
Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 2, 2011 
 

Power Grids' Dynamic Enlargement Calculus  
Using Petri Nets  

Radu MUNTEANU1, Vasile DUB2

1Technical University of Cluj-Napoca,Romania 
 2Petru Maior University of Tirgu-Mures, Romania  

dub_laci@yahoo.com  

 
Abstract—The robustness of power grids characterizes the 

behavior of grids in situations of serial failures and/or human 
errors. A coherent method of evaluating vulnerability is to 
quantify this attribute in terms of the scale-free graph theory. 
One way of increasing power grid robustness consists of adding 
new electric lines between the existing nodes. Once the target 
scale-free network is found, the real network must be enlarged 
to the graph of the target network. The choice of a reasonable 
solution is made difficult by the great number of topological 
solutions, because this number increases as the number of the 
network nodes becomes bigger. Thus, the first aim is to make 
an inventory of all these solutions. The second necessary step is 
to build correct algorithms able to find the nodes of the real 
grid which will be connected respecting economical criteria. In 
continuation of our previous research, our paper proposes a 
Petri net-based method of building all enlargement variants, 
starting from non-robust networks to the nearest free-scale, 
robust network. Starting from some distinctive characteristics 
of elementary enlargements introduced in our earlier works, 
this allows us to obtain a mathematically unique, robustness-
oriented enlargement solution. 
 

Index Terms—topological vulnerability, Petri nets, power 
grids, scale-free graphs. 

I. INTRODUCTION 

We begin with a short presentation of the topological 
description of the networks. The basics of PN are exposed in 
the Appendix with the purpose of understanding our Petri 
nets (PN) model of network enlargement dynamic. 

 I.1 Graphs’ topological quantifiers  
The main elements used to describe large systems by their 

graphs are presented in [1],[2].  
The graphs’ quantifiers used in our paper are the 

following: 
- The nod’s degree k, which is an indicator of how many 

links the node has to other nodes.  
- The degree distribution P(k) representing the probability 

that a selected node has exactly k links: 
- The critical fraction  quantifies the robustness of the 

network faced with random series of removed nodes 
(random attacks). The result of these complex events is a 
strong reduction of the grid dimension, by the appearance of 
giant clusters, [1], [3], [4], characterized by high dimension 
in contrast to other clusters. In our paper, the power flow 
processes are neglected, the target being the static 
robustness, in opposition to the dynamic robustness 
thoroughly presented in [5]. The power flow approach leads 
to finding the most critical components in a network, by 
analytical or topological methods. 

Cf

 A suggestive illustration of the difference between a 

topological (nearest-neighbor) model of cascading failure 
[6] and one based on Kirchhoff’s laws is presented in [7]. 
So, in a topological approach, the clusters formation, known 
as percolation, is the main event in the random (or 
intentional) destroying dynamics 8], and it has been the 
subject of many mathematical studies. An accepted criterion 
in determining the percolation threshold in the destroying 

process dynamics is when: . The 

critical fraction , representing the deleted nodes’ 

percentage producing the percolation, is defined and 
computed in [2]. For one ordinary graph described by its 

probability function , the value is: 
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where   is the average symbol. 
Unlike the theoretical critical fraction, the real critical 

fraction  is evaluated by random destroying 

experiences. 

theor
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A special random graph class is the scale-free (SF) s 
graphs, with a power law degree distribution: 
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Observe that in logarithmic coordinates, (2) is a straight 
line.  

If 32  b  we estimate the critical threshold with : cf
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In addition, for SF graphs,  2/bc 
Note that the smaller the network’s N node number, the 

bigger the error between the theoretical and the empirical 
values of c  is. The reason is that by using such formulae 

as (1) and (3), for m , k is considered as a continuous 
variable. In [9], the authors make a difference between the 
theoretical and the real values of the critical fraction in the 
analysis of some European power grids. 

f

K 

On the other hand, the SF graphs “steady” properties have 
a relevant sense [10], examining their evolution as random 
processes. What is random in the power grids’ enlargement? 
The mathematical approach to the random graphs offers 
other very attractive models of the real networks: in [11], the 
presented Watts–Strogatz network model describes 
networks between a regular network and a random one. The 
last is defined in a particular manner, allowing the modeling 
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of different random behaviors, one of them conducting to 
the SF graphs. A very simple node-addition algorithm, 
presented in [12], [13] and used in [14], allows us to build 
SF graphs: starting with a small sized initial graph, a new 
node with k edges is added step-by-step in such a way that 
the probability to be connected to an existing node is 
proportional to the connection degree of this node, thus we 
establish a preferential attachment with the highest 
connected nodes. But in power grids, we follow the similar 
idea, because it makes no sense to introduce low connected 
new nodes and, at the same time, assure an elevated reliable 
power flow for the enlarged network, thus at first sight, the 
power grids should become SF graphs.  

