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Abstract: In complex environment with hybrid terrain, different regions may have different terrain. Path 
planning for robots in such environment is an open NP-complete problem, which lacks effective methods. The 
paper develops a novel global path planning method based on common sense and evolution knowledge by adopting 
dual evolution structure in culture algorithms. Common sense describes terrain information and feasibility of 
environment, which is used to evaluate and select the paths. Evolution knowledge describes the angle relationship 
between the path and the obstacles, or the common segments of paths, which is used to judge and repair infeasible 
individuals. Taken two types of environments with different obstacles and terrain as examples, simulation results 
indicate that the algorithm can effectively solve path planning problem in complex environment and decrease the 
computation complexity for judgment and repair of infeasible individuals. It also can improve the convergence 
speed and have better computation stability.  
Keywords: path planning; hybrid terrain; common sense;evolution knowledge; genetic algorithm 

 
1. Introduction 

Global path planning for a mobile robotic is defined as 
finding a most reasonable collision-free route from a start 
location to a destination in the environment with 
obstacles. This route is generally optimal in some aspects, 
such as shortest distance or motion time. In most of 
researches on global path planning, only known or 
unknown obstacles are considered in the environment as 
the terrain is simple. However, different regions of the 
real environment usually have different terrain, such as 
sandlot, grassplot and so on. So how to find a reasonable 
path for a mobile robotic meeting the need of above 
criterions and escaping from obstacles in such complex 
environment with hybrid terrain is an open problem. 
In global path planning, how to exactly describe 
environment is the base. Up to now, many effective ways 
have been used[1], such as mapping method, free-space 
method, generalized Vornooi, grid method, fuzzy logic[2] 
and so on. The former three modeling methods adopt 
mesh or map to describe environment. Though the 
optimal path obtained based on these environment is 
more precise, the computation complexity of the methods 
are in direct proportion to the number of obstacles, which 
limits their applications. Grid method is easier to be 
realized[3]. So it has been widely used. However, above 
environmental models do not take terrain into account. 
Aiming at the environment with rough terrain, Tarokh 
considers height and size of obstacles and adopts fuzzy 
logic to obtain fuzzy roughness of cells[2]. Fries studies 

traversability of some environment with diverse terrain 
by fuzzy representation[4]. Considering the important 
influence of terrain condition on path planning, this 
paper discusses modeling methods combing no-supervise 
learning with fuzzy logic aiming at certain environment 
with hybrid terrain and obstacles. 
It is well known that path planning problem is NP-
complete, and thus many heuristic approaches are used 
to solve the problem[2][5], such as evolutionary 
algorithm[6-7], genetic algorithm[8-9], particle swarm 
optimization[10], ant colony algorithm[11-12] and so on. 
Though each method has its own strength over others in 
certain aspects, their performances are limited because 
domain knowledge about the problems are not used 
enough. So Hu[13] adopts knowledge-based genetic 
algorithm to global path planning, which incorporating 
domain knowledge into its specialized operators. Here, 
domain knowledge only describes the information about 
obstacles. Implicit knowledge embodied in optimization 
process of path planning is not extracted and utilized 
enough. And complex terrain in the environment is not 
considered. Therefore the application of this method is 
limited.  
It has been proved that implicit knowledge extracted 
from evolution process can be used to induce evolution 
operators so as to improve the performance of 
algorithms[13-14]. In order to obtain and use implicit 
knowledge rationally, culture algorithm is put forward 
by Reynolds[15]. The algorithm adopts dual evolution 
structure to simulate cultural evolution mechanism[16]. 
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This provides a general framework for extraction and 
utilization of knowledge during the evolution process.  
Based on above theories, a knowledge-based global path 
planning method for mobile robotics in rough 
environment with hybrid terrain is proposed in the 
paper. In the method, knowledge is classified into two 
kinds according to their characteristics, including 
common sense and evolution knowledge. Common sense 
integrates terrain and obstacles information so as to 
construct a novel environmental model. Evolution 
knowledge extracts the common segments among paths 
and the relationship between the paths and the obstacles, 
which are used to judge and repair the infeasible paths. 
The goal of the method is to decrease computation 
complexity and improve the convergence speed and the 
precision of the solutions by adopting various 
knowledge. 

