kernel,
S(x) �t, is expected to be Gaussian (Largier 2003, and
references therein):

(3)

where x and σx are the means and standard deviations
of the displacement. The integral of the spatial kernel
is 1 so that the spatial kernel can be regarded as a
probability density function. The mean displacement
and variance both increase linearly in time:

x =  u0t (4)
and

σx
2 =  2Kt (5)

Thus, Eqs. (4 & 5) completely describe the evolution
in time of the spatial kernel for an ocean specified by
u0 and K.

TEMPORAL KERNEL: EXACT SOLUTIONS

The derivation of the temporal kernel at location D can
be visualised with reference to Fig. 2, which shows the
spatial kernel at 3 different times for an ensemble of sin-
gle-particle releases flowing past D at mean speed u0.
The 3 times were chosen so that, at time t = τ16, 16% of
particles have passed location D, at t = τ50, the ensemble
is centred on D and, at time t = τ84, 16% of particles have
yet to pass location D. These times are, respectively, the
16th, 50th and 84th percentiles of the temporal kernel.
The value of 16% was chosen for this illustration because
it is the percentile that occurs 1 standard deviation away
from the mean for the Gaussian distribution. At these 3
times, the spatial ensemble is centred at x = D – σ16, x = D
and x = D + σ84, respectively, where σ16 and σ16 are the
standard deviations at t = τ16 and t = τ84.

The second case shows that the median percentile,
τ50, occurs when the spatial ensemble is centred on D,
and, from Eq. (4), one immediately obtains an equation
for the median percentile of the temporal kernel:

τ50 =  D/u0 (6)

The first and third cases in Fig. 2 can be generalised
for any nth percentile of the temporal kernel by ob -
serving that, at t = τn, the spatial ensemble is centred at:

x =  D + gnσn (7)

where gn is obtained from the cumulative density func-
tion for the Gaussian distribution:

S x
x x

t
x x

( ) exp
( )= − −1

2 2

2

2π σ σ
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Fig. 2. Schematic show-
ing the advection of a
Gaussian-distributed en -
semble of particles past
location D, at times τ16,
τ50 and τ84, when 16%,
50% and 84%, respec-
tively, of the particles
have passed D. The en-
semble is centred at
D – σ16, D and D + σ84 at
these times. Because the
spatial kernel expands in
time, σ16 < σ84, with the
result that the temporal
kernel is skewed in time
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gn =  122erf–1(2n/100 – 1) (8)

where erf–1 is the inverse error function (i.e. g1 = –1,
g50 = 0, etc.). From Eqs. (4) and (5), one obtains 2 equa-
tions for the mean and standard deviation of the spatial
ensemble at time t = τn:

τn =  (D – gnσn)/u0 (9)
and

σn
2 =  2K τn (10)

These equations can be combined to produce an equa-
tion for the nth percentile

u0τn + gn122222K τn – D =  0 (11)

Eq. (11) is a quadratic in 122τn and can be solved numer-
ically. Because gn has the property that gn = –g100 –n, the
2 roots of the solution give τn and τ100 –n, so that:

(12)

(13)

An analytic form for the temporal kernel T(t)�D, which
produces the percentiles described by Eqs. (12) & (13),
can be derived by noting that the first-passage time, as
described by Schrödinger (1915) for Brownian motion,
is the time taken for a particle to first traverse a dis-
tance D, and so is analogous to the dispersal time. This
first-passage time distribution is the inverse Gaussian
function (Folks & Chhikara 1978):

(14)

where –t is the mean dispersal time, and λ = –t 3/σt
2,

where σt is the standard deviation of dispersal times.

The inverse Gaussian function has the unfortunate
property for this work that there is no analytic expres-
sion that allows one to derive the distribution para -
meters (–t and σt) from the percentiles. However, one
can compute these values numerically. Fig. 3 illustrates
this process for a numerical ocean having u0 = 0.05 m
s–1, K = 3.5 × 103 m2 s–1 and a separation of 300 km. One
starts by choosing a set of percentile values n and com-
puting the respective percentile times, τn. Here, we
have chosen n to be every 5th percentile between 1
and 96, but added both low and high percentiles to
increase resolution at the tails of the distribution. The
left-hand panel of the figure shows n plotted as a func-
tion of τn. The temporal kernel is then obtained by
numerically differentiating n with respect to τn as
shown in the right-hand panel. One can then fit an
inverse Gaussian function to this numerical distribu-
tion by standard non-linear fitting routines. The right-
hand panel shows a fit made using a  Levenberg-
Marquardt non-linear fitting routine. The mean, –t, and
standard deviation, σt, of dispersal times for this fit are
88.3 and 65.1 d, respectively.

