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ABSTRACT
Anthropogenic developments in marine coastal zones potentially overlap with areas of conservation interest, including
important areas for birds. Ideally, spatial patterns of species abundance should be considered at ecologically relevant
spatial resolutions (high resolutions) to inform spatial planning and environmental assessments. Most planning so far,
however, has relied on coarse-resolution distribution maps from atlas projects or models often based on limited
datasets (few surveys), and relationships with environmental variables have rarely been taken into account, leaving
many studies and recommendations vulnerable to criticism. We therefore combined the strengths of a detailed
database of spatially explicit aerial and ship surveys with high-resolution environmental predictors and species
distribution models to predict detailed density patterns for 3 sea duck species, as part of an environmental impact
assessment (EIA) in the southern Baltic Sea. We also compared the results from 2 different survey platforms to assess
potential differences. We related survey data for Common Eiders (Somateria mollissima), Long-tailed Ducks (Clangula
hyemalis), and Common Scoters (Melanitta nigra) to topographic variables, food resources, and anthropogenic
pressures using 2-step generalized additive models accounting for zero inflation, nonnormality, and nonlinearity. We
accurately predicted distribution patterns (the area under the receiver operating characteristic curve [AUC]: 0.79–0.84)
and abundances (Spearman’s correlation: 0.36–0.62) at a resolution of 750 m. However, abundance predictions based
on aerial survey data differed in magnitude in comparison with predictions from ship survey data, particularly for the
frequently diving Long-tailed Duck. We suggest that the main source of the differing abundance estimates was
differences in the input data collected using different survey platforms, rather than the modeling approach. A
correction factor for birds missed during surveys due to diving activity would therefore increase the accuracy of
abundance estimates. Our results show that it is possible to fit ecologically interpretable relationships between species
and environmental variables, allowing for the creation of high-resolution predictions useful for management and
conservation.

Keywords: aerial surveys, Common Eider, Common Scoter, GAM, habitat modeling, Long-tailed Duck, ship
surveys, species distribution modeling

Modélisation à haute résolution de la répartition des oiseaux de mer: relier les données des relevés
aériens et par navire aux ressources alimentaires, aux pressions anthropiques et aux variables
topographiques

RÉSUMÉ
L’expansion rapide des développements anthropiques dans les zones côtières marines chevauche potentiellement des
zones d’intérêt pour la conservation, notamment des zones importantes pour les oiseaux. Idéalement, les patrons spatiaux
d’abondance des espèces devraient être considérés à des résolutions spatiales écologiquement pertinentes (haute
résolution) afin d’étayer la planification spatiale et les évaluations environnementales. Cependant, la plupart des
planifications reposent jusqu’à maintenant sur des cartes de répartition à résolution grossière provenant de projets d’atlas
ou de modèles souvent basés sur des ensembles de données limités (peu de relevés) et non reliés à des caractéristiques
environnementales, laissant plusieurs études et recommandations vulnérables à la critique. Nous avons donc combiné les
forces d’une base de données détaillée de relevés aériens et par navire spatialement explicites avec des variables
prédictives environnementales à haute résolution et des modèles de répartition des espèces, afin de prédire des patrons de
densité détaillés de trois espèces d’oiseaux de mer, et ce, dans le cadre d’une étude d’impact sur l’environnement (ÉIE) au
sud de la mer Baltique. Nous avons ensuite comparé les résultats provenant de deux plateformes d’inventaires différentes
afin d’évaluer les différences potentielles. Nous avons relié les données d’inventaires de Somateria mollissima, Melanitta
nigra et Clangula hyemalis à des variables topographiques, des ressources alimentaires et des pressions anthropiques à
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l’aide de modèles additifs généralisés en deux étapes tenant compte d’une inflation nulle, d’une non-normalité et d’une
non-linéarité. Nous avons prédit avec exactitude les patrons de répartition (AUC: 0,79–0,84) et les abondances (corrélation
de Spearman: 0,36–0,62) à une résolution de 750 m. Cependant, les prédictions d’abondance basées sur les données
d’inventaires aériens différaient en importance comparativement aux données des relevés par navire, particulièrement
pour Clangula hyemalis qui plonge fréquemment. Nous suggérons que la principale source de différence dans les
estimations d’abondance correspondait aux différences dans les données d’entrée recueillies par diverses plateformes
d’inventaire, plutôt que l’approche de modélisation. Un facteur de correction pour les oiseaux manqués au cours des
relevés en raison d’une activité de plongée devrait donc augmenter la précision des estimations d’abondance. Nos résultats
montrent que nous pouvons établir des relations écologiquement interprétables entre les espèces et des variables
environnementales, ce qui permet d’établir des prédictions à haute résolution utiles en gestion et en conservation.

Mots-clés: relevés aériens, Somateria mollissima, Melanitta nigra, MAG, modélisation de l’habitat, Clangula
hyemalis, relevés par navire, modélisation de la répartition des espèces

INTRODUCTION

Anthropogenic pressures on marine coastal and offshore

areas are continually increasing. The pressures arise from a

wide range of activities, including construction and

operation of oil and gas platforms, bridges, and offshore

wind farms, as well as dredging, sand extraction,

aquaculture, fishing, and shipping, and have led to an

urgent need for environmental assessments and marine

spatial planning (Douvere 2008). In order to efficiently

incorporate ecosystem components into planning process-

es, regardless of purpose (e.g., mapping of cumulative

anthropogenic pressures, impact assessments, baseline

investigations, or designation of conservation areas),

accurate information is needed about the spatial and

temporal distributions of species, and knowledge is

required of the factors driving distribution and abundance

in an area (Pittman and Brown 2011). Species distribution

models (SDMs) are one approach for predicting and

explaining the distribution of species. There are various

methods available for creating SDMs, but the general

principle is the same: to statistically relate observations of

species to environmental characteristics (e.g., Elith and

Leathwick 2009, Franklin 2009). SDMs are frequently used

in terrestrial settings, and also more and more in the

marine realm (Robinson et al. 2011), including for seabirds

(e.g., Clark et al. 2003, Yen et al. 2004, Louzao et al. 2009,

Nur et al. 2011, Oppel et al. 2012, McGowan et al. 2013,

Bradbury et al. 2014, Winiarski et al. 2014). Studies

modeling presence–absence or presence only based on

survey or telemetry data predict the probability of presence

or habitat suitability (e.g., Louzao et al. 2009). However,

information on abundance in addition to occurrence is

often required when dealing with seabirds, for example,

when defining marine protected areas (Camphuysen et al.