2. Description about Problem 

Environment modeling is the basis of global path 
planning. In the paper, environment is described by grid.  
Assume that a robot is regard as a particle. That means its 
cubage is not considered. The robot moves in a limited 

planar space denoted by { }: ( , )| , , ,x y x x x y y y⎡ ⎤⎡ ⎤Ω ∈ ∈⎣ ⎦ ⎣ ⎦ . 

And it can move in any direction by step size St. 
According to the step size, the space is partitioned into 
uniform grids along X-axis and Y-axis. So in each axis, the 

number of grid is ( )xN x x St= −  or ( )yN y y St= − . 

Here, ,x x  are the lower and upper bound of space along 
X-axis. Each grid is labeled by an integer 

, 0,l x yg l N N⎡ ⎤∈ ×⎣ ⎦  or the coordination of the grid’s 

midpoint ( ),
l lg gx y . 

 1
2lg
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N
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In the environment, there are usually some obstacles 
distributed. They can be described by a convex polygon 
and the height of them is ignored. Suppose the obstacle 
set is { }, 1,2, | |kB b k B= = . | |B denotes the number of 
obstacles.  
In the paper, complex environment with hybrid terrain is 
considered. That means terrain in different regions may 
be diverse. Because the resistance to robots under diverse 
terrain are different, the friction coefficient is used to 
reflect diverse terrain, expressed by 

{ , 1,2, ,| |}lM m l M= = . | |M  denotes the kinds of 
terrain. 
In above-mentioned environment, the goal of global path 
planning is to find an optimal or near-optimal path from 
starting location os to the destination oe escaping from 

obstacles. Suppose ( )1 | |, , ,i
i

i i i
j pp o o o=  is a path. 

, 1,2, ,| |i i
jo j p=  denotes the location composing of a 

path. | |ip is the number of the locations in i-th path. So 
the optimal path is shown as follows.  

 

1 , | |

arg min

. .

i
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i
i k

i i
s ep

p D

s t p b

o o o o

φ

=

∩ =

= =
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where iD  denotes a certain criterion used to evaluate a 
path. 
It is obvious that global path planning is a kind of 
constrained optimization problem. A path is an 
individual composing of the population. Each individual 
is described by two forms. One is to express an individual 
by serial number of grids. That is, i

j lo g= . This form 

saves the memory capability and can be used to express 
population and knowledge. The other form is to express 
an individual by the coordination of grids, shown as 

( ),
l l

j ji
j g go x y= . It is used for evolution operators and 

fitness evaluation.  
At present, many researches have been done aiming at 
global path planning. However, there lacks the effective 
methods for path planning in complex environment with 
hybrid terrain. And implicit knowledge embodied in 
evolution process are not utilized enough. These make 
the computation complexity and performance of the 
method limited. So in the paper, various knowledge are 
analyzed and utilized. A novel global path planning 
method integrating common sense and evolution 
knowledge is proposed. 

3. Modeling of hybrid terrain 

Much research effort has been focused on modeling 
complex environment with hybrid terrain[17]. In the 
paper, fuzzy logic are adopted to extract terrain 
information.  
Suppose a typical image of a natural terrain is taken into 
account. Its color and gray image are shown in Fig.1. In 
the environment, two kinds of terrain and three obstacles 
are contained. In order to realize path planning in above 
environment, Grander AS-RE mobile robot is used. It has 
a panorama vidicon which can obtain whole image about 
environment. In general, this kind of robot moves in 
planar space because it only can cross the obstacles which 
height is less than 3cm. Considering above character of 
the robot, the height of obstacles is not considered. That 
means as long as a region is covered by any obstacles, the 
path of robot must escape from it.  
Based on above assumption, the image is divided into 
500×500 grids according to step size of AS-RE mobile 
robot. Different terrain and obstacles has different gray 
level[2]. According to the valleys among gray level of 
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(a) Color image 

 
(b) Gray image 
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(c) Processed image 

Fig. 1. A typical image of a natural terrain 

above three terrain, they are partition along with its 
boundary, as shown in Fig.1(c). Obviously traversability 
of each terrain is related to two main attributes as follows:  
1. The rigidity of terrain is more, robot is easy to move. 

Here, the rigidity is fuzzified using three fuzzy sets, 
HI(Hard), MD(Neutral), and LO(Soft). 

2. Each terrain covers the larger area, the robot is easy to 
move. That means the curvature of terrain is less, it is 
easier to be crossed. Here, the curvature is fuzzified 
using three fuzzy sets, HI(Large), MD(medium), and 
LO(Small). 