II. NETWORKS ENLARGEMENTS BY NEW EDGES ADDITION  

The networks’ extension policy can assume various 
targets: a reliability approach, [15], or, the power flow 
growth for some customers, all these with the purpose of 
reducing the network vulnerability facing random failure 
events. Thus, the first step is the risk assessment of power 
grids. The reliability approach is focused on a few well-
defined points of the network. A very interesting and 
necessary enterprise is to identify the quantitative 
equivalences between the reliability and the topological 
approach. In [15], the reliability of electric transmission 
systems is analyzed in terms of the topological properties of 
scale-free graphs, and failure propagation. A power system 
reliability index is compared to the scale-free network 
models robustness-derivate quantifiers. The topological 
approach is very attractive, because it can reveal relevant 
properties of the structure of a power grid, emphasizing the 
role played by its components, role which escapes a local, 
reliability centered analysis and offers the instrument to 
perform vulnerability assessments based on the simulation 
of random or intentional faults [15]. In [16], the authors 
present two extension algorithms to generate the minimum 
distance graph, in terms comparable with our works, but 
using the bisection technique by introducing the bisection 
cost parameter .and maintaining the grid’s exponential 
degree distribution character. In [17] it is emphasized that in 
critical infrastructure systems, such as electric power grids, 
there is a significant influence on the network structure of 
the new links. In order to measure the power networks 
vulnerability, the response of networks is tested in a variety 
of disturbance scenarios, measuring the relationship between 
the disturbance size and the economic aspect of the 
disturbances [18].  

In our paper we assume that the enlargement is performed 
only by new connections, and in addition, we change the 
exponential degree distributions to a desired SF distribution. 
To this purpose, we will model the extension process by 
dedicated Petri nets, associated with vulnerability quantifiers 
introduced in Section I. 

We consider a network graph with the empirical degree 

distribution .  )(0 kP

Thus we must obtain the objective graph , from the 

initial  graph of the studied power grid.  
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An elementary enlargement [19] is made by adding a 
single new edge, denoted by the operation: 

KjikrGijerG  ),(1          (5) 

where: 

-  are two successive graph histograms; 1, rr GG

-  - connection of one nodes with i edges with the other 

one, with j edges. 
ije

The new graph’s histogram will be: 
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Thus, one edge removal between a node with i edges and 
another one, with j edges is defined, according to (5), as a 

negative enlargement “ ije ”. Of course, this operation can 

be made only if there is a connection between the selected 
nodes. 

A. Properties of elementary enlargements:  

We attach critical fractions  and to and 

: 

r
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Prop.1 We accept as obvious for any enlargement that: 
r

c
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Prop.2 Let Ktzyxm  ,,, . Hence, there are 

equivalence relationships between distinct elementary 
extensions pairs:  
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There is a system of distinct, (8)-form equations. 
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Prop.3 The number z of the linear independent 
elementary extensions is: 

)( eqSrankz           (10) 

According to the convention for the signs associated to 
the elementary enlargements, in (8) we can move the terms 
following usual algebraic rules. 

III. ANALYZING THE POWER GRID'S VULNERABILITY 

There are more approaches to the power grids’ 
vulnerability evaluation, depending on the risk source [20], 
[21]. Here, our approach is based on the terms of the SF 
graph theory. The proposed network is the IEEE-30 bus 
system, and our choice is motivated by the adequacy of the 
network dimension to some networks studied in [22]. The 
relatively small sized dimension is imposed with the 
purpose of illustrating the enlargement process by a 
tolerable complexity of the Petri net coverability tree. In 
Fig.1, the transformers are not explicitly figured, therefore 
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the buses’ voltage can be different (i.e. 110 kV, 220kV): 
also, performing the random destroying experiences to find 
the empirical value for the critical fraction, no differences 
were observed between generator nodes and the other nodes 
of the network. The single line diagram of the IEEE 30-bus 
test system [23] is shown in Fig. 1 