2012, Oppel et al. 2012). Thus far, however, there have

been rather few studies that have succeeded in predicting

accurate abundance estimates at a high resolution based

on environmental relationships (but see McGowan et al.

2013, Winiarski et al. 2014, Johnston et al. 2015, Skov et al.

2016).

Offshore seabird surveys are logistically challenging and

expensive, and the survey coverage in time and space is

therefore usually restricted. Survey results, by themselves,

are therefore only snapshots of species’ distributions in

both time and space. Being able to accurately describe

distribution and abundance using environmental variables

in a model framework is therefore highly useful as it

enables predictions over larger areas, interpolations

between transect lines, or extrapolations to areas with

similar environmental gradients, both in time and space.

However, it can be challenging to model the spatial

distribution and particularly the abundance of highly

mobile seabirds or other marine animals. Animals may

not always occupy apparently suitable areas, while less

suitable areas, in contrast, might be occupied at the time of

a survey. It is therefore important to include relevant

ecological variables, e.g., food resources and anthropogenic

pressures, as either direct or indirect variables capable of

describing the distribution of a species, and not to rely only

on geographic predictors (coordinates). Purely geographic

models (based on coordinates only) can only describe and

predict the particular survey (the snapshot). However, if

meaningful, significant, and general ecological relation-

ships are included in a model, it can potentially be used for

‘‘transferable’’ predictions in both time and space (Randin

et al. 2006, Heinänen et al. 2012). If a model is not general

enough (overfitted) or is extrapolated beyond the range of

the environmental gradients included in the model, it

tends to have low transferability, however (e.g., Torres et al.

2015). Properties of the response variable (observations of

the species) also need to be considered, because biases in

the response variable due to detection probability or other

aspects related to the survey method need to be accounted

for, as the model is data driven and fitted purely to the data

that is fed into the model. Certain properties that are

common to at-sea survey data further complicate distri-

bution modeling and need to be considered: the relation-

ships between predictor variables and the response

variable are often nonlinear, the response variable is

commonly not normally distributed, and the data are also

often zero-inflated (Martin et al. 2005, Zipkin et al. 2014).
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Despite the challenges, a model framework capable of

dealing with the issues is a framework that can make the

most of the survey data and therefore will greatly enhance

the applicability of, for example, environmental impact

assessments (EIA), strategic environmental assessments

(SEA), and spatial planning.

In this paper, we present a case study of 3 sea duck

species, the Common Eider (Somateria mollissima), Long-

tailed Duck (Clangula hyemalis), and Common Scoter

(Melanitta nigra), wherein we take into consideration all

of the above-mentioned data challenges. The study was

conducted as part of an environmental impact assessment

for the construction and operation of a planned fixed link

between Denmark and Germany in the southwestern

Baltic Sea (FEBI 2013a, 2013b). The populations of the 3

study species are all declining, and the Long-tailed Duck in

particular has shown signs of a rapid decline (Nilsson 2008,

Skov et al. 2011). It is therefore important to define the

significant factors shaping their distributions and to

estimate population sizes and distribution patterns as

accurately as possible. To do this we related observed bird

densities, from both aerial and ship surveys (separately), to

ecologically relevant environmental variables (food re-

sources, topographic variables, and anthropogenic pres-

sures) at a high resolution using a 2-step generalized

additive modeling (GAM) approach. Our main aims were,

first, to develop species distribution models capable of

accurately predicting and describing seasonal densities and

distribution patterns and, second, to compare the models

and predictions based on the input data collected using the

2 different survey platforms.

METHODS

Study Area
Our study area, the Fehmarn Belt, is located in the

southwestern Baltic Sea between Denmark and Germany

(Figure 1). The area is of international importance for

wintering waterbirds and parts of it have been designated

as Special Protection Areas for birds (SPAs) within the

European Network of Protected Areas, Natura 2000

(http://natura2000.eea.europa.eu). The area covered by

aerial surveys was 4,875 km2. The area surveyed by ships

was smaller (2,350 km2), as shallow areas (,7 m water

depth) could not be surveyed by ships, and also due to time

constraints as ship surveys are more time-consuming than

aerial surveys (Figure 1).

Surveys
Aerial surveys. Aerial surveys were conducted every

month (when weather conditions allowed) between

November 2008 and November 2010, using a standard

line transect survey method with 4 perpendicular distance

bands: A¼ 0–44 m, B¼ 45–166 m, C¼ 167–441 m, and D

¼ 442–1,500 m (Diederichs et al. 2002, Camphuysen et al.

2004). The aerial surveys, consisting of 36 parallel transects

with a distance of 3 km between each (total transect length

of ~1,600 km), were conducted by 2 planes in 1 day or 1

plane in 2 days (Figure 1). The flight track was

continuously logged at intervals of 3 s (survey effort),

and the exact time and location within a distance band for

each sighting were recorded using dictaphones by 2

principal observers and 1 control observer. Flight speed

was 100 knots and flight height was 76 m. The surveys

were conducted only in good weather conditions: Beaufort

sea state ,3 and visibility .5 km (see detailed survey

description in FEBI 2013a).