That the temporal kernels of a Gaussian-distributed
velocity ocean are inverse Gaussian can be demon-
strated using a Monte-Carlo simulation. Supplement 2
(www. int-res. com/  articles/  suppl/   b012p205_supp. pdf)
de scribes a Monte-Carlo method for generating en -
sembles of particle trajectories for an ocean having the
characteristics specified by Eqs. (1) & (2), and Fig. 4 il-
lustrates simulated temporal kernels for a numerical
ocean having u0 = 0.05 m s–1 and K = 3.5 × 103 m2 s–1.
The panels show histograms of dispersal time derived
from the Monte-Carlo simulations for 3 different sepa-
rations, along with inverse Gaussian fits derived from
the method illustrated in Fig. 3. The panels also list the
means and standard deviations of dispersal time (–t and
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Fig. 3. Schematic showing how to compute the temporal kernel, T(t)|D from percentile dispersal times, τn, calculated according to
Eq. (12). The left panel shows the percentiles, n, plotted as a function of τn for an ocean where mean velocity, u0 = 0.05 m s–1, eddy
diffusivity, K = 3.5 ×103 m2 s–1, and with a separation of 300 km. The right panel shows the numerical derivative of this curve (light
grey line). Superimposed is an inverse Gaussian fit made to the numerical derivative, having mean (⎯t ) and standard deviation 

(σt) in dispersal time as listed (dark grey line)
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σt) for each simulation. The temporal kernels are posi-
tively skewed and well fit by an inverse Gaussian distri-
bution. As the separation increases, the temporal ker-
nels become less skewed and become more Gaussian.

PRACTICAL APPLICATIONS

There are 2 main practical applications of this work.
The first application is that it provides a theoretical
basis for choosing the inverse Gaussian distribution to
fit the histograms of dispersal time derived from indi-
vidual particle-based simulations. It is often difficult in
these simulations to get many particles to arrive at the
destination—as in the real world, by far the majority of
released larvae never arrive at the destination. Since it
is the low percentiles that are usually important when
computing connectivity (Chiswell 2009), the low rates
of arrivals mean that these low percentiles often can-
not be computed directly from the histograms of simu-
lated dispersal times because the tails of the histo-
grams will not be well resolved. In addition, the
number of arrivals can vary hugely between different
source–destination pairs. Thus, fitting an analytic
function to the histograms allows one both to resolve
the low-percentile tails of the temporal kernel, and to
compare source–destination pairs that have vastly
 different arrival rates. Fig. 5 illustrates this, where we
show the histograms of dispersal time for several island
pairs from Chiswell (2009). In the best case (Camp -
bell to Bounty Island), there were 1490 arrivals, but for
Bounty to Chatham Islands there were only 32 arrivals.
Several island pairs (not all are shown) had about 100
arrivals. By fitting inverse Gaussian distributions to
these histograms, one can compute any desired per-

centile, and the figure shows the first percentile, τ1,
derived from these fits. In 2 cases, τ1 is less than the
shortest simulated dispersal time.

Chiswell (2009) fits log-normal curves to his modelled
histograms, and the figure shows these original fits to-
gether with the respective estimates of the first per-
centile of dispersal time. Fortunately, over a large range
of likely oceanic conditions, the inverse Gaussian and
log-normal distributions are virtually indistinguishable
so that the results of Chiswell (2009) are not in jeopardy.