Assume that ( )lgδ  is the rigidity of terrain in a grid. 
( )lgζ  is the curvature of terrain in a grid. The 

traversability of each terrain in a grid is obtained from  
 

If ( )lgδ  is RigiditySet and ( )lgζ is CurvatureSet  
then ( )lM g  is TraversabilitySet. 

Here, RigiditySet and CurvatureSet denotes one of the 
fuzzy sets defined above. And TraversabilitySet is one of 
the fuzzy set expressing traversability. This fuzzy set is 
define as HI(high), MD(medium), and LO(low). 
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Fig. 2.  The structure of knowledge-based global path 
planning method 

Obviously, the traversability of each terrain in a grid is 
the friction coefficient mentioned in section.2. 

4. Knowledge-based Global Path Planning Method in 
Complex Environment 

In the method, various knowledge are extracted and 
utilized by adopting dual evolution structure of culture 
algorithms in order to improve the evolution 
performance and decrease computation complexity. The 
structure of the method is shown in Fig.2. 
In population space, evolution operators, including 
selection, crossover and mutation, are implemented. The 
performance of each path is evaluated. And their 
feasibility is judged and repaired. In belief space, samples 
are selected from evaluated individuals in population 
space by sample-selection function. Evolution knowledge 
are extracted from samples by knowledge-extraction 
function and stored in the evolution-knowledge database. 
They influence the evolution process by evolution-
inducing function. In common sense database, integrated 
information about environment are stored. They are used 
to evaluate the performance of the paths. 
It is obvious that the keys of the method are how to 
describe, extract and utilize knowledge and how to judge 
and repair the infeasible individuals. 

4.1. Description And Utilization of Common Sense 
In complex environment with hybrid terrain, because the 
location and shape of static obstacles as well as the 
covered region and characteristics of different terrain are 
known in advance, they are called common sense.  
The shape of obstacles may be regular or irregular. 
According to the shape and location of obstacles, the 
grids in the environment are classified into two types: 
feasible and infeasible. Suppose F and IF are feasible and 
infeasible grid sets. The feasibility degree of a grid ( )lE g  
is defined by 

 ( )
( ) 1 { | }

( ) 0 { | , }
l l

k
l l l

k
l l g g

E g g F b g

E g g IF x y b

ϕ⎧ = ∈ ∩ =⎪
⎨

= ∈ ⊂⎪⎩
 (4) 
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Fig. 3. The feasibility degree of grids 

That means the grid is infeasible if an obstacle covers it 
fully or covers its midpoint. If there are no obstacles lying 
in a grid, we call it a feasible grid. 
Taken terrain information into account, each grid may 
have different friction coefficient, expressed by 

( ) [0,1]lM g ∈ . So the integrated feasibility degree of a 
grid is  

  '( ) ( ) ( )l l lE g E g M g= ×  (5) 

Taken 2×2 environment as an example, according to the 
distribution of obstacles, the feasibility degree of grids are 
known as Fig.3.A. Suppose there are two kinds of terrain. 
According to section.3, their friction coefficients are 0.2 
and 0.9 respectively. The distribution of each terrain is 
given in Fig.3.B. Based on formula(5), the integrated 
feasibility degree of current environment is shown in 
Fig.3.C. obviously both right grids are infeasible. Though 
left grids are feasible, their traversability is different. 
Common sense are used to constrain environment and 
evaluate the feasibility and traversability of the paths in 
order to select the more reasonable paths. 
In complex environment, an optimal path is the most 
reasonable collision-free path. Here, weighted length is 
adopted as the criterion used to evaluate a path. Suppose 

, 1
i
j js +  is the j-th segment of i-th path. 

 
| | 1

1

ip
i i

j
j

D D
−

=
= ∑  (6) 

where i
jD  denotes weighted length of , 1

i
j js + . Because a 

segment may cross different terrain, a segment is divided 
into sub-segments, expressed by , 1

i
k kl + . Each sub-segment 

must cover same terrain. Therefore, weighted length of 
the segment is to sum up the weighted length of each 
sub-segments.  

( ) ( )
2| | 1 2| | 1 2 21 1

, 1 1 , 1
1 1

( ) ( )
i i
j j

l l l l

S S
i i i i i k k k k
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where , 1( ) ( )i i
k k kE l E o+ =  is the feasibility degree of sub-

segment , 1
i
k kl + . | |ijS denotes the kinds of terrain covered 

segment , 1
i
j js + . 