Ship surveys. As with the aerial surveys, ship surveys

were conducted every month when weather conditions

allowed. Two survey designs were used for the ship

surveys. In coastal waters, a ‘‘zig-zag’’ transect line design

was used (7–18 m depth), and in offshore areas, parallel

transect lines with 3 km spacing were used (Figure 1). The

ship’s track was continuously logged and sightings

(observations of swimming birds) were assigned to

distance bands (A ¼ 0–49 m, B ¼ 50–99 m, C ¼ 100–199

m, D¼ 200–300 m, and out-of-transect E¼.300 m) and

noted at intervals of 1 min. Snapshot counts of flying birds

300 m in front of the ship were also done every 1 min. The

sailing speed was 10 knots. The duration of 1 ship survey

was usually 3–4 days. Surveys were only conducted during

good to moderate conditions, defined as Beaufort sea state

,4 and visibility .3 km (see detailed survey description in

FEBI 2013a). For estimating corrected densities, we used

the count of birds during every 1-min survey segment as a

data unit, hereafter referred to as an ‘‘observation.’’

Environmental Predictors
Previous studies have shown that available and accessible
food resources are the most important drivers behind the

distribution patterns of wintering sea ducks (Kaiser et al.

2006, Žydelis et al. 2006, Kirk et al. 2008). It has also been

shown that sea ducks are sensitive to anthropogenic

disturbances, such as shipping (Bellebaum et al. 2006,

Kaiser et al. 2006, Schwemmer et al. 2011) and the

presence of wind farms (Petersen and Fox 2007). We

therefore included the following environmental predictors

as being potentially important for describing the distribu-

tion patterns of the 3 focal sea ducks: water depth, bottom

slope, proportion of hard substrate, distance to land,

distance to wind farm (truncated at 4 km as we assumed

no impact farther away; Petersen and Fox 2007; all other

values were set to 4,001 m), shipping intensity (AIS), and

modeled blue mussel (Mytilus edulis) biomass (Table 1; see

Supplemental Material Appendix A for an extended

description). Before extraction, the raster layers (except

for the mussel model) were resampled to the same

resolution (750 m 3 750 m) and extent. The original
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TABLE 1. Predictor variables assessed for inclusion in generalized additive models (GAMs) used to predict density patterns of 3 sea
duck species in relation to topographic variables, food resources, and anthropogenic pressures in the Fehmarn Belt, southwestern
Baltic Sea, 2008–2010.

Predictor Source Process

Water depth (m) DHI a Indirect predictor of food resource
Blue mussel biomass (AFDW) Modeled using DHI ECO Lab modeling software b Direct predictor of food resource
Bottom slope (degree) Calculated based on water depth in ArcGIS 9.3 c Indirect predictor of food resource
Proportion hard substrate DHI a Indirect predictor of food resource
Distance to land (m) Calculated in ArcGIS 9.3 c using Euclidian distance tool Disturbance and location of food resource
Distance to wind farm (m) Calculated in ArcGIS 9.3 c using Euclidian distance tool Disturbance
No. of ships (per grid cell) Monthly AIS (shipping intensity) data d Disturbance
x–y interaction term UTM zone 32N coordinates Geographic descriptor

a http://www.dhigroup.com/
b https://www.mikepoweredbydhi.com/products/eco-lab
c ESRI, Redlands, California, USA.
d Data from Danish Maritime Authorities (http://www.dma.dk/ais/Sider/default.aspx) and analyzed and provided by Ramboll (www.

ramboll.com).

FIGURE 1. Study area in the Fehmarn Belt (located in the southwestern Baltic Sea between Denmark and Germany), showing the 2
different survey extents, aerial and ship surveys, used to predict density patterns of 3 sea duck species in relation to topographic
variables, food resources, and anthropogenic pressures.
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flexible mesh (changing cell size) of the mussel model

ranged between ~800 and 1,500 m, with all the other

predictors (rasters) having a finer resolution prior to the

resampling.

Processing of Survey Data
The bird observations (see above) were corrected for

detection errors (distance biases) by using estimated

correction factors based on modeled detection functions.

A set of different key functions were fitted (uniform, half-

normal, and hazard-rate), and cosine and simple polyno-

mial adjustment terms were added to the models, in

Distance 6.0 (Buckland et al. 2001, Thomas et al. 2010;

Supplemental Material Appendix A). Additional covariates

were not included in the models, and the best-fitting

function was chosen on the basis of the smallest Akaike’s

Information Criterion (AIC) value (Burnham and Ander-

son 2002; Supplemental Material Table S1). For aerial

surveys, different detection functions were fitted for

swimming and flying birds, and for ship surveys, detection

functions were only fitted for swimming birds within

transects. For ship surveys, flying birds counted using the

snapshot technique (300 m ahead of the ship in intervals of

1 min; Tasker et al. 1984) were added to the distance-

corrected data assuming 100% detection. The global

estimated detection functions (based on the entire dataset)

were used to estimate species-specific and survey plat-

form–specific effective strip widths (ESW), which repre-

sented the width within which the expected number of
detected seabirds would be the same as the numbers

actually detected within the full width of the transect

(Buckland et al. 2001).We then corrected the abundance of

swimming birds observed during a 1-min survey segment

by dividing this observed abundance by the mean

probability of detection (ESW/transect width), thus

calculating abundance within each 1-min survey segment

corrected for observation bias. The distance-corrected

observations were finally converted to densities (birds

km�2) based on transect width and segment length, and

were combined with the survey effort data (0 observa-

tions).

In the next step, the environmental data were extracted

to the distance-corrected survey data. The modeled

dynamic mussel biomass (Supplemental Material

Appendix A) was integrated with the survey data based

on time and position; the semidynamic AIS data (monthly

means) were extracted on a monthly basis; and the static

environmental variables were integrated with the survey

data by position only. During the study period, we defined

5 seasons for the Common Eider: 2 winter seasons, and 3

transition seasons (2 spring seasons and 1 autumn season)

when bird numbers could be expected to vary due to

migration (Table 2). We could not distinguish clear

transition periods for the Common Scoter and Long-tailedT
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Duck, and we therefore defined only 2 winter seasons for

these 2 species (Table 2).

