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Abstract. The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest 
two possible symmetries Td and C3V. The reduction to C3V is attributed to the presence of natural impurity, 
Ga. Our calculations based on molecular model and Green’s functions suggest that the symmetry C3V is 
possible with ZnSe : P when Jahn Teller distortion of about ~ 0⋅⋅2 Å (towards one of Zn atom) is assumed. This 
has been supported by other experiments.  
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1. Introduction 

The wide gap semiconductor, ZnSe, is an example of 
potential applications in optoelectronic devices, such as 
blue light emitting diodes and blue diode lasers. Using 
the molecular beam epitaxy method, Hasse et al (1991) 
have demonstrated that ZnSe diodes lase in the bluegreen 
region. In spite of the fabrication of low resistivity p-type 
ZnSe using nitrogen as the dopant, doping still remains 
complicated. Similarly even though a lot of experimental 
and theoretical investigations are available in the litera-
ture for the defect modes in II–VI systems, the role of 
phosphorous as a p-type dopant in ZnSe is not fully 
understood. For low doping, the photoluminescence seems 
to be due to the recombination of excitons bounding neutral 
acceptors. The reported experiments (Yao and Okada 
1986; Qiu et al 1991) could not exactly predict the nature 
of symmetry of the shallow acceptors introduced by the 
doping. 
 Electron spin resonance (ESR) (Watts et al 1971) and 
optically detected magnetic resonance (ODMR) (Nicholls 
and Davies 1979) suggest that phosphorous substitutes 
selenium site in ZnSe and acts as a deep acceptor at about 
0⋅7 eV. These deep level defects under certain conditions 
give rise to the Dx centres (Localized vibrational modes 
(LVMs) for such Dx centres are already observed for 
GaAs : Si (Wolk et al 1991)). 

2. Symmetry 

The ESR experiments show that [Pse]0 centres do not 
possess the Td symmetry, as expected for any simple 

case. Instead, this is predicted to be C3V symmetry (Watts 
et al 1971). The reduction in the symmetry is ascribed to 
the Jahn Teller type distortion. 
 Also this ESR spectra could be bleached by IR radia-
tion with energies > 0⋅8 eV (Watts et al 1971). 
 Generally, phosphorous centre is expected to be non 
magnetic and would be of Td symmetry in ZnSe. Then, 
only a Jahn Teller type distortion can lead to C3V 
symmetry as a result of three-fold degeneracy in Td 
surroundings. So, it is understood that photocreation of 
the neutral acceptors involves a change in the symmetry. 
Alternatively, another model avoids the Jahn Teller dis-
tortion where C3V symmetry is possible with nearby 
impurity or defect, irrespective of the charge state, i.e. 
the non magnetic state would have C3V symmetry, rather 
than Td as expected. 
 To distinguish between these models on the nature  
of symmetry of PSe in ZnSe, Raman spectrum for 
ZnSe : P,Ga is observed by Nakano et al (1992) in  
the range 180–420 cm–1. There are two stronger modes  
at 210 and 255 cm–1 with weaker modes at 220 and 
375 cm–1. From the measurements of phonons on host 
ZnSe (Taylor 1967), Nakano et al attributed these modes, 
210 and 255 cm–1, to correspond to TO and LO phonon 
modes of ZnSe. The two weaker modes do not appear in 
a variety of ZnSe specimens whether for undoped or 
doped with elements other than phosphorous and gallium. 
 The polarization behaviour is also discussed by Nakano 
et al (1992), which suggests that the 375 cm–1 correspond 
to a simple substitutional centre, from Td symmetry 
whereas 220 cm–1 corresponds to A1 mode of either Td or 
C3V and could not be distinguished. 
 Because of this interesting behaviour of ZnSe : P, a 
detailed theoretical investigation is attempted here, to 
identify the nature of symmetry. 
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3. Localized vibrational modes due to p doped ZnSe 

The LVMs are calculated extensively by two approaches: 
(i) molecular model and (ii) green’s function technique. 
 
