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Abstract.

By the example of sp>-bonded semiconductors, we illustrate what 3rd-generation muffin-tin or bi-

tals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp°d™, 5°,
and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands,
which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique

capability for providing chemical under standing.

Keywords.

1. Introduction

Muffintin  orbitdls (MTOs) have been used for a long
time in ab initio, eg. density-functiond (DF) cdculations
of the dectronic dructure of condensed maiter. Over the
years, severad MTO-based methods have been deveoped.
The utimae am is to find a genedly goplicahle
dectronic-structure  method which is intdligible, fast, and
accurate.

In order to be intdligble an dectronic-structure
method must employ a minimd and flexible bads of
short-ranged orbitas. As an example, the method should
be able to describe the vaence band and the lower pat of
the conduction band in sp>-bonded maerids using
merdy four short-ranged s and p-orbitals per atom and,
for insulaing phases, usdng merdy occupied orbitas
such as bond orbitas. Ancther example is maerids with
srong dectronic corrdations.  For such materids, one
must firs construct a small, but redistic Hilbert space of
many-electron wave functions, and this requires an accu-
rae and flexible dnglepaticle bass of aom-centred
short-ranged orbitds. A amdl bass of short-ranged
orbitas is a prerequiste for a method to be intdligible
and fast, but it may be a hindrance for its accuracy,
because the orbitds of a smdler bass tend to be more
complicated than those of alarger besis.

Most other density-functiond methods, such as plane-
wave pseudopotentid, LAPW, PAW, and LCAO meh-
ods, am a sdmulaion, and ae therefore primaily
accurate and robust. But they are neither fast nor intdli-
gible in the above-mentioned sense, because they employ
basis sats with order of hundred functions per atom. With
such  methods, undersanding can therefore only be
attempted after the caculation, by means of projections
oo eg. Wannier functions in case of insulators, charge
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dengities,  eectron-locdization
waves, aso.

The so-cdled 3rdgeneration MTO method (Andersen
et al 1994, 1998, 2000; Andersen and Saha-Dasgupta
2000; Tank and Arcangdi 2000) should come dose to
what we have been aming for. In the present paper we
shdl explan wha 3rd-generation MTOs ae and what
they achieve. Emphasis will be on the so-cdled down-
foding and enagy-mesh features which endble MTO
bases to be gmdl, flexible and accurate, as we dhdl
demondrate by exposng them to the above-mentioned
sp>-test. From the result, the idea emerges, that for band
insulators, an MTO basis can be designed a priori to span
the Hilbert space of the occupied dates only. That is,
there is one, and only one, such MTO per dectron. To
get this count right, one may associate each orbitd with a
nomina dectron (or par), and leave it to the method to
shape the orhitals in such a way that the bass st
becomes complete for the occupied saes. This can be
done because MTOs ae dective in energy, in the sense
that the MTOs of order N (NMTOs) are shaped in such a
way that the NMTO bass st solves Schrodinger's equar
tion exactly for N+1 sdngepatide enegies which in
the present case must be chosen in such a way that they
span the valence band. This ahility to generate Wannier
functions directly in red space, should be usgful for ab
initio molecula-dynamics smulaions. NMTOs may aso
prove ussful for designing many-electron wave functions,
which describe corrdated eectron systems in a redidic
way. The description of spin and orbitd ordering is a
trivid example Also for the conduction bands of metds,
Wannier-like, low-energy MTOs can be desdgned a pri-
ori. This has been demondrated in severa cases (Mller
et al 1998; Korotin et al 2000; Sama et al 2000; Vdent
et al 2001; Dasgupta et al, to be published), most recently
for the holedoped cuprate high-temperature supercon-
ductors, where the materid-dependent trend of the hop-
ping integrds and their corrdation with the maximum T,

functions (ELFs), patid
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was discovered (Pavarini et al 2001; Dasgupta et al, to be
published).