4.2. Extraction And Utilization of Evolution Knowledge 
1. Judgment And Repair Operators Based on Evolution 
Knowledge 
If any segment of a path between two adjacent locations 
crosses the infeasible grid or any obstacle, the path is 
infeasible.  

Oij

Oij+1
rij,j+1

sij,j+1sij,r

sir,j+1

 
Fig. 4. Traditional repair operator        
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Fig. 5. Angle information 

Existing methods normally penalize infeasible 
individuals by lower their fitness, and then repair them 
by inserting a feasible location. However, because the 
inserted location is randomly selected, the repaired path 
may be still infeasible. So the path should be repaired 
again and again until the feasibility of the repaired path is 
satisfied. This will consume large computation time and 
lower the performance of the algorithms. As shown in 
Fig.4, the shadow region denotes an obstacle. The dashed 
line between two locations( i

jo  and 1
i
jo + ) denotes the 

segment of i-th path. It is obvious that the segment , 1
i
j js +  

is infeasible. After a feasible location , 1
i
j jr +  is inserted, the 

repaired segment ,
i
j rs  is still infeasible. 

Otherwise, judgment and repair in existing methods are 
two independent operators, which increases the 
computation complexity. In order to effectively integrate 
judgment and repair process, a novel judgment and 
repair strategy based on angle information is proposed. 
Angle information describes the angle relationship 
between a path and the tangent line of an obstacle, as 
shown in Fig.5. The tangent lines derived from i

jo  cross 
the obstacle kb at the tangent points ,

i
k jc . The angles 

between the tangent line and the x-axis are called tangent 
angles ,k jθ . 

 ,

,

, arctan
i i
k j j

i i
k j j

c oi
k j

c o

y y

x x
θ

⎛ ⎞−
⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎝ ⎠

 (8) 

That is, tangent angle is the arc tangent of a tangent line. 
If there are two tangent lines derived from i

jo , the 

maximum and minimum tangent angles are expressed 

by ,
i
k jθ and ,

i
k jθ  respectively. 

Suppose , 1
i
j jα +  is the path angle formed by the segment 

, 1
i
j js +  and the X-axis. 
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According to the relationship between the path angle and 
the tangent angles, judgment rule based on above angle 
information is obtained. 

  , , 1 ,
i k i i i

k j j j k j

i k

p cross b

p cross b else

θ α θ+
⎧ < <⎪
⎨
⎪ ¬⎩

 (10) 

It is obvious that as long as the path lies between two 
tangent lines, the path must cross obstacle. That is, this 
path is infeasible. 
In order to choose a rational inserted location ensuring 
the feasibility of the repaired paths, a repair operator 
based on angle information is proposed. According to the 
judgment rules, as long as the path angle of the repaired 
segments satisfy the judgment condition of feasibility 
simultaneously, the repaired path must be feasible. For 
example, the infeasible segment , 1

i
j js +  is divided into two 

repaired segments: ,
i
j rs  and , 1

i
r js +  after the inserted 

location , 1
i
j jr +  is inserted, as shown in Fig.6. 

In order to ensure the feasibility of the repaired path, ,
i
j rs  

and , 1
i
r js +   shall out of the obstacle simultaneously. That 

is, not only the path angle ,
i
j rα of ,

i
j rs  must satisfy the 

‘¬cross’ condition with tangent angle of i
jo , but also the 

path angle , 1
i
r jα + of , 1

i
r js +  must satisfy the ‘¬cross’ 

condition with tangent angle of 1
i
jo + . Therefore, if the 

inserted location lies in the region, which satisfied above 
‘¬cross’ conditions simultaneously, all repaired segments 
must be feasible. This region is called feasible region, as 
the grey region shown in Fig.7.  
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Fig. 6. Repair operator 
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Fig. 7. Feasible region 
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α α θ α θ+
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Because the inserted location chosen from feasible region 
can ensure the feasibility of two repaired segments of a 
path, there is no need to repair path once more. So this 
repair method can combine judgment with repair based 
on angle information. It has lower computation 
complexity and better performance than other methods. 
2. Extraction And Utilization of Common Segments Based 
on Evolution Knowledge 
In evolution process, the common segments contained in 
the paths with shorter length are called evolution 
knowledge. Suppose vg  and ug  are the start location and 
end location of the common segments. The common 
segment is expressed as follows. 