The data on bird density and associated environmental

parameters were aggregated by averaging bird densities in

1-min segments within 750 3 750 m grid cells, grouped

by season (assuming density to be equal within the whole

grid cell). The distance corrections were based on a

greater transect width (3 km or 1.5 km on each sides).

However, the influence of this spatial mismatch (between

750 m grid cell width and 3 km transect width) was

minor, as supported by the fact that most birds were

recorded close to the airplane, and the fact that the

correlation between, for example, Common Eider densi-

ties recorded in distance band A and densities estimated

using distance analysis was almost perfect (r ¼ 0.95).

Finally, the average species density in a surveyed grid cell

was used as the response variable and the extracted mean

environmental and geographic variables were included as

predictor variables in the distribution model (see below).

Sample sizes for the datasets used in the modeling are

shown in Table 3.

Statistical Analysis
Modeling approach. We used generalized additive

models (GAMs) as they are capable of fitting different

family distributions and nonlinear responses (Hastie and

Tibshirani 1990). To be able to deal with zero inflation we

fitted a ‘‘2-step’’ GAM, also called a ‘‘delta’’ or a ‘‘hurdle’’

model (Stefánsson 1996, Heinänen et al. 2008). The first

step of the modeling process was to fit a presence–absence

model (binomial distribution, with a logit link), and the

second step was to fit a positive model, wherein all records

with 0 observations of birds were excluded (Potts and Elith

2006). The positive (density) part of the model was fitted

with a gamma distribution and a log link (Stefánson 1996).

The final density predictions (birds km�2) were derived by

multiplying the probability of presence (derived from the

binomial model) with the expected density (derived from

the gamma model). The associated model standard errors

were calculated by using the formula for the variance of

the product of 2 random variables (Goodman 1960,

Webley et al. 2011).

We fitted a model (with the 2 model parts) for each

species and survey platform and included season as a

factor variable. All predictor variables were included in an

initial ‘‘full’’ model (the same variable selection method was

used for both model parts). Uninfluential variables were

removed from the model in a stepwise manner, starting

with the least significant. A variable was excluded if the

predictor error criterion GCV/UBRE score (Generalized

Cross Validation/Un-Biased Risk Estimator; see Wood

2006) fell when the variable was dropped (Wood and

Augustin 2002). Variables displaying ecologically mean-

ingless responses (based on expert judgment) were also

removed (Austin 2002, Wintle et al. 2005). The GAM

models were fitted using thin plate regression splines (the

default spline in the mgcv package; Wood 2006), and the

degree of smoothing was based on generalized cross

validation (Wood 2006). To reduce potential overfitting of

the GAMs, smooth functions for each environmental

variable were limited to 5 (k¼5), or 3 if needed, based on a

visual assessment of spline shapes (e.g., Redfern et al. 2008,

Gowan and Ortega-Ortiz 2014). The default maximum

degree of smoothing was not reduced for the interaction

term, x and y coordinates, to allow for more complex

geographical patterns. The models were fitted in R 2.9.0 (R

Development Core Team 2004) using package mgcv

(Wood 2006).

We checked collinearity between predictor variables

before model fitting, as strong correlations between

variables could result in inaccurate model parameteriza-

tion and decreased predictive accuracy (Dormann et al.

2013). We found a strong negative Pearson’s pairwise

correlation between water depth and mussel biomass

(ranging between�0.72 and�0.79 in the different species-

specific model datasets) because blue mussel biomass

increases with decreasing water depth; all other variables

had a correlation coefficient ,0.6. We included both water

depth and mussel biomass as variables in the models

(because sea ducks do not feed exclusively on blue

mussels), but inspected the behavior of the predictors

closely; inclusion of both predictors improved the

predictive ability of the models. We accepted the high

correlation between these 2 variables as the models were

TABLE 3. Seasonal sample sizes (n), with percentages of occurrence (prevalence) in parentheses, used for density distribution
modeling of 3 sea duck species (Common Eider, Long-tailed Duck, and Common Scoter), aggregated (within grid cells of 750 3 750
m) within aerial and ship surveys in the Fehmarn Belt (located in the southwestern Baltic Sea between Denmark and Germany). See
Table 2 for definitions of the different survey seasons.

Winter 1 Spring 1 Autumn Winter 2 Spring 2

Aerial Common Eider 3,052 (42%) 2,684 (24%) 2,067 (16%) 2,827 (37%) 2,965 (30%)
Ship Common Eider 826 (73%) 616 (53%) 548 (45%) 676 (74%) 603 (55%)
Aerial Long-tailed Duck 3,096 (16%) 3,350 (12%)
Ship Long-tailed Duck 852 (37%) 680 (45%)
Aerial Common Scoter 3,096 (16%) 3,350 (14%)
Ship Common Scoter 852 (35%) 680 (43%)
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used for predicting distributions within the same area, with

the same correlation structure, and were not used for

extrapolation (Dormann et al. 2013).

Assessment of fit and predictive accuracy. We

assessed the fit of the GAMs based on the deviance

explained and by inspecting residual plots. Model residuals

were also checked for spatial autocorrelation by using a

correlogram displaying Moran’s I values over 10 lags, with

1 lag being the defined nearest neighborhood of 1,500 m (R

package spdep; Bivand 2009). The predictive accuracy of

each model was assessed by fitting the model using 70% of

the data (randomly selected) and making predictions

using, and comparing predictions against, the remaining

30% of semi-independent data points (Araújo et al. 2005).

The presence–absence parts of the models were assessed

using the threshold independent measure, the area under

the receiver operating characteristic curve (AUC; Pearce

and Ferrier 2000). An AUC value of 0.9 indicates that a

model is able to discriminate between occupied cells and

unoccupied cells 90% of the time, and an AUC value of 0.5

is thus no better than random (Fielding and Bell 1997).