For a description of how we expand the charge densty
locdly in such a way tha Poisson's equation can be
slved and the totd energy and forces can be evaduated
fa and accurady, we refer to previous (Andersen et al
2000; Tank and Arcangdi 2000) and coming publications
(Arcangdi and Andersen, Savrasov and Andersen). This
pat of the 3rd-generation computer code is ill under
congtruction.

2. Screened spherical waves, kinked partial waves
and muffin—tin orbitals

The 3rd-generation MTO formdism is the multiple-scat-
tering—or KKR (Korringa 1947; Kohn and Rostoker
1954)—formdism for finding the olutions Yi(r), of

Schrodinger's  eguation for an dectron in a muffin tin
potentia, V(r)=&gVvr(rr), with the following three
extensons.

(i) The KKR formaism is proved to hold, not only for
superpositions  of  spherically-symmetric,  non-over-
lapping potentid wells, vg(rr), but adso to leading
order in the potentid-overlap (Andersen et al 1992).
Here, and in the following, rr°® | —R|, and R ae
the sites which we label by R The potentid, vg(r), is
teken to vanish outsde a radius, sz, which should
not exceed 16 times the radius of touching spheres,
ie Rtxkes ER-RY for any pair of dtes, R and
R

(i) Exat sreening trandformations of the spherica
waves, n, (krg)Y, (fz), ae introduced in order to
reduce the spatid range and the energy dependence
(K°@ of the waveequation solutions, ygr (€ )
(Andersen and Jepsen 1984; Andersen et al 1992
Zdler et al 1995). Hee and in the fdlowing,
L°Im labeds the sphericd- (or cubic) harmonic's
character.

(iii) Energy-independent MTO bass sdts ae deived
which span the solutions yi(r) with energies €, of
Schrodinger's equaion to within  errors  proportiona
to (e—0p)(e—0,) v (—Cy), Where 0y, 0p,%,Cy is
a chosn enagy mesh with N+1 points (Andersen
et al 2000; Andersen and SahaDasgupta 2000).
Such an enagy-independent st of Nth-order MTOs
is cdled an NMTO s&t. By virtue of the vaiaiona
principle, the erors of the energies @ will be pro-
portional to (€ —Co)*(€—€1)” ¥4 (&—n)”.

At the top of figure 1 we show the LDA energy bands,
ek), of S in the diamond dructure, caculated with the
bass st of S-centred s, p-, and d-MTOs, i.e with 9
orbitdg/atom, for the 3-point energy mesh €g, 0y, O, indi-
caed on the right-hand Sde Thex bands have mev-

accuracy for the MT-potentid, which in the present case
was the dandard dl-dectron DFLDA aomic-spheres
potentid. Since three energy points were used, the MTOs
ae of order N=2, that is, they are quadratic MTOs, so-
caled QMTOs.

The QMTO, c'?),(r), poining aong [111] from one
S to its nearest neighbour, is shown in the (211)- plane
by the firg contour plot. This orbita is locaized and
smocth, with a few ‘orthogondity wiggles a the nearest
neighbour. The remaning three contour plots show mgor
condtituents of this p11;-QMTO: The piii-kinked partia
wave (KPW), f,,,,©, r), a the centrd ste and a the
three energies g, €1, and 0. In figure 2 we show this pq;-
QMTO, together with the pi1:-KPW @ the three enargies,
dong the line connecting the two nearest neighbours and
proceeding into the back-bond.

In generd, the members (labdled by R of the
NMTO bess set for the energy mesh €y, ¥4, 6y are super-
positions

N
o o

C(R’:_)d:(r) =a adfe(Cn 'r)L(n,\IIQ)L, RL® @
n=0RL A

of the kinked patid waves fr (€ r) a the N+1 points
(labdled by n) of the energy mesh. In the present case
the L-summation is over the nine s-, p-, and d-KPWs and
the R-summation is over dl S gtes Due to the locdized
nature of the KPWs illugrated in the figures, the latter
summation is limited to the neighbours The RL-vadues
for which we have MTOs in the bads s, we labd active
(A) or low. Expresson (1) is the energy-quantized form
of Lagrange interpolation,
N N .
cME»AfeaVeE. Ve O

n=0 m=0tn N m

of a function of energy, f(@ by an Nth-degree polyno-
mid, c™(@: The Nth-degree polynomid, 1{")(e), is sub-
dituted by a matrix with eements, L%)L' re o the function
of energy, f(@, by a Hilbet space with axes fr. (€ r),
and the interpolating polynomid, c™(@ by a Hilbert
spacewith axes, cN(r).