The second application of this work is that one can
compute the temporal kernel without performing ex -
tensive particle-based simulations. In order to do this,
one needs a priori estimates of the mean velocity and
eddy diffusivity over the dispersal paths, each of these
will have some error. The mean velocity can usually be
reasonably well determined from climatologies (e.g.
obtained from surface drifters; Fratantoni 2001), but
eddy diffusivity is more difficult to estimate (e.g. Zhur-
bas & Oh 2003), and its uncertainty is likely to have the
most impact on the calculation. It is thus useful to per-
form an analysis on the sensitivity of the results to
uncertainties in K. Here, we illustrate such a sensitivity
analysis for 4 hypothetical island pairs representative
of those studied by Chiswell (2009). In that study, the
island separations ranged from 609 to 1673 km, and
the deduced mean velocities between the islands
ranged from 0.08 to 0.15 m s–1. Thus, we chose 2 mean
velocities (u0 = 0.05 and 0.15 m s–1) and 2 separations
(D = 500 and 1500 km), and computed the temporal
kernels as a function of eddy diffusivity for all 4 combi-
nations of u0 and D. The span in eddy diffusivity was
based on estimates of K made using Lagrangian drifter
data in the New Zealand region that ranged from 2.6 ×
103 to 6.1 × 103 m2 s–1 (Chiswell et al. 2007).
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Fig. 6 shows 5 percentiles (τ50, τ25, τ10, τ0.0001) for each
combination plotted as a function of eddy diffusivity.
For any given mean velocity and separation, the
median dispersal time, τ50, is independent of K, but,
otherwise, the percentiles decrease in time with in -
creasing K, reflecting the increased spread of the tem-
poral kernel as the ocean eddy diffusivity in creases.
The lower the percentile, the more the relative change
with increasing K. For example, for the slowest ocean
with shortest separation (u0 = 0.05 m s–1, D = 500 km),
τ0.0001 ranges from 21 d at K = 2000 m2 s–1 to 9 d at K =
6000 m2 s–1. If this uncertainty is expressed as a per-
centage about the mean value, τ0.0001 has an uncer-
tainty of approximately 50%, whereas, for the same
example, τ10 has an uncertainty of ~20%. Percentiles
>50th percentile are not shown here, but will increase
with increasing K, and similarly show greater uncer-
tainty for percentiles nearer the tail of the distribution.

As the mean speed or separation increases, the
uncertainty in the percentiles becomes less. For the
fastest ocean and longest separation (u0 = 0.15 m s–1,
D = 1500 km), τ0.0001 has an uncertainty of ~20% and
the uncertainty in τ10 drops to ~5%. For some applica-
tions, an uncertainty of 50% in an estimate of a rele-
vant percentile may render the calculation impractica-

ble. In other cases, an error of 5% may well be less
than the uncertainty in larval duration.

DISCUSSION

One-dimensional advection–diffusion models in
which the complexity of ocean physics is parame-
terised in terms of a few parameters (in this case 2, u0

and K) are clearly simplifications of the real ocean and
are often developed for pedagogical reasons. However,
as Largier (2003) notes, this kind of 1-dimensional sim-
plification ‘[is] reasonably represented by the west
coast of the USA … [and] allows development of con-
cepts that can be used also in understanding and quan-
tifying dispersion in more complex configurations’. For
these reasons, 1-dimensional random-walk simula-
tions in which ocean physics are contained in 1 eddy
diffusivity (or equivalent) parameter are common.

The solutions for the spatial kernel under a Gaussian
random-walk model are exact and have appeared in
one form or another in the literature. The exact solu-
tions for the temporal kernel presented here are not
too difficult to calculate and, in most cases, are how the
temporal kernel would be computed. However, for
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completeness, we have presented in Supplement 1
approximate solutions for the means and standard
deviations of the temporal kernel. These solutions
underestimate the true mean and standard deviation
with errors that depend on ocean statistics and popula-
tion separation (Fig. S1 in the supplement at www. int-
res. com/  articles/  suppl/  b012p205_supp.  pdf).

The solutions for the temporal kernel have been
parameterised in terms of the mean velocity and eddy
diffusivity. Of these, the eddy diffusivity is likely to
have the largest uncertainty. Not only is it difficult to
measure K, but, as Okubo (1994) notes, the eddy diffu-
sivity is often regarded as increasing with the length
scale of the problem of concern, and there can be dif-
ferences of several orders of magnitude between the
values of K determined for the open ocean compared
to that for coastal environments. For example, the val-
ues used for illustration in this article (K ~ 3 × 103 m2

s–1) are typical of the open ocean (Zhurbas & Oh 2004),
whereas coastal observations of K can be as low as
~100 m2 s–1 (Largier 2003, Chiswell & Stevens 2010).
Thus, it is critical to use a value for the eddy diffusivity
that is appropriate to the scale of the connectivity prob-
lem of interest. While determining an accurate value
for K may be one of the most difficult parts of estimat-
ing connectivity, we note that this problem is not lim-
ited to the random-walk approach, since numerical
models also may need tuning to a pre-determined
value of eddy diffusivity (Chiswell 2009).