  
Figure 1. The IEEE 30-bus test system  

 
The network’s degree distribution and histogram are: 

11036163

76543210 G        (11) 

The graph’s quantifiers are:   

. By representing log(N(k)), which in 

logarithmic coordinates has a similar form as log(N(k)), it is 
obvious that the analyzed network is not SF (Fig.2): we 
must eliminate the 1-edge connected nodes, build 5- edge 
connected and increase 2-edge connected node number. 
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Figure 2. The graph's degree distribution 

 

By imposing a needed , a target degree 

distribution, obtained by a linear regression method is 
found:  

65.0theor
cf
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The new graph’s quantifiers are: ,92.3c  

and an expected . ,66.0theor
cf 42.0real

cf

IV. THE SOLVABILITY OF THE PROBLEM 

Thus, we intend to transform in  ( ) by 
adding new edges, keeping the nodes’ number constant. 
Observe that for any real network’s histogram, we have: 
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where  is the vertices’ number. Therefore, the sum is 
always an even number. We will nominate this (4) form 
matrix as graph matrix (GM). 

0L

We associate to and a Petri net (PN) with the 
subsequent structure: the P set of places: 
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according with the elementary enlargement definitions (6). 
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The maximal indices for the transition set was limited to 
K-1 so as not to generate nodes with edge number over K 

The PN’s states, as the places’ marking, are equal to the 

second row  of the successive F
IIG
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 , the 

initial state being   :),2(0
0 GM 

The transitions must have the same task as the elementary 
transitions defined by (6): 

5:2,  iet ijij          (14) 

With these notes, we affirm that: 

If and are GM - form, in the previously defined 

PN, there is always a transition set conducting from and 

, or more precisely, is always accessible from . 
Proof: 
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The associated PN is depicted in Fig. 3: 
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Figure 3. The PN for the accessibility proof 

 

The PN’s incidence matrix A and the 0MMM F   
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Let us check the rank of the matrix having any two 

columns of TA and the M . By adding the matrix rows, 

we will obtain only zeros, because , hence  
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V. APPLICATION: BUILDING THE PETRI NET- MODEL OF 

THE ENLARGEMENT DYNAMICS 

We will return to model the IEEE 30-bus test system 
enlargement with a PN built in accordance with section IV. 
Thus:  

- The places of this PN will be associated with the nodes’ 
number having k connections. Thus, the number of the 

places will be: . The initial state is 

associated with the starting network’s graph  and we 

expect to find in the proposed PN the state 

1 mKn 0M

F

0G

M  

corresponding to the target graph , so as to have: 

. The  is not necessary a 

deadlock state. 

FG
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We assume we will not use negative enlargements:  
At first sight, according to (9), (10 ) we can build two 

distinct type of PNs: 

a) with z transitions; b).with E transitions. 

The main differences is the convergence mode from  

to : if we opt for b), knowing 

0G
FG Ez  , the simultaneous 

transition conflict solving becomes decisive.  
Thus, we will choose the a) variant. Also, to reduce the 

coverability tree dimension, the first three enlargements 
steps are chosen in the beginning:  and , and in 

the same line, observe that the 7-edge nodes number must 
not be affected: thus, the initial and the final state marking 
will be: , , so we will work 

with a PN having : . 

1411, ee
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The proposed PN is shown in Fig. 4: 
The accessibility condition (A.2) is satisfied, because: 

4)]0[]([)(  TMFMTArankTArank  

The PN's dynamic is described by the coverability tree 
from where we will retain some ways conducting from  

to , (Fig. 5). Here, the boxes are the states of the 

enlargement process and the labels of the edges are, in 
accordance with the enlargement-transition equivalence 
(14), the elementary enlargement indices. 
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The proposed PN’s state capacities were fixed to 

have , and for p)6,5,4()( 6,5,4  kGpK F
II 2 and p3, to 

assure the PN’s repetitiveness property, thus:  
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To obtain the solutions containing all the elements of 
],,,,,[ 453534,25242322 tttttttT  , we would start from a 