As illugrated in figures 1 and 2, a kinked patid wave
is badscdly a patid wave with a tal joined continuoudy
to it with a kink a a centrd, so-cdled had sphere
of radius ag. This kink is seen most clearly for the
lowest energy, €. As usud, the patid wae is
j r(erRr)Y (fg), where the function of energy is the
regular solution of the radid Schrédinger equation,

~[rjim(@n]? = [e-va(r) =1 (1 + IrJrjm(er), @

for the potentia-well, vg(r). The tall of the kinked partid
wave is a -cdled screened sphericd wave, yre (€ 1),
which is essatidly the solution with energy e of the
wave eguation in the interditid between the hard
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spd-set

Energy (eV)

Figure 1. Band structure of Si calculated with the S spd-QMTO basis set
corresponding to the energy mesh shown on the right-hand side (solid lines). The
contour plots show the Si p orbital pointing in the [111]-direction between two nearest
neighbours in the (211)-plane. Shown are the kinked partial waves (KPWs) at the
three energies and the QMTO. The KPWs are normalized to 1 times a cubic
harmonics, at the central hard sphere. The contours are the samein al plots.

gpheres, -Dy(e r)=ey(e r), with the boundary condi- ment, essly recognized in the plots, particulaly a the
tion that, independent of the energy, Yr(€ r) go to highet energy €,, which makes the screened sphericd
Y (fg) a the centrd hard sphere, and to zero (with a waves the KPWs and the MTOs locdized when the
kink) a al other hard spheres. It is this latter confine-  energy is not too high. At the same time, it makes the
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Figure 2. S pi111-KPW for the Si spd-set plotted along the
[111]-line connecting nearest neighbours. The as indicate the
hard spheres at the central and the nearest-neighbour sites. The
generating MT-potential had no repulsive potentia wells at
interstitial sites (E), but only large Si-centred wells with
s=1¥a.

KPW have pure L-character merely at its centra sphere,
because outsde, it is influenced by the hard spheres cen-
tred a the neighbours. The default vdue of the had-
sphere radii, ar, is 90% of the appropricte covaent,
aomic, or ionic radius. The kinked patid wave thus has
a kink, not only a its own, but dso a the neighbouring
had spheres, insde which it essentidly vanishes
‘Essentidly’  because the  above-mentioned  boundary
condition only applies to the active components of the
spherica-hamonics  expandons of the screened  sphericd
wave on the hard spheres. For the remaning components,
in the present case the S f- and higher components, as
wel a dl components on empty (E) spheres, the
sreened  gohericd wave equas the corresponding  partia-
wave solution of Schrodinger's equation throughout the
MT-sphere. The smdl bump seen in figure 1 in the low-
et KPW contour dong the [111]-direction is mainly
caused by the f-character on the nearest neghbour, and
0 is the finite amplitude seen in figure 2 inside the near-
et hard sphere.

3. Computational steps

The radid Schridinger (Direc) equation (2) is integrated
numericdly from r=0 to sg. This yidds the radid func-
tions, jr(e r), and their phase shifts hgi(9, each of
which ae obtaned by matching the logarithmic deriva
tiveof j g(er) a r = s to that of

i (e ) jikr)- tanhg E)n kr). (©)

The radid integration must be peformed for each poten-
tid wel and for each I, increesing until al further phase
shifts vanish due to dominance of the centrifugd term in
2.