The combined predictions from both model parts, fitted

using 70% of the data, were further evaluated using

Spearman’s rank correlation, which revealed whether the

predictions were of the right order of magnitude (Potts and

Elith 2006). We also evaluated the full models (all data

used) with Spearman’s rank correlation using ‘‘truly’’

independent data, the observations from the other survey

platform (i.e. the aerial survey predictions were evaluated

using ship survey observations and vice versa). In addition,

we assessed predicted abundances (counts) against ob-

served counts, and, lastly, we mapped predicted density

(birds km�2) against observed density in order to inspect

the reliability of the spatial patterns.

Predictions
The final models (fitted using all data from each survey

platform) were used to predict the densities and distribu-

tions of the 3 sea duck species in the complete survey-

specific study area. The survey extents were different for

aerial surveys and ship surveys (Figure 1). We therefore

also predicted densities based on aerial surveys at the

smaller ship survey extent to be able to compare the results

of the 2 different survey methods. The comparisons, in

terms of total numbers, were based on abundances

(converted back from the predicted densities). As we used

season as a factor variable in the models, we were able to

predict season-specific densities. In the prediction models

for each season, we calculated average values for the

dynamic variables of mussel biomass and ship numbers

(AIS). The other predictor variables were static and did

thus not change between seasons.

RESULTS

Species-specific Models and Predictions
Common Eider models. The highest average abun-

dance of Common Eiders was observed during the 2 winter

seasons; their numbers were lower during the transition

seasons when migration was ongoing (Figure 2). According

to the binomial model based on the aerial survey data,

Common Eiders occurred in shallow areas with high blue

mussel biomass and a high proportion of hard substrate.

The probability of presence decreased with increasing

distance to land (after ~5 km) and increasing numbers of

ships. The probability of presence was highest during the 2

winter seasons Supplemental Material Table S4,

Supplemental Material Figure S1). In the positive model

part, a somewhat sloping bottom was important, in

addition to mussel biomass and water depth. Significantly

higher concentrations were observed during the first

spring season in comparison with other seasons

(Supplemental Material Figure S1).

When fitting models to the data collected during ship

surveys, the important predictors and their shapes were

similar to those in the aerial survey models (Supplemental

Material Figure S1). The interaction term between x and y

coordinates was influential in models fitted to both the

FIGURE 2. Observed and predicted abundances (counts) from
aerial and ship surveys of 3 sea ducks conducted in winter and
transitional (autumn and spring) seasons in the southwestern
Baltic Sea, 2008–2010: (A, B) Common Eider, (C, D) Long-tailed
Duck, and (E, F) Common Scoter. Model standard errors for the
predicted abundances are shown as error bars.
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aerial and the ship survey data, indicating that a large

degree of variance in the data could not be accounted for

by the environmental predictors alone (Supplemental

Material Table S4). The models accounted for most of

the spatial autocorrelation of the datasets. Significant (P ,

0.01) spatial autocorrelation remained in 2 lags of both

aerial survey model parts and in 3 lags of the positive

model part of the ship survey model. The Moran’s I values

were, however, very low (,0.07), indicating a weak and

therefore not influential correlation (Supplemental

Material Figures S4, S5).

Common Eider predictions. The fitted models were

used to predict bird densities across the entire survey area.

Distribution maps for the winter season, when Common

Eiders were most abundant, showed that the highest

densities occurred west of Fehmarn Island and southeast

of the coast of Lolland; patterns were similar for both

survey platforms, airplanes and ships (Figure 3). Maps for

the other surveyed seasons can be found in Supplemental

Material Figures S10–S12. The highest total abundance

based on aerial survey data was predicted to occur in the

second winter, and the lowest total abundance was

predicted to occur in the autumn season (Figure 4). The

ship survey predictions were generally higher than the
aerial survey predictions when compared within the same

(small) survey extent; however, only the autumn season

predictions were outside the range of the model standard

errors (Figure 4).

Long-tailed Duck models. The highest average abun-

dances of Long-tailed Ducks in both the aerial and the ship

surveys were observed during the first winter (Figure 2).

The influential variables included in the fitted presence–

absence part of the aerial survey model indicated that the

birds preferred shallow, offshore areas with low shipping

activity (Supplemental Material Figure S2). The positive

part of the model further indicated that the probability of

higher densities of Long-tailed Ducks was highest in

shallow, sloping areas with increasing distance from land

and low proportions of hard substrate.

The results of the ship survey models indicated that the

probability of Long-tailed Duck presence increased in

areas with increasing mussel biomass, in water depths of

~10 m, and with low proportions of hard substrate. In

contrast, the probability of highest densities increased with

increasing distance to land in shallow waters with

in t e rmed ia te propor t ions o f ha rd subs t ra te

(Supplemental Material Figure S2). The interaction term

between coordinates was influential in all models,

indicating that a large degree of the variance in the data

could not be accounted for by the environmental

predictors alone (Supplemental Material Table S4). The

models were able to account for all of the spatial

autocorrelation in the model data (Supplemental

Material Figures S6, S7).

Long-tailed Duck predictions. The predicted distribu-

tions indicated that the highest densities of Long-tailed

Ducks were located southeast and southwest of Fehmarn

Island, and the predicted densities were much higher based

on ship surveys (Figure 3, Supplemental Material Figure

S13). Abundance estimates from aerial survey models were

considerably smaller than those from ship survey models

when predicted for the same area. Annual differences in

abundance were quite small (Figure 4).

Common Scoter models. The average abundance of

Common Scoters observed during aerial surveys was

clearly higher in the first winter than in the second winter.