 ( ){ }, ,| ,v u v u v uK s s g g= =  (12) 

Common segments is obtained from sample database by 
statistical learning method. Suppose 

, 1j jsρ +
is the survival 

probability of a segment ,v us .Nm denotes the size of 
sample database. Common segments is the segment with 
maximum survival probability. 

 
, 1, arg max
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=  (13) 
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+
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≠ ∈

  (15) 

Samples are selected from population according to the 
individuals’ fitness because individuals with higher 
fitness are likely to embody more effective information. 
Suppose N is the population size. β denotes the sample-
selection proportion. Therefore, the number of samples 
selected in each iteration is βN.  
Common segments are used to form sub-population. 
Suppose γ is the  knowledge-inducing proportion. ι is the 
knowledge-inducing interval. The detail knowledge-
inducing process is shown as follows. 
Step1: When current iteration equal to the integer multiples 
of knowledge-inducing interval, new individuals are 
formed based on common segments. That is, 

 ( )' , , , , , , , 1,2,i
s v u ep o o o o t λτ λ= ∃ = =  (16) 

Step2: Infeasible or worse individuals are substituted by 
new individuals according to the knowledge-inducing 
proportion so as to implement local search near the 
common segments. 
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(a) Regular obstacles                           (b) irregular obstacles 

Fig. 8.  A simple virtual environment with two types of 
terrain 

5. Simulation and analysis 

In order to validate the rationality and feasibility of the 
path planning strategy proposed in the paper, two kinds 
of environments are used. One is a simple virtual 
environment with two types of obstacles, denoted by EnI. 
And it is partitioned into 80×80 grids, as shown in Fig.8. 
Obviously in this environment, two kinds of terrain are 
contained. In region I, the friction coefficient of terrain I is 
0.2. In region II, the friction coefficient of terrain II is 1. 
The other is the natural complex environment as shown 
in Fig.1, denoted by EnII. 
In evolution process, stochastic tournament selection 
combining with elite strategy is adopted. That is, two 
individuals are chosen from the population stochastically. 
And then the path with shorter length is selected as better 
individual from two individuals. Single-point crossover 
operator and mutation operator for real number[18]-[19] 
are used, shown as follows. 

( ) ( )1
'
, ,

0
0.5

2

q
U L

i j i j
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a m
x x x x

−

=
= ± − ∑ ,  
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2
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U L

i j i j
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a m
y y y y

−

=
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( )
11 0

10 1

ra
mwhere a m

ra
m

⎧ < <⎪⎪= ⎨
⎪ < <
⎪⎩

 

[0,1]ra∈  is a random number. m normally equals to 20. 
Main parameters used in the method are listed in Table.1. 
In order to analyze the performance of the method, three 
indices are adopted. Assume that M1 is the average 
convergence iteration during twenty run times. M2 is the 
average iteration as the optimal solutions appeared firstly 
during twenty run times. M3 expresses average length of 
the optimal paths during twenty run times. 
 

Probabili
ty of 

crossover 
N St β 

Run 
times 

Sample-
populati
on size 

Probabil
ity of 

mutatio
n 

Nx Ny os oe 
Termina

tion 
iteration

0.6 20 1 0.4 20 20 0.03 20 20 (1,1) (20,20) 150 

Table 1. Main parameters used in the strategy 

Env
EnI with regular 

obstacles 
EnI with irregular 

obstacles 
EnII 

β M1 M2 M3 M1 M2 M3 M1 M2 M3 
0.2 15.55 7.55 185.0212 15.55 7.55 184.6008 12.75 10 168.88
0.3 14.8 6.85 184.9991 14.8 6.85 184.5953 12.7 9.95 168.38
0.4 14.3 5.65 184.8362 14.3 5.65 184.5396 14.65 12 168.37