The screened sohericd waves ae specified by a Her-
mitian  gructure  matrix, whose dement Bgreer (€ IS
esentidly the radid logarithmic derivaive of the L¢
component in the sphericd-harmonics expanson a the
hard sphere a Ste R¢ of the screened sphericd wave
Yru(er). What isknown andyticaly, isthe dement

0 2 4G . I
Brecro(€©)° A 4P QC,_L,,‘Jm,@(k IR-RYY «R- RO,
16

of the bae KKR dructure matrix, which specifies how
the sphericd wave n (krg)Y, (fz), @ sSte R is expanded
aound another Ste RE in regular  sphericd  waves,
jioKrze)Y, dr)- Here K° € and the on-site terms of the
bare dructure matrix are defined to vanish. Screening of
the structure matrix,

[B(©) MrLrec® [BY(© Mrirectk tanag (€)0kpdh e

requires inverson of the matrix BS,_'RN(e+kcotaRL(é
Grél ¢ This can be done by fixing R and limiting R¢to
the 10-50 nearest stes. ag (§ ae the hard-sphere phase
shiftsfor the active channels,

tanar (8 ° ji(kar)/ni(kag),

and, for the remaning channds ag (9§ ae the proper
phase shifts, hg (§. The latter channdls, which will not
have KPWs and MTOs associated with them, are sad to
be downfolded. With appropriate divison into active and
downfolded channds, the screened dructure matrix  will
have short spatid range and no poles in the energy-range
of the occupied states.
A kinked partial waveis defined as

fr@n=l qErR)-iaE RV ()Y Er), @

where j(e r) is the radid solution for the centra well
from 0 to s, and j%e r) is the phase-shifted wave (3)
proceeding smoothly inwards from s to the centrd a-
sphere, where it is mached with a kink to the screened
ghericd wave y(e r). The kinks of the KPW s&t are
then given by the kink matrix,

BrL ree(®) +kcothg (€)dged (¢
- e’]| (kaR) n|¢(kaR¢)

)

K RL,RE ¢(e) ©

where h§, (€) is the phase shift with respect to the hard-
sphere medium,
tanh%, (e) © tanh, (e) - tanay (€).

The rows and columns of the kink matrix run merely over
active channds. In the fomdism dbove, we have for sm-



Third-generation muffin—tin orbitals 23

plicity used the notation of scatering theory, which is
andyticd for e0 and for e<0. Screened scattering
theory with the normaization (5) is however andyticd in
aregion of interest around e= 0.

Findly, the Lagrange matrix which gives the MTO set
(D) in terms of the KPW st (4), is given soldy in terms
of the vaues of the Green matrix, G(€° K(&, on the
enagy mesh e=0y,0,%,0y. The Hamiltonian and
overlgp matrices in the MTO representation are given in
teems of the same vaues of the Green matrix, plus the
values of itsfirst energy derivative, G(e).

4. Further downfoldings

In the vaence and lowest conduction bands of S, there
ae only s and p-, but no d-dectrons. To describe these

bands, we should therefore be able to use a bass with
only S s and p-MTOs, i.e. with only 4 orbitals per atom.
We thus let the S s and p-patid waves remain active,
while the S d-waves are now included among the passive
ones, i.e those ‘folded down into the tals of the
screened-spherical waves in (4). The results for the bands
and the p11;-OMTO ae shown in figures 3 and 4. Thee
bands are indiginguishable from those obtained with the
S spd-st, on the scde of the figure, dthough between
the energies of the mesh, the former bands do lie dightly
above the latter. However, by meking the mesh denser
(increesing N), the accuracy can be increased arhitrarily.
The KPW of the sp-set is seen to have d-character on the
nearet S neighbour, and the QMTO and the KPW, pa-
ticualy the one a the highet energy, are seen to he
somewhat less|ocalized than those for the spd-set.

Qi sp-set
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Figure3. Sameasfigurel, but for the S sp-set.
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Figure4. Sameasfigure 2, but for the S sp-set.