In the ship surveys, more birds were observed during the

second winter than the first (Figure 2). The influential

variables included in the fitted presence–absence part of

the aerial survey model indicated that the birds preferred

shallow, gently sloping offshore areas with low shipping

activity (Supplemental Material Figure S3). The positive

density part of the model further indicated that the

probability of higher densities of Common Scoters was

highest in water depths of ~5–6 m with an intermediate

proportion of hard substrate in areas with low shipping

intensity and an increasing distance to wind farms. The

results of the ship survey models were similar to those of
the aerial survey models (Supplemental Material Figure

S3). The interaction term between coordinates was

influential in all models, indicating that a large degree of

variance in the data could not be accounted for by the

environmental predictors (Supplemental Material Table

S4). Both presence–absence model parts were able to

account for all spatial autocorrelation in both the aerial

survey and the ship survey data. Significant (P , 0.01)

spatial autocorrelation remained only in the first lags in the

residuals of both positive model parts (based on both aerial

survey and ship survey data), but Moran’s I was low

(,0.10; Supplemental Material Figures S8, S9).

Common Scoter predictions. The predicted distribu-

tions indicated that the highest densities of Common

Scoters occurred southeast and southwest of Fehmarn

Island (Figure 3, Supplemental Material Figure S14). The

predicted total abundance from both the aerial survey and

ship survey models was lower during the first winter than

the second winter (Figure 4). In the smaller survey area,

the abundance predicted by the aerial survey models was

lower than that predicted by the ship survey models;

however, the ranges of the model standard errors

overlapped (Figure 4).

Model Evaluation
The variance explained (deviance explained) was in the

same order for all species and model parts, with the

Common Scoter having the highest deviance explained

and Common Eider the lowest (Table 4). The deviances

explained in the presence–absence parts of the aerial
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survey models were all close to 20% and in the ship survey

models close to 30%. The positive parts of the models

generally had higher deviances explained, with those in the

aerial survey models close to 25% and those in the ship

survey models close to 45% (Table 4). When evaluating the

models using the 30% withheld data, the AUC values of the

presence–absence model parts were all close to 0.80,

varying between 0.79 (aerial survey Common Eider and

FIGURE 3. Mapped densities (birds km�2) in 750 3 750 m grid cells based on model predictions using both aerial survey and ship
survey data for (A, B) Common Eider (winter 2), (C, D) Long-tailed Duck (winter 1), and (E, F) Common Scoter (winter 1) in the
southwestern Baltic Sea, 2008–2010. Note that the ship survey extent was smaller (2,350 km2) than the aerial survey extent (4,875
km2).
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Long-tailed Duck models) and 0.84 (ship survey Long-

tailed Duck model). The combined predictions were

further assessed using Spearman’s rank correlation. The

correlation coefficients for the aerial survey models varied

between 0.355 (Long-tailed Duck) and 0.424 (Common

Eider) and for the ship survey models between 0.554

(Common Eider) and 0.618 (Common Scoter; Table 4). As

these evaluation statistics are not spatial, we also mapped

the observed distributions of the 3 species against their

predicted distributions, and the predicted patterns of

distribution were highly similar to the observed patterns

(Supplemental Material Figures S15–S19). The models

were also capable of predicting a similar seasonal order of

density as the observed order, within the same modeling

dataset (Figure 2).

When evaluating the modeled predictions against

observations from the other survey platform (i.e. when

evaluating aerial survey predictions using ship survey

observations and vice versa), the Spearman’s rank corre-

lation coefficients were generally high (Table 5), and

predicted abundances were generally comparable to

observations from the other survey platform for the

Common Eider and Common Scoter, although the ship

survey data yielded higher observed estimates (Figure 5).

However, for the Long-tailed Duck, the predicted abun-

dances based on ship surveys were much higher than aerial

survey predictions (Figure 5).

DISCUSSION

Predictive Accuracy of the Models

The first aim of this study was to create models capable of

accurately predicting the seasonal density and distribution

of 3 sea duck species in the Fehmarn Belt area of the

southwestern Baltic Sea. We achieved this aim, as we were

able to predict accurate density patterns of our study

species at a high resolution (Table 4). The AUC values of

all presence–absence models were close to 0.80, indicating

good ability of the models to distinguish between presence

and absence (Swets 1988). This is particularly good

considering that our study species are highly mobile and

in some instances occurred in less-suitable feeding areas,

for example, if birds were surveyed while resting during

migration. The correlation coefficients of the combined

predicted densities were also high, ranging from 0.355 to

0.618, indicating that the order of magnitude of the

predictions was comparable to that of the observations,

which is in contrast to the findings of Oppel et al. (2012),

who found only weak agreement between predicted and

observed densities in an independent dataset. However,

waterbirds that rely on sessile benthic prey have a more

TABLE 4. Model evaluation results for generalized additive
models (GAMs) used to predict density patterns of 3 sea duck
species in relation to topographic variables, food resources, and
anthropogenic pressures in the Fehmarn Belt, southwestern
Baltic Sea, 2008–2010. The deviance explained (dev. exp.)
indicates how much of the variance in the data was explained
by both model parts, presence–absence (P–A; binomial distri-
bution) and positive part (POS, wherein all records with 0
observations of birds were excluded). The area under the
receiver operating characteristic curve (AUC) was used for
evaluating the predictive performance of the binomial parts of
the models, and Spearman’s rank correlation coefficient (rho)
was used for assessing the final combined density predictions.

Dev. exp. AUC rho

Common Eider
Aerial P–A 19.9 0.788 0.424
Aerial POS 24.7
Ship P–A 26.2 0.801 0.554
Ship POS 45.5

Long tailed Duck
Aerial P–A 18.3 0.787 0.355
Aerial POS 25.1
Ship P–A 31.9 0.841 0.589
Ship POS 45.2

Common Scoter
Aerial P–A 23.9 0.835 0.385
Aerial POS 33.3
Ship P–A 35.3 0.818 0.618
Ship POS 48.6

FIGURE 4. Predicted total abundance (counts) during different
seasons for (A) Common Eider, (B) Long-tailed Duck, and (C)
Common Scoter at 2 different survey extents (aerial vs. ship
surveys; Figure 1) in the Fehmarn Belt area of the southern Baltic
Sea, 2008–2010. Predictions from the aerial survey models (with
a larger extent) are also shown at the smaller ship survey extent
to facilitate comparisons with the ship models. Standard errors
for the predictions are shown as error bars.