PN with 7z

45t

independent transitions (9). In our example, 
for space economy, we will reduce the T set of transitions, 
renouncing , thus we will have a 6-transition PN. Note 

that a PN with all the elements of T produces a coverability 
tree with 193 state, the target states having the label 185; 
Therefore, reducing the T set elements number, we’ll obtain 
less complex coverability trees,. but with the price to lose 
the trajectories containing the eliminated transitions. 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
Figure 4. The 6-transition PN 

 
In Fig.5, we present only a section of the entire coverabily 

tree. Here, the signification of the edges’ label, according to 
(14), is: labeltlabel   

 
Figure 5. A partial coverability tree view for the 6-transition PN 

 
The 128:1, nM n states legend is presented in Table I: 

Now, for all the states of table I, we add the theoretical 
critical fraction computed with (1) to the coverability tree. 
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For purposes of space saving, we will do it only for the 
predecessor states of the 117 labeled state (Table II). 

In this way, we have the essential information based on 
which to choose the optimal enlargement trajectories. 

 
TABLE I - THE STATES’LABEL LEGEND 

S P2,3,4,5,6 S P2,3,4,5,6 S P2,3,4,5,6 
0 17 8 2 1 1 51 12 11 5 0 1 83 14 8 2 3 2 
3 16 8 3 1 1 52 12 10 5 1 1 85 14 6 5 3 1  
5 17 7 2 2 1 54 13 9 5 0 2 86 15 5 5 5 2 
12 15 9 3 0 2 55 14 8 3 3 1 98 11 10 4 3 1 
13 15 9 4 0 1 57 14 9 2 2 2 99 11 10 5 1 2 
14 15 8 4 1 1  58 15 7 3 2 2 100 12 9 4 2 2 
15 16 7 3 2 1 59 14 7 5 2 1 102 13 8 3 3 2 
18 17 6 2 3 1 61 15 6 5 1 2 103 12 8 5 3 1 
27 13 10 4 1 1 62 16 5 4 2 2 104 13 7 5 2 2 
31 15 8 2 3 1 64 17 4 3 3 2 105 14 6 4 3 2 
33 14 9 5 0 1  73 11 11 4 2 1 117 11 9 5 2 2 
34 1 4 8 5 1 1 74 11 11 5 0 2 118 12 8 4 3 2 
36 15 7 5 0 2 75 12 10 3 3 1 128 11 8 5 3 2 
39 16 7 2 2 2 76 12 10 4 1 2   
40 17 5 3 2 2 81 13 8 5 1 2   
45 11 12 4 1 1 82 14 7 4 2 2   

 
TABLE II THE CRITICAL FRACTIONS OF SOME FINAL STATES 

State No 98 99 100 103 104 118 
theor

cf
 

0.633 0.636 0.641 0.636 0.644 0.664 

 
In our example, with the exception of 118, the state 104 is 

the best predecessor of 117. We immediately obtain relevant 
information: we can practically stop the enlargement 
arriving in 104, thus reducing the new connections’ number 
by two. 

 Thus, the convenient solutions from 0 to 128 labeled 
states are trajectories such as:  

-  1281171048662401850 ,,,,,,,, MMMMMMMMM

-  1281171048559341430 ,,,,,,,, MMMMMMMMM

or the associated enlargement sets: 

}34,22,25,25,34,23,23,23,22,14,11{2

},34,22,22,23,23,35,34,34,22,14,11{1

eeeeeeeeeeeE

eeeeeeeeeeeE




 

In the case of the IEEE 30-bus test system, the first 
solution may be in join nodes 11 and 26 for , join nodes 

1 and 10 , for , etc., all the enlargement being applied to 

the successively modified power grids. 

11t

14t

The final enlargement solution depends on the cost matrix 
of all the new possible connections of the IEEE 30-bus test 
system. 

VI. CONCLUSION 

The ideas presented in our paper offers an attractive tool 
to find enlargement solutions of a vulnerable network to the 
nearest robust network. The first advantage of this algebraic 
method is to answer the question of accessibility analysis of 
the target grid. One of advantages of the Petri nets’ used in 
the graphs’ enlargement strategies study is that instead of 
computing them; we have a comprehensive presentation of 
all the solutions of the problems, by a suggestive graphical 
diagram of the enlargement process. Another advantage is 
the possibility of choosing the elementary enlargement set in 
which we would solve the enlargement process. Based on 
the coverability tree inspection, the enlargement process can 
be stopped before realizing the theoretical scale-free 

character, by attaching the critical fraction value to the 
coverability tree. Therefore we can formulate criteria for 
optimal enlargement solutions, with the purpose of reducing 
the choice space of economically eligible variants.  