It is even possble to congdruct an arbitrarily accurae
MTO-bass which spans merely the occupied orbitds, i.e
which spans the vaence band with a basis of merdy 2
orbitdls per aom. For tetrahedrdly coordinated covaent
semiconductors  like S, it is cusomay to teke the
vadenceband orhitdls as the bond-orbitds which are the
bonding lineer combinations of directed sp>-hybrids of
orthonorma orbitds. It is however, far smpler and more
gengd, eg not limited to eementd semiconductors and
tetrahedral  Structures, to teke the valence-band orbitds as
the s and p-MTOs on every second S aom, dl partid
waves on the nearest neighbours being downfolded. This
corresponds to a S*'S* ionic picture. This QMTO-set
turns out to describe merdy the vdence band, and to do
0 surprisingly well consdering the fact that the two dli-
cons ae treated differently, so that the degeneracy dong
the XW-line is in fact, dightly broken. The error
between the energy points is proportiond to [e(k)—0g]
[ek) —01][e(k) —0;], exactly as for the bass with 4 orbi-
tas per aom shown in figure 3, because we use QMTOs
in both cases but the prefectors are larger for the smadler
bass As the number of ective channes decreases, the
KPWs atan longer range and dronger energy depen-
dence. However, by making the energy mesh finer, the
erors of the MTO s can be made abitrarily smdl. In
the bottom line of figure 5, we show the result of such a
vdence-band-only cdculaion with N=3 for Ge, toge
ther with the p;1; cubic MTO (CMTO) centred on the Ge
aom to the right. The accuracy of the vdence band is
superb, and the MTO is seen to suill over onto the
neare-neighbour atom(s) which were chosen not to have
orbitals associated with them.

Since this basis is complete for the occupied states, we
may compute the density-functiond ground-state proper-
ties in red space by taking traces, provided that we first

Léwdin orthonormdize the basis in red space The sum
of the one-dectron enagies is then computed as the trace
of the Hamiltonian, i.e. as the sum of the enegies of the
orthonorma orbitds, and the charge densty is computed
as the sum of the squares of these orbitds. This is a
method where the amount of computation increases
merdy linearly with the size of the system, a so-cdled
order-A method. Here, A refers to the number of atoms
in the system and not to the order N of the MTOs. This
NMTO method, which generates the complete basis for
the occupied states a priori, should be superior to current
order-A  methods, which either use inaccurate empirical
tight-binding models or project onto the occupied dates
during the course of alarge-basis-set caculation.

In order to demongrate in further detail that our
method works, we condder S in the diamond dructure
for which the vaenceband Wannier functions can be
teken as bond orbitds. Firs, we orthonormdize our
symmetry-bresking S** 9 s, py, py, p; QMTO set. The
realting S s and S py orbitds are shown in the (110)-
plane in figures 6 and 7. Thee orthogondized orbitas
ae sen to reman farly locdized. Then, we transform to
the four congruent sp-hybrids centred nomindly on
evey second S aom. As figure 8 shows, such an sp-
hybrid is in fact, the bond orbitd. Hence folding 4l
patid waves of the atoms chosen not to carry orbitds,
into the tail of the sp°-directed orbitdl on one of the other
S aoms has made thet orbitd look like a bond orbital.
The reason why the figure does not show exact symmetry
between the two dtes is caused by our use of an energy
mesh with only 3 points in the vadence band. Making the
energy mesh finer will generate the exact symmetry.

Now, Sh is metd because the bonding and antibonding
bands overlap. This should, however, not prevent our
method from working for the occupied daes only,
because NMTOs ae energy sdective. Since the orbitas
will be shgped in such a way that the basis st solves
Schrodinger’'s  equation  exactly for the energies on the
mesh, we may medy have to choose severd energy
points in the region of band overlgp beow the Fermi
levd and, of course, no energy points above. Remember
that our ionic prescription does not make use of the fact
tha the Wannier functions for the vaence and conduc-
tion bands are respectively bonding and antibonding.