The Condor: Ornithological Applications 119:175–190, Q 2017 American Ornithological Society

184 Distribution modeling of sea ducks S. Heinänen, R. Žydelis, M. Dorsch, et al.
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consistent spatial distribution than pelagic-feeding birds

that rely on mobile prey in a highly dynamic environment.

This might explain the differences in the predictive

accuracy of our models in comparison with those of

Oppel et al. (2012). Sea ducks are nevertheless also mobile

and all suitable areas are not occupied at all times (at the

time of a survey, for example). Our model was also not able

to explain peak densities (large concentrations), which are

due to factors other than the environmental and geo-

graphic predictors included in the model (for example,

conspecific attraction). This consequently complicates

validation of the model predictions. The resulting density

surface is therefore ‘‘smoothed’’ (peak densities are

underestimated and absences are overestimated), and the

correlation should not be expected to be perfect, but rather

to give an indication of the order of agreement between

predicted and observed densities. The close agreements in

observed and estimated total abundances for the different

seasons in the model datasets (Figure 2), and the highly

similar spatial distribution patterns of the model predic-

t ions compared with the survey observations

(Supplemental Material Figures S15–S19), provide further

support for the predictions based on these models being

reliable.

As an indication of prediction uncertainty, we show only

the combined standard errors related to the distribution

model parts (i.e. the standard errors of the GAMs). The

errors related to the distance corrections are reported

separately (Supplemental Material Table S3) and were not

combined with the standard errors of the final predictions.

We did not include these as there were also other errors

related to the raw survey data (all types of possible

observer mistakes, e.g., species identification and place-

ment in distance bands), and it was not possible to

quantify all these errors in a reasonable way. Further, the

variability and accuracy of the predictor variables (pre-

dicted covariates) were also not taken into account as they

were not quantified and were not possible to quantify in all

cases, but certainly also introduced uncertainty (Foster et

al. 2012). However, as the survey coverage was dense and

the models were only used for interpolation (not

extrapolation), the uncertainty or error associated with

the predictors could have influenced the modeled re-

sponses (the statistical relationships), but only to a lesser

degree the predictions (because the same uncertainty or

error of the predictors in the model dataset would have

been found in the predictions covering the whole study

area). Few studies so far have been able to include a

complete propagation of uncertainty (but see Beale and

FIGURE 5. Crosswise evaluation of observed abundance (counts
from the survey data at a resolution of 750 3 750 m) compared
with abundance predicted by the other survey method, for (A,
B) Common Eider, (C, D) Long-tailed Duck, and (E, F) Common
Scoter in the southern Baltic Sea, 2008–2010. The 2 survey
methods that were compared were aerial and ship surveys. Note
that the number of samples in the ship surveys was smaller than
that in the aerial surveys.

TABLE 5. Cross-evaluation of aerial survey model predictions correlated (Spearman’s rank correlation) against ship survey
observations and vice versa for abundance of 3 sea duck species in the Fehmarn Belt, southwestern Baltic Sea, 2008–2010. See Table
2 for definitions of the different survey seasons.

Winter 1 Spring 1 Autumn Winter 2 Spring 2

Common Eider
Aerial predictions 0.601 0.515 0.402 0.632 0.529
Ship predictions 0.498 0.322 0.356 0.476 0.287

Long-tailed Duck
Aerial predictions 0.533 0.584
Ship predictions 0.342 0.237

Common Scoter
Aerial predictions 0.513 0.647
Ship predictions 0.455 0.350
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Lennon 2012) and further development is required in this

field of research.

Model Interpretations
Our predictions are based on the modeled relationships

between the species and the environmental predictors, and

it is therefore important that the reliability of these

ecological relationships are carefully interpreted. The

variables shown to be important in our models coincide

well with the current knowledge that we have of the drivers

of sea duck wintering distributions (e.g., Bräger et al. 1995,

Kaiser et al. 2006, Sonntag 2009).

The most important factor defining the distribution of

benthivorous sea ducks in winter is usually considered to

be food resources at accessible water depths (Bräger et al.

1995, Guillemette and Himmelman 1996, Kaiser et al.

2006), which was also shown by our models (Supplemental

Material Figures S1–S3). The distribution of food resourc-

es was directly included in the models as blue mussel

biomass, and indirectly as water depth and the proportion

of hard substrate. The staple food for Common Eiders in

our study area is blue mussels (FEBI 2013a), and for

Common Scoters infaunal bivalves have also been shown

to be important (Meiner and Bräger 1990). Long-tailed

Ducks, on the other hand, are generalists and utilize
various food resources (Stempniewicz 1995, Žydelis and

Ruškytė 2005, FEBI 2013a). This was also apparent from

our models, in which blue mussel biomass was a significant

predictor in all model parts for the Common Eider, was

important for the Long-tailed Duck only in the presence–

absence part of the ship survey model, and was not a

significant predictor at all for the Common Scoter. In

contrast, water depth was a significant predictor in all

models, defining suitable feeding depths for all 3

benthivorous duck species (Supplemental Material

Figures S1–S3). In the different model parts for the

Long-tailed Duck, the proportion of hard substrate

indicated that the species used various food resources

from both soft and hard bottom types (Supplemental

Material Figure S2).