At this point, it is worthwhile commenting on the
practical applications of temporal kernels. As well as
depending on whether the connection of interest is
evolutionary or ecological, the minimum percentile
will depend on actual recruitment at the destination
population, and is thus related to the total number of
larvae that survive the passage. For example, Fig. 5
shows that while Campbell to Chatham Islands has a
temporal kernel similar to that for Auckland to
Chatham Islands, the number of arrivals was less by
nearly an order of magnitude. Thus, all other things
being equal (same larval production at Auckland and
Campbell Islands, same mortality en route, etc.), any
minimum percentile for Campbell to Chatham Islands
should be an order of magnitude higher than that for
Auckland to Chatham Islands.

One should also recognise that larvae are likely to
have a competency period spanning several days (or
even months), and the probability of connection during
this competency period can be determined from the
percentiles corresponding to the upper and lower limits
of the competency period. For example, one can com-
pare connectivity from Campbell to Antipodes Islands,
for New Zealand sea urchins Evechinus chloroticus (lar-
val competency: ~30 to 60 d; Walker 1984) with Cellana
strigilis (3 to 10 d). The E. chloroticus competency limits

(60 and 30 d) are the 40 and 1 percentiles of the tempo-
ral kernel (Fig. 5), so that, for this species, approxi-
mately 39% of all dispersal times would coincide with
the competency period. In contrast, only 3 × 10–16% of
dispersal times would coincide with the competency pe-
riod of the limpet C. strigilis. One would conclude that,
all other things being equal, the likelihood of urchin dis-
persal between Campbell and Antipodes Islands is
high, whereas that for limpets is near zero.

In reality, it is unlikely that all things are equal. Lar-
val production is highly unlikely to be the same at all
sources for all species because of variable breeding-
stock and fecundity rates. Mortality will be highly vari-
able and can be crucial in determining connectivity.
Chiswell et al. (2003) suggest that larval connection
occurs between Australia and New Zealand for Jasus
edwardsii, but not for Sagmariasus verreauxi, despite
approximately similar dispersal percentile times, be -
cause the former occur to the south in the Tasman Sea
where production (and hence available prey) is high,
whereas the latter occur farther to the north where
there is little production. The implication is that high
mortality limits the connection for S. verreauxi.

Thus, it becomes virtually impossible to generalise
about how to determine the degree to which isolated
populations are connected from the temporal kernels.
We simply note that these kernels provide tools to esti-
mate connectivity, and that the minimum percentiles
will depend on the question of interest. If the Chiswell
(2009) results are at all typical, we suggest that evolu-
tionary connectivity may occur for larval durations as
low as the 10–4 percentile within an order of magni-
tude. If Cowen & Sponaugle’s (2009) estimate of ‘sev-
eral orders of magnitude larger’ can be taken literally,
then the relevant minimum percentile for ecological
connectivity may be around the 1st percentile. These
percentiles are low, and illustrate that even ecological
connectivity may be controlled by infrequent events,
with the consequence that populations can be con-
nected even when the mean dispersal time is many
times greater than the larval duration. What is clear is
that the mean dispersal time (which can generally be
estimated reasonably easily for many population pairs)
is not in itself a good indicator of connectivity.

It should, perhaps, be noted that these difficulties
also apply when trying to estimate connectivity from
spatial kernels, whether derived from simulations or
statistical considerations. Not only are the spatial ker-
nels also sensitive to choices in the eddy diffusivity, but
one has to make similar decisions, based on numbers
of arrivals and larval/gene flow requirements, to de -
cide which percentile of the spatial kernel constitutes
connectivity.

Finally, we make the point that temporal kernels will
only be inverse Gaussian to the extent that the spatial
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kernels are Gaussian. The real ocean is almost cer-
tainly more complicated than can be described by sim-
ple stochastic models (whether 1- or 2-dimensional),
for example, due to inhomogeneous flow, especially in
regions of complicated topography. In particular, spa-
tial variability in the time-varying part of the flow can
lead to spatial kernels that may also be skewed (e.g.
Aiken et al. 2007). However, if the spatial kernel and
its time evolution is known, one can use the procedure
shown in Fig. 2 to compute the temporal kernel—one
replaces gnσn in Eq. (7) with a term appropriate to the
spatial kernel under consideration. The resulting
equations may have to be solved numerically, so that
there may be no analytic expressions relating the per-
centiles to the ocean statistics, but, in principle, the
numeric solution can be used just as the analytic solu-
tions proposed here.
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