APPENDIX A 

Petri nets (PNs) 
PNs (defined by Petri in 1962) is a graphical tool, 

mathematically based on matrix algebras. Classical PNs are 
identified by a quintuple , in which: )0,,,,( MWFTP

-  is the set of places; },...,2,1{ mpppP 

-  is a set of transitions; },...,2,1{ ntttT 

- )()( PTTPF  is a set of arcs; 

- is the arcs’ weight function; ,...)3,2,1(: FW

- is the initial mark ,...)3,2,1,0(:0 PM

Mathematically, a PN is a directed bipartite graph with 
two different types of nodes called places and transitions. 
The nodes are connected through directed arcs. Input places 
are a set of places that can fire a transition, while output 
places are a set of places that are associated with the results 
(outputs) from a transition. Only the static properties of a 
system are presented by a PN structure and dynamic system 
properties result from PN execution. The execution of a PN 
may affect the number of tokens in a place. A transition is 
called enabled when each of its input places has enough 
tokens. A transition can be fired only if it is enabled. When 
a transition is fired, tokens from input places are used to 
produce tokens in output places. 

A PN with all arcs’ unitary weight is an ordinary PN. 
A 1-bounded PN is a safe-called PN.  

A. Transition enabling rule  

A transition tj is said to be enabled in a marking M if and 
only if for all , elements of the ’s 

input places set.  

),()( jii tpwpM  ip jt

B. Transition firing rule. 

Only an enabled transition can be fire. 
The firing execution of  has as effect the remove of 

tokens from all input places of t

jt

),( jtipW

),( ipjtW

j and add 

tokens to every output places of . jt

C.  The state equation  

Any PN can be specified in matrix form as incidence 

matrix A,  AAA , with m rows and n columns, where 
m is the number of transitions and n is the number of places 
in the PN, and: 

- is the weight of the arc from t),( jpitWija 
i to its 

output place pj; 

 - is the weight of the arc to from its 

input place ; 

),( ijij tpWa 

jp

it

We consider two  and states of a PN dynamics, 

consisting of a succession of states from an initial  to a 

0M dM

0M
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dM marked, present state. A state is defined by a line 

matrix containing the places’ instantaneous marking. That 
dynamics can be described by the matrix equation: 

XTAMdM  0       (A.1) 

where X is the possible firing number matrix.  
The necessary, but insufficient accessibility condition is 

the subsequent equality: 

)]0[]([)( TMnMTArankTArank      (A.2) 

For further information, please consult [24], [25]. 

REFERENCES 
[1] R Albert, A. L Barabási , “Statistical mechanics of complex 

networks”, in Reviews of Modern Physics, volume 74, January, 2002, 
pag.47-97. 

[2] A. L Barabasi, E. Ravasz, T. Vicsek, “Deterministic Scale-Free 
Networks”, in Physica A 299, (3-4) (2001), pp. 559-564. 

[3] R. Cohen, S. Havlin, D. Avraham, “Structural Properties of Scale-
Free Networks”, WILEY-VCH Verlag Berlin GmbH, August 18, 
2002. 

[4] D. S. Callaway, M. E. J. Newman,2,3 S. H. Strogatz, and D. J. Watts, 
“Network Robustness and Fragility: Percolation on Random Graphs”, 
in Physical Review Letters, volume 85, number 25 , 2000, Pages 
5468-5471. 

[5] A. Pinar, J. Meza, V. Done, B. Lesieutre, “Optimization strategies for 
the vulnerability analysis of the electric power grid”, in SIAM J. 
OPTIM. Society for Industrial and Applied Mathematics, Vol. 20, No. 
4, pp. 1786–1810. 

[6] L. Zhao, K. Park, Y.C. Lai1, “Attack vulnerability of scale-free 
networks due to cascading breakdown”, in PHYSICAL REVIEW E 
70, (2004), , Pages 035101-4. 

[7] P. Hines, S. Blumsack, E. Cotilla Sanchez, C. Barrows, "The 
Topological and Electrical Structure of Power Grids," in HICSS, 
pp.1-10, 2010 43rd Hawaii International Conference on System 
Sciences, 2010. 