Sea ducks have further been shown to be sensitive to

anthropogenic pressures (Kaiser et al. 2006), e.g., shipping

(Schwemmer et al. 2011), which was also confirmed by our

models (Supplemental Material Figures S1–S3). The

number of ships was a significant factor and therefore

included in 3 of 4 model parts for both the Common Eider

and Common Scoter, and in 1 model part for the Long-

tailed Duck. However, shipping lanes are usually correlated

with deeper water and therefore not the preferred habitat

of sea ducks. Nevertheless, the shipping variable was able

to capture and account for some of the displacement effect

documented by Schwemmer et al. (2011). Sea ducks have

also been shown to avoid wind farms (Desholm and

Kahlert 2005, Petersen et al. 2014). In our models, the

variable ‘‘distance to wind farm’’ was only included in 1

model part for the Common Scoter (Supplemental

Material Figure S3). However, potential avoidance of wind

farms might have been explained by other factors in our

models, e.g., the x–y coordinates, particularly as wind farm

areas are not of high importance for sea ducks in our study

region. The predictor ‘‘distance to land’’ can be considered

as representative of another anthropogenic pressure

(disturbance from land-based developments), as well as a

descriptor of the location of suitable food resources. All

species seemed to prefer areas a few kilometers off the

coast, with Common Eiders preferring the shortest

distance and Long-tailed Ducks the farthest from the

shoreline (Supplemental Material Figure S1–S3). This is in

accordance with the findings of Sonntag (2009).

Finally, the interaction term between the geographic

coordinates was important in all model parts and was

included to account for some of the unexplained variance

that was not accounted for by the environmental variables

alone. The unexplained variance could be due to, for

example, site fidelity, conspecific attraction, density

dependence, and other unknown factors that we were

not able to define. However, although the inclusion of the

geographic coordinates improved our models, it also limits

their application, as they cannot be used for extrapolation

beyond the studied area. Therefore, if a model is to be used

for extrapolation, geographic coordinates should not be

included. Our models were aiming at describing the

distribution and abundance of our study species as

accurately as possible within our study area, and therefore

coordinates were included. Consequently, in addition to

accurate abundance predictions and distribution maps, our

modeling approach also provided ecologically interpret-

able results, which may be used for characterizing the

important factors driving the distributions of the study
species. The relationships between the static environmen-

tal variables (those other than mussel biomass and

shipping intensity) and the geographic variables were

assumed to be similar during all seasons because the 3 sea

ducks rely on sessile food resources. Therefore, the

distribution patterns reflected the mean relationships with

the static variables during all seasons, although the level of

density may have varied among seasons.

Comparison of Results from Each Survey Method
The second of our 2 main aims was to compare the

predictions based on the 2 different survey platforms

(aerial and ship surveys). The Spearman’s rank correlation

coefficients ranged from 0.237 to 0.647 when the methods

were compared against each other, indicating that the

predictions were of a similar order of magnitude (Table 5).

The spatial distribution patterns were also comparable

(Figure 3), based on similar relationships with the

environmental variables (Supplemental Material Figures
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S1–S3), bearing in mind that different parts of the

environmental gradients were sampled by the 2 survey

platforms (the ship survey area being much smaller than

the aerial survey area).

However, when assessing the observed and predicted

abundances from the models based on the 2 different

survey platforms, observations and predictions from the

ship surveys were much higher than those from the aerial

surveys for the Long-tailed Duck, while the differences

between survey methods for the Common Scoter were

smaller, and no clear differences could be distinguished for

the Common Eider (Figures 4, 5). We suggest that this is at

least partly due to the foraging ecology of Long-tailed

Ducks (Nilsson 1970, Goudie and Ankney 1986, Systad et

al. 2000). Many Long-tailed Ducks may remain undetected

during aerial surveys because they spend a substantial

proportion of their time feeding underwater, up to twice as

long as the other 2 studied sea duck species (FEBI 2013a).

Telemetry studies conducted in the same study area

showed that Long-tailed Ducks spent up to 60% of the

daytime underwater and thus would not be visible from

the air during that time, while the percentage for Common

Eiders was much lower (FEBI 2013a). During ship surveys,

diving birds are less of a problem, because the ship moves
much more slowly and surfacing birds usually flush when

the ship approaches.

An advantage of using aerial surveys, although the

abundance of some ducks, particularly the Long-tailed
Duck, may be underestimated, is that larger areas can be

covered and thereby larger parts of environmental

gradients. As a consequence, ecological relationships are

better described by aerial surveys in comparison with ship

surveys. On the other hand, ship surveys can potentially

provide more accurate abundance estimates as there is

more time for an observer to detect and record numbers of

birds, although at the cost of reduced survey extent.

We are confident that the same modeling approach that

we employed could be used with data collected by other

survey methods as well, for example, digital aerial surveys,

in which the numbers and locations of birds are estimated

from aerial photos or videos without the need for distance

corrections (Buckland et al. 2012). Digital survey methods

also contribute to more accurate spatial positioning of

sightings and the possibility of checking and recounting

birds if needed. However, these new, improved survey

methods do not account for the missed birds feeding

underwater either. A correction factor for diving birds

would therefore improve the accuracy of abundance

estimates.

Conclusions
The models that we have described here, based on both

aerial and ship survey data linked to food resources,

topographic variables, and anthropogenic pressures, were

capable of predicting the distribution patterns and

describing the relationships between the environmental

predictors and the responses of our 3 study species. The

models were also capable of predicting abundances of a

similar order of magnitude when assessed against obser-

vations. We can therefore conclude that the approach used

in this study is suitable for different types of data, and thus

is a good and efficient way for analyzing and mapping

survey data to be used for management and spatial

planning. Our results were also successfully used in an

environmental impact assessment (EIA), as the complete

density surface allowed us to extract predicted densities

from the affected area and thus to quantify the impact of

the proposed development, which would not have been

possible without the models (FEBI 2013b). Our case study

contributes an example of species distribution models that

can be highly useful in regional and local assessments (and

already have been; FEBI 2013b), as they can provide a

complete density surface based on ecological relationships

at a high resolution, a detailed map that can be used for

assessing impacts on species at the desired scale.
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