(i) Molecular model: The well established technique to 
workout the defect modes is molecular model, where a 
single molecule will be considered. In brief, the dyna-
mical matrix will be constructed from the long range and 
short range interactions. 
 On diagonalization of this matrix, one can get the 
normal modes and the localized vibrational mode (LVM) 
can be identified from the eigen displacement of the 
defect atom. 
 ZnSe possesses Td symmetry as represented in figure 1, 
with selenium at the centre. When this is doped with 
phosphorous, it substitutes Se atom and still retains the Td 
symmetry, to start with when any other deformation is 
not considered. 
 The dynamical matrix, which is 15 × 15 (in terms of 
e2/V), is constructed as with the long and short range 
interactions taking only first neighbours. The short range 
part of the dynamical matrix is given here for continuity. 
 

where 
 
A = (A1 + 3A2)/MP B = (B1 – B2)/MP 

C = – A1/√MZn MP D = – B1/√MZn MP 

E = – A2/√MZn MP F = – B2/√MZn MP 

G = (A1 + 3A3)/MZn H = (B1 – B3)/MZn 

I = (A2 + 3A4)/MZn J = (B2 – 3B4)/MZn 

A1 = (AZnP + 2BZnP)/6 B1 = (AZnP – BZnP)/6 

A2 = (AZnP + 2BZnP)/6 B2 = (AZnP – BZnP)/6 

A3 = (AZnSe + 2BZnSe)/6 B3 = (AZnSe – BZnSe)/6 

A4 = (AZnSe + 2BZnSe)/6 B4 = (AZnSe – BZnSe)/6 

and A and B are Kellerman’s constants, for the corres-
ponding system. 

 The force constants, AZnSe and BZnSe, are worked out to 
construct the above dynamical matrix, from the available 
experimental data on elastic constants (Kusakov et al 
1973) and phonon frequencies (Matsuo et al 1984) of 
ZnSe based on a rigid ion model, and are given in table 1 
for Zn–Se bond. Such data for ZnP or ZnSe : P are not 
immediately available and so an approximate method is 
followed to work out the force constants of Zn–P. That 
is, AZn–P is worked from the Debye temperature (Sheleg 
and Kutas 1981). The same is compared with the host 
force constant of zinc diphosphite for which the data is 
available. There is a correspondence between the two 
(But only the previous value is considered for the present 

                                
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
                                
 1 A B B C D D E F – F E – F F E – F – F 
 2  A B D C D F E – F – F E – F – F E F 
 3   A D D C – F – F E F – F E – F F E 
 4    G H H          
 5     G H      0    
 6      G          
 7       I J – J       
 8        I – J   0    
 9         I       
10          I – J J    
11           I – J  0  
12            I    
13             I – J – J 
14              I J 
15               I 
                
                
Only upper half of the matrix is given, as it is symmetric. 

 
 
Figure 1. Molecular structure for Td symmetry. 
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calculations). This is what is represented in table 1 for 
AZn–P. 
 With these parameters, the defect modes are worked 
for the Td symmetry, by diagonalizing the dynamical 
matrix and looking at the eigen frequencies and eigen 
displacements. These values are given in table 3, along 
with the Raman measurements for LVMs. We find that 
there are two modes 371 cm–1 and 221 cm–1 for LVMs 
here (the displacement of the defect atom will fall off 
rapidly, exponentially, as distance goes about the defect 
atom for fixing an LVM). When the displacements 
corresponding to the 15 modes are analysed by the 
geometry, these modes correspond to T2 and A1 
representation of Td symmetry. This is explicitly shown 
here. When Nakano et al (1992) studied the defect modes 
the symmetry of the displacements were given for both 
Td and C3V, which is displayed here in table 2 for com-
parison with our results. The eigen displacements which 
we obtained from our calculations are given in table 3. 
Tables 2 and 3 show that 371 cm–1 and 221 cm–1 corres-
pond to T2 and A1 representations of Td symmetry. When 
we compare with the C3V symmetry it is found that this 
221 cm–1 belongs to this symmetry. 
 Since 221 cm–1 appears to be both in Td and C3V 
symmetries, it is attempted to see how this C3V is possible 
when only P is substituted in ZnSe. The most trivial case 
is that there should be some other impurities present in 
ZnSe which brings down the symmetry, which will also 
be seen. When P is substituted at Se site, there is a 
change in force constant in Zn–P bond as there should be 
a distortion (Kwak et al 1994) like Jahn Teller type (JT). 
 This should be checked for C3V symmetry as Nakano  
et al (1992) claim that C3V and Td could not be distin-
guished for 220 cm–1. 
 Any distortion in the bond will be reflected in the force 
constant which is obtained as follows. 