[8] S.Arianos, E.Bompard, A.Carbone, F.Xue, “Power grids 
vulnerability: a complex network approach”, in Chaos 19, 013119 
(2009), DOI: 10.1063/1.3077229, pages 1-16. 

[9] R.V. Solé, M. Rosas-Casals, B.Corominas-Murtra,1 and S. Valverde, 
“Robustness of the European power grids under intentional attack”,in 
Physical review e 77, 026102 _2008, pp. 026102-2-7.  

[10] P Crucittia, M. Marchioric, A. Rapisarda, “Efficiency of scale-free 
networks: error and attack tolerance”, in Physica A, Volume 320, 15 
March 2003, Pages 622-642. 

[11] Y. W. Chen1, L F Zhang1,J P Huang1, “The Watts–Strogatz network 
model including degree distribution: theory and computer 
simulation,” in J. Phys. A: Math. Theor. 40 (2007), Pages 8237–8246. 

[12] Albert-László Barabási , “Linked: The New Science of Networks:” 
Perseus Publishing, April 2002. 

[13] H. Wang, Y. Guo, “Consensus on scale-free network”, in Proceedings 
of the American Control Conference,Washington, USA, 2008, Pages 
748-752. 

[14] B. J Kim, C. N. Yoon , S. K. Han, H Jeong, “Path finding strategies in 
scale-free networks” in PHYSICAL REVIEW E, VOLUME 65, 2003, 
DOI: 10.1103/PhysRevE.65.027103, Pages 65 027103-1-4. 

[15] D P. Chassin, C. Posse “Evaluating North American electric grid 
reliability using the Barabási–Albert network model”, in Physica A: 
Statistical Mechanics and its Applications, Volume 355, Issues 2-4, 
15 September 2005, Pages 667-677. 

[16] T. Rigole, G. Deconinck , “A Survey on Modeling and Simulation of 
Interdependent Critical Infrastructures”, 3rd IEEE Benelux Young 
Researchers Symposium in Electrical Power Engineering, paper no. 
44, pag.1-9, 27-28 April 2006, Ghent, Belgium. 

[17] E. Zio, W. Kröger, “Vulnerability assessment of critical 
Infrastructures”, in IEEE Reliability Society 2009 Annual Technology 
Report, pag.1-7. 

[18] P.Hines, E. Cotilla-Sanchez, S. Blumsack, “Do topological models 
provide good information about electricity infrastructure 
vulnerability?”, in Proceeding of CHAOS 20, 2010, published online 
28 September 2010,pag 033122-1-5. 

[19] V. Dub, D. Sarchiz , “Power networks' robustness oriented 
Extension”, in PowerTech 2009 IEEE Bucharest, Digital Object 
Identifier: 10.1109/PTC.2009.5281871 , 2009 , Page(s): 1 – 4. 

[20] O. A. Mousavi, M. S. Farashbashi-astaneh, G. B. Gharehpetian, 
"Improving Power System Risk Evaluation Method Using Monte 
Carlo Simulation and Gaussian Mixture Method," Advances in 
Electrical and Computer Engineering, vol. 9, no. 2, pp. 38-44, 2009. 
[Online]. Available: http://dx.doi.org/10.4316/AECE.2009.02007  

[21] G. Grigoras, G. Cartina, E. C. Bobric, "Strategies for Power/Energy 
Saving in Distribution Networks," Advances in Electrical and 
Computer Engineering, vol. 10, no. 2, pp. 61-64, 2010. [Online]. 
Available: http://dx.doi.org/10.4316/AECE.2010.02010  

[22] M. Rosas-Casals, S. Valverde, R. V. Sole, “Topological vulnerability 
of the european power grid under errors and attacks”, in International  
Journal of Bifurcation and Chaos, World Scientific Publishing 
Company, Vol. 17, No. 7 (2007), pp. 2465–2475. 

[23] P. Cesarz, P., G.M. Pomann, G., L. Torre, and al.., “Detecting 
Network Vulnerabilities Through Graph Theoretical Methods”, pag.1-
20, October2007.  

[24] T. Murata, Petri nets: Properties, “Analysis and Applications”, in 
Proceedings of the IEEE, vol.77, No. 4, April 1989, Pag.541-580. 

[25] Octavian Pastravanu - Sisteme cu evenimente discrete (Discrete event 
systems), Matrixrom Publishing Bucarest, 1997. 

 
 

 78 

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:05:33 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]