Snce the ionic S Si(sp) set gives the occupied dates
in diamond-structured S with  arbitrary accuracy, the
same procedure with the sp-orbitds placed exdusvey
on the anion, and the d-orbitds on the cation, will of
couse work for any vV, -V, 1I-VI, and I-VII
semiconductor  and insulator.  CuBr, for ingance, would
be thought of as an ionic compound Cu'Br~ with the
cdlosed-shell  configuration  Culd'°Bras?4p®, and the besis
should therefore have the d-MTOs on the Cu aoms and
the s and p-MTOs on the Br aoms. This is illustrated in
the upper line of figure 5 Being a dnglesite prescrip-
tion, this works for CuBr in any sructure. What we have
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Figure 5. Vadence bands (solid lines) of the series CuBr—Ge, calculated with the
ionic basis sets where the sp-MTOs are on the anion and, except for Ge, the d-MTOs
are on the cation. The exact bands are given by dashed lines. The contour plots show
the p1;;—MTO on the anion (the atom to the right). The ionicity decreases and the
covalency increases from the top to the bottom.

seen is thus, that the MTO basis can be designed a priori
to span the Hilbert space of the occupied states only. That
is, there is one, and only one, such MTO per dectron. To
specify such a set, one would, in order to get the eectron-
count right, put the orbitds where the dectrons are
thought to be, and leave it to the method to shape the tails
of these orbitds in such a way that the bass solves
Schrodinger’s equation exactly for occupied saes of the
given daic meanfidd (eg. LDA) potentid. Such ionic
MTO basis sas, which ’automaticdly’ span the occu-
pied—and no furthe—states of any band insulator, could
make dengty-functiond  molecular-dynamics  caculations
highly efficient for such systems.

How could one imagine to tret a chemicd reaction
like 2H,0® 2H,+0, with MTO basss of occupied
sates only? For water, it is natura to use the ionic

description H,0O" ", according to which the orbitd con
figuration is O p° i.e one would put the p orbitds on
oxygen and fold down dl patid waves centred on the
hydrogens. In principle, one might sick to this configu-
ration throughout the reaction, because it kegps the dec-
tron-count right. However, the oxygencentred orbitas
would eventudly look srange and have long range,
because they would have to separate off pieces of wave
functions dtting on the hydrogens. Such oxygen orbitds
might be more timeconsuming to generate At some
sage in the reaction, it might therefore be appropriate to
switch to configurations such as Hs-Hs, or H Hs® for
the hydrogen molecule this is andogous to our treatment
of the occupied dates in tetrahedraly coordinated Si. For
O, with the open-shell molecular configuration pps® ppP
ppp -, we might use an ‘ionic configuration like
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Figure 6. Contour plot in the (110)- plane of the orthogonal-
ized ssQMTO on the central Si atom. All partial waves on the
nearest neighbours (and their lattice trandlations) were down-
folded.

Figure 8. Same as figure 6, but for the sp*-hybrid. For
increasing N, this orbital converges to the bond orbital .

O(z x-"y-) O(z x-y- ") with z refering to the locd z
direction of the molecule.

This example immediately leads to a trestment of
open-shell sysems by means of spin and possibly orbital
polarizetions. We have seen that the 3rd-generation MTO
method offers the possbility of desgning sngle-dectron
bases of atom-centred localized orbitdls, which span the
wave functions in a given energy region of a given mean
fidd potentid. These orbitds can even be symmetry-
bresking, & in the case of diamond, S, Ge and S,
without the generating mean fidd having to be 0. These

orbitals thus seem to have great potentia in the design of
many-eectron wave functions which describe corrdaed
eectron systemsin aredistic way.

5. Conclusion

We have soved the long-danding problem of deriving
energy-independent, short-ranged  orbitdls from  scattering
theory (Hubbard 1967). The present formaism contans
exactly the right ‘physcs and chemistry, we fed. This
should give the computationd method greet speed and
accuracy, and make it a vehide for discovery and under-
ganding.
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