0.5 13.65 5.3 184.7644 13.65 5.3 184.4664 11.8 8.6 168.48

Table 2. Comparison of performance with different 
Sample-selection proportion 

5.1. Performance Analysis About Proposed Path Planning 
Method 
Evolution knowledge obtain implicit information 
embodied in evolution process from updated sample 
database. Parameters involved in this process shall 
influence the performance of the proposed method. 
1. Comparison of The Performance with Different 
Sample-selection Proportion 
Sample-selection proportion has a direct impact on the 
update speed of samples. Adopted parameters in 
Tab.1,the performances of the method under two types of 
environments are compared in Tab.2.  
The average fitness of population and the optimal 
solution with different sample-selection proportion in one 
run are plotted in Fig.9, Fig.10 and Fig.11. 
It is obvious that no matter what sample-selection 
proportion is, the shortest collision-free path is obtained 
by the proposed method. And along with the increasing 
of the sample-selection proportion, the convergence 
speed is faster and the length of the optimal path is 
shorter. The reason for above phenomena is that if less 
sample-selection proportion is used, the sample database 
is updated slowly. Evolution knowledge are mainly 
depended on the former samples, which is easy to induce 
the evolution process into local convergence. However, 
larger sample-selection proportion can speed up the 
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        (c) Optimal feasible path      (d) Common segments 

Fig. 9. Environment I with regular obstacles 
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       (c) Optimal feasible path      (d) Common segments 

Fig. 10. Environment I with irregular obstacles 
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    (c) Optimal feasible path      (d) Common segments 

Fig. 11. Environment II 

update of evolution knowledge, but the computation time 
increases at the same time. So β=0.5 in the paper. 
2. Comparison of The Performance with Different 
Knowledge-inducing Interval 
The influence of evolution knowledge on population with 
different knowledge-inducing interval is different. 
Adopted parameters in Tab.1,the performances of the 
method under two environments are compared in Tab.3. 
 

Env 
EnI with regular 

obstacles 
EnI with irregular 

obstacles 
EnII 

ι M1 M2 M3 M1 M2 M3 M1 M2 M3 
2 10.6 4.05 184.77 11.15 4.75 184.7837 12.5 5.8 168.40
3 12.3 5.5 184.83 11.6 4.95 184.7983 14.8 6.9 168.56
4 13.9 6.7 184.85 14.5 7.5 184.8242 14.45 6.5 168.96

Table 3. Comparison of performance with different 
knowledge-inducing interval 
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       (c) Optimal feasible path      (d) Common segments 

Fig. 12. Environment I with regular obstacles 
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      (c) Optimal feasible path      (d) Common segments 

Fig. 13. Environment I with irregular obstacles 

The average fitness of population and the optimal 
solution with different knowledge-inducing interval in 
one run are plotted in Fig.12, Fig.13 and Fig.14. 
It is obvious that larger knowledge-inducing interval 
makes the convergence speed slower and the length of 
optimal path longer. Along with the increasing of the 
knowledge-inducing interval, population induced by 
knowledge is less. That means evolution knowledge can 
not lead population to do local search in time, which 
results in the slower convergence speed. So knowledge-
inducing interval is equal to 2. 
3. Comparison of The Performance with Different 
Knowledge-inducing Proportion 
Different number of individuals are induced by evolution 
knowledge under different knowledge-inducing 
proportion. Adopted parameters in Tab.1, the 
performances of the method under two environments are 
compared in Tab.4. 
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   (c) Optimal feasible path      (d) Common segments 

Fig. 14. Environment II 
 

Env 
EnI with regular 

obstacles 
EnI with irregular 

obstacles 
EnII 

γ M1 M2 M3 M1 M2 M3 M1 M2 M3 
0.1 16.7 9.4 184.7641 13.25 6.8 184.2155 13.7 7.8 168.45
0.4 11.25 6.5 184.1139 11 5.65 183.7893 11.1 5.6 168.01
0.7 74.1 47.3 184.2771 52.2 31.8 184.1485 40.1 15.9 168.39

Table 4. Comparison of performance with different 
knowledge-inducing proportion 

The average fitness of population and the optimal 
solution with different knowledge-inducing proportion in 
one run are plotted in Fig.15, Fig.16 and Fig.17. 
If knowledge-inducing proportion is too lager or too 
small, the performance of the algorithm and the length of 
optimal path become worse. By analyzing the results, we 
know that individuals influenced by evolution 
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       (c) Optimal feasible path      (d) Common segments 

Fig. 15.  Environment I with regular obstacles 
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        (c) Optimal feasible path      (d)Common segments 

Fig. 16. Environment I with irregular obstacles 

1 2 3 4 5 6 7 8 9
1683.8

1684

1684.2

1684.4

1684.6

1684.8

1685

1685.2

1685.4

1685.6
best fitness of each generation

generation of evolution t

fit
ne

ss

:0.1
:0.4
:0.7

1 2 3 4 5 6 7 8 9
1600

1700

1800

1900

2000

2100

2200

2300
average fitness of each generation

generation of evolution t

av
er

ag
e 

fit
ne

ss

:0.1
:0.4
:0.7

 
(a) Best fitness           (b) Average fitness 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 
      (c) Optimal feasible path      (d)Common segments 