 When there is a Jahn Teller (JT) type distortion it is 
found (Kwak et al 1994) that P atom moves about 0⋅2 Å 
toward one of the four neighbouring Se atoms, lowering 
the symmetry of the defect from Td to C3V. Since, it is 
reported that the relaxation is about 0⋅2 Å, any other 
computations are not carried out here to work out the 
relaxed coordinate of the atoms in the molecule. It is 
attempted to find the change in force constant, due to this 
relaxation, a Lennard Jones type potential is assumed for 
interaction between the neighbours. So in ZnSe the force 
constant for Zn–Se is worked out, by taking the distance 
between Zn and Se as 2⋅8338 Å in unrelaxed situation 
and when P moves by 0⋅17 Å, the new force constant can 
be worked out by changing the value of the distance 
between P(Zn) and Se as 3⋅0038 Å. The difference 
between these force constants is attributed to the con-
tribution from JT distortion. The modified force constant 
AZn–P and BZn–P are given in table 4. 
 As usual, with these new set of parameters the dyna-
mical matrix is constructed and solved for LVMs. 
 The LVMs are properly picked out from the eigen dis-
placements in the usual way. The results are given in 
table 4. 
 Now, when this is compared with the symmetry of the 
eigen displacements it is seen that 220 cm–1 belongs to 
C3V symmetry. This is an interesting result, as a JT type 
distortion naturally will affect the symmetry of the 
system. Kwak et al (1994) recently suggested by some 
other experiments that this JT distortion is dominant in 
ZnSe. 
 
ZnSe : P,Ga: The other possibility is the natural defect. 
To work out the defect modes corresponding to C3V 
symmetry, following the findings of Nakano et al (1992) 
that gallium impurity substitutes one of the Zn atom in 
the molecule, is considered as given in figure 2. The site 
symmetry is reduced to C3V from Td in this case. Here 
when Ga is substituted at Zn the new force constant AGa–P 
is worked out from the bond length and a Lennard Jones 
type since AGa–Se already is available (Jandl et al 1976). 
The force constant AGa–P is calculated using phonon fre-
quency and elastic constant. The various force constants 
used are given in table 5. 
 Again the dynamical matrix for this defect pair is 
constructed and diagonalized for defect modes and they 
are given in table 6, along with the experimental values. 
We obtain the mode 220 cm–1 in this case also, but when 
we look at the geometry of the displacements, in relation 

Table 1. Constants used to evaluate LVMs for ZnSe : P in molecular model. 
      
 
Cell constant 

 
Elastic constants in dynes [cm2 (× 1011)] 

Force constants (e2/V) 
 

a (Å) C11 C12 C44 AZn–Se BZn–Se AZn–P BZn–P 
                
5⋅6676 8⋅95 5⋅39 3⋅98 75⋅05 – 1⋅15 45⋅66 – 0⋅699 
                

Table 2. Scattering symmetries of phonons. 
    