Fig. 17. Environment II 

knowledge realize the exploitation of the search space. 
Larger knowledge-inducing proportion will enhance the 
local search of population, which is easy to make 
evolution process falling into local convergence. 
Otherwise, if knowledge-inducing proportion is too 
small, knowledge can not induce evolution process 
effectively. It will slow the convergence speed. In order to 
consider the exploitation and the exploration ability 
simultaneously, γ = 0.4 in the paper. 

5.2. Comparison of The Performance Between Different 
Methods 
In order to validate the rationality and validity of the 
method proposed in the paper, it is compared with 
traditional genetic algorithm[5]. Adopted parameters in 
Tab.1, the performances of the method under two 
environments are compared in Tab.5. Here, M4 expresses 
variance of the optimal solutions during twenty run times. 
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Env method M1 M2 M3 M4 

GA 16.1 8.55 185.9071 1.4127 EnI with 
regular 

obstacles KBPP 11.65 4.85 185.5664 0.5859 

GA 15.4 10.2 184.6769 0.2478 EnI with 
irregular 
obstacles KBPP 12.3 6.95 184.4499 0.2463 

GA 13.4 12 169.53 0.1455 
EnII 

KBPP 11.4 5 168.39 0.0016 

Table 5. Comparison of performance between different 
methods  

The average fitness of population and the optimal 
solution with different method in one run are plotted in 
Fig.18 and Fig.19. 
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Fig. 18. Average fitness 
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Fig. 19. Optimal feasible path 

It is obvious that the convergence speed and the precision 
of the solution by the proposed method are better. That is, 
the length of the optimal path is shorter. And the variance 
of the optimal solutions are less. This means the proposed 
method has the better stability. 

5.3. Influence of Common Sense on Path Planning 
Common sense is used to evaluate the length of a path. If 
terrain is considered, a path is evaluated by formula(7). 
Otherwise, the length of a path is computed by formula 
(18) as terrain is not taken into account. 

( ) ( )
| | 1 | | 1 2 21 1

1
1 1

i i

l l l l

p p
j j j ji i i

j j g g g g
j j

D o o x x y y
− −

+ +
+

= =
= − = − + −∑ ∑   (18) 

In order to understand the role of common sense, the 
optimal paths obtained based on different evaluation 
functions are compared aiming at the environment I 
shown in Fig.20. Here, the solid line and dashed line 
expresse the optimal path considering terrain or not. 
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(b) En I with irregular obstacles 

Fig. 20. Optimal feasible path 

Comparison of the length of two optimal paths, it is 
obvious that the optimal path considering terrain is more 
reasonable. That is, robots always attempt to move along 
the region with least friction coefficient. This indicates 
common sense play a reasonable guidance role in path 
planning. 
In a word, global path planning in complex environment 
is effectively solved by utilizing common sense and 
evolution knowledge to induce the evolution process. 
This knowledge-based path planning method can 
improve the convergence speed and the stability of the 
solutions. 
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6. Conclusions 

Aiming at global path planning in complex environment 
with different terrain and obstacles, a novel knowledge-
inducing path planning method is proposed. The 
algorithm adopts dual evolution structure in culture 
algorithms to integrate common sense and evolution 
knowledge. Common sense describes the distribution of 
terrain and obstacles in complex environment, and thus it 
reflects feasibility and traversability of environment. This 
kind of knowledge is used to evaluate the length of the 
paths so as to guide selection of the paths. Evolution 
knowledge describes the angle relationship between the 
path and the obstacles, or the common segments of paths. 
It is used to judge and repair infeasible path.  
Taken three kinds of environments with different terrain 
and obstacles as examples, simulation results indicate 
that the algorithm proposed in the paper can effectively 
solve path planning problem in complex environment. 
And the computation complexity for judgments and 
repair of infeasible path is lower than existing path 
planning method adopting evolutionary algorithms. The 
algorithm also can improve the convergence speed. 
Computation stability of solutions are better. 
Path planning method for mobile robots in the uncertain 
environment with dynamic or unknown obstacles is the 
next problem to be solved in future. 
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