 Representation 
      
Coordinates For Td For C3V 
      
z (y, y) z– A1, E A1, E 
z (y, x) z– T2 E 
z (x, y) z– T2 E 
z (x, x) z– A1, E, T2 A1, E 
z (x′, x′) z– A1, T2 A1, E 
z (x′, y′) z– E, T2 A1, E 
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with C3V symmetry, these modes occur in the A1 
representation. 
 This 220 cm–1 occurs both in Td and C3V for A1  
representation. This indicates that there are two possi-
bilities of ZnSe : P. It is rather difficult to identify the 
centre possible for this model, when other natural 
impurity is not considered. 
 The above molecular model calculations for C3V symme-
try (with Ga as additional additive impurity) giving 
220 cm–1 may not be equally true for any other unidenti-
fied impurity. This is the reason why Nakano et al (1992) 
have observed Raman’s spectrum for ZnSe : P,Ga. 
 
(ii) Green’s function technique: The LVMs are worked 
out from Green’s function technique. The detailed theory 

is available in Maradudin et al (1971) and so will not be 
repeated here. 
 To start with Td symmetry of ZnSe : P is considered. 
As the perturbation matrix δl is (15 × 15), group theore-
tical simplification is done, taking the symmetry co-
ordinates for Td symmetry, which reduces to 

Γ (15) = A1 + E + F1 + 3F2. 

Similarly, we can construct the Green’s functions matrix 
(15 × 15) for the host system from 
 

 .
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This is also reduced with the same symmetry coordinates. 
The localized modes are then calculated from 

| I – gδl | = 0. 

 The g and δl matrices for T2 representation is given as 
follows. Block diagonalized form of g and δl for iso-
lated substitutional case when the nearest neighbours 
alone are included. 
 

1111

1

11

1

111111

1

2
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T2 for δl matrix 
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Table 3. LVMs calculation for ZnSe : P using molecular model in Td symmetry. 
        
 
 

 
Calculated 

LVMs 

 
Displacements 

  

 
Experimental  

LVMs 
Sl. no. (cm–1) x1 y1 z1 x2 y2 z2 (cm–1) 
                  
1 371⋅23 0⋅46 0⋅46 0⋅46 – 0⋅31 – 0⋅31 – 0⋅31 375 
2 221⋅58 0⋅028 0⋅028 0⋅028 0⋅21 0⋅21 0⋅21 220 
                  

Table 4. Modified force constants and LVMs for Zn–Se : P in molecular model. 
        
Modified force constants 
(e2/V) 
 

 
Calculated  

LVMs 

 
Displacements 

 
Experimental  

LVMs 
AZn–P BZn–P (cm–1) x1 y1 z1 x2 y2 z2 (cm–1) 
                    
12⋅300 0⋅819 223 0⋅38 0⋅38 0⋅38 – 0⋅39 – 0⋅39 – 0⋅39 220 
  271 – 0⋅15 – 0⋅15 – 0⋅15 0⋅07 0⋅07 0⋅07 375 
                    

 
 
Figure 2. Molecular structure for C3V symmetry. 
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(only the upper half of the blocks are given as all the 
matrices are symmetric). ∆A and ∆B are change in force 
constants. 
 For continuity, to work out the Green’s functions for 
ZnSe, the phonons and eigen displacements should be 
worked out. This is done in a rigid ion model, taking the 
central and non central forces into account (Plummelle 
and Vandevyver 1976). The parameters are refined in a 
least squares technique and are given in table 7 (With 
these phonons, the mean square amplitudes of Zn and Se 
are worked out, for comparison with the Green’s 
functions). 
 The Green’s functions are then worked out with the 
above phonons. To check the correctness of the Green’s 
functions, the mean square amplitude of ZnSe is cal-

culated and compared with the result from the previous 
experiment and they are 4⋅148 Å2 and 4⋅57 Å2, respec-
tively. The agreement is good. So these green’s functions 
will be used hereafter for defect modes calculation. 
 To start with, both A1 and T2 representations are con-
sidered, for ZnSe : P, having Td symmetry. The force 
constants are again from table 1 already given. The 
defect modes thus calculated are 214 cm–1 and 370 cm–1. 
Experimental values are 220 cm–1 and 375 cm–1 respec-
tively, for these two representations. 
 We could see that there are two localized modes 
375 cm–1 and 220 cm–1 in these two representations, 
supporting the information arrived in the molecular 
model. 
 But we should see whether this 220 cm–1 is appearing 
in C3V representation. 
 As suggested by Nakano et al (1992), first ZnSe : P,Ga 
is tried in this technique. The same force constants as in 
table 4 are used for the evaluation of defect modes. But 
here, no group theoretical simplification is carried out as 
this is involved with C3V. So the full (15 × 15) matrix is 
used along with the full δl matrix to evaluate | I–gδl |. 
 The defect modes are identified from where | I–gδl | 
goes to zero. When ZnSe : P,Ga is assumed (for C3V 
symmetry), the LVM is 229 cm–1 and when ZnSe : P with 
JT distortion is assumed, it is 224 cm–1 and experimental 
LVMs are 220 and 375 cm–1. 
 The localized mode 220 cm–1 is again reproduced in 
this configuration with the allowed degeneracy, whereas 
375 cm–1 is seen only in Td symmetry. 
 These two investigations reveal that both modes could 
be identified in Td symmetry and 220 cm–1 alone in C3V 
even though in C3V symmetry, an additive impurity Ga is 
assumed to occupy one of the Zn site deliberately. 

4. Discussion 

It is understood from experiments that neutral [Pse]0 
centres in ZnSe : P should have Td symmetry whereas 


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
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
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


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Table 5. Constants used to evaluate LVMs for the system ZnSe : P,Ga. 
  

Force constants (e2/V) 
AZn–Se BZn–Se AZn–P BZn–P AGa–Se BGa–Se AGa–P BGa–P 
                
75⋅05 – 1⋅15 45⋅66 – 0⋅699 – 57⋅02 12⋅23 75⋅96 – 0⋅533 
                

Table 6. LVMs calculation for ZnSe : P,Ga using molecular model in C3V symmetry. 
        
 
 

Calculated 
LVMs 

Displacements Experimental 
LVMs 

Sl. no. (cm–1)  x1 y1 z1  x2 y2 z2 (cm–1) 
                  
1 446⋅56 0⋅48 0⋅48 0⋅48 – 0⋅31 – 0⋅31 – 0⋅31 375 
2 222⋅45 0⋅036 0⋅036 0⋅036 0⋅17 0⋅17 0⋅17 220 
         
         

Table 7. Parameters used to evaluate the Green’s function for 
ZnSe. 
  
  
 
Parameters 

Phonon frequency (ω) × 1014 rads 
 

(× 104 dyn [cm]) Type Experimental Calculated 
        
A = – 2⋅71 LO (Γ) 0⋅476 0⋅476 
B = – 1⋅12 TO (Γ) 0⋅401 0⋅401 
C1 = – 0⋅38 LO (L) 0⋅471 0⋅468 
D1 = 0⋅44 TO (L) 0⋅414 0⋅397 
E1 = 0⋅00 LO (X) 0⋅414 0⋅411 
F1 = 0⋅46 TO (X) 0⋅424 0⋅414 
C2 = – 0⋅28    
D2 = – 0⋅8    
E2 = 0⋅00    
F2 = – 1⋅23    
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when JT distortion is encountered then [Pse]– may have 
C3V symmetry, as a result of the three-fold degeneracy in 
Td surroundings (Watts et al 1971) leading to a deep 
centre. The bond length between P atom and one of the 
four nearest neighbours Zn atom is increased by 0⋅05 Å. 
Nakano et al (1992) from this Raman measurements on 
ZnSe : P,Ga have shown that there is an LVM 220 cm–1 
appearing in this configuration, which has C3V symmetry. 
Even though from our calculations both by molecular 
model and Green’s functions for C3V symmetry for 
ZnSe : P,Ga this mode is observed, this is not the aim. 
 Kwak et al (1994) while studying the LVMs from first 
principles in ZnSe : P observed that one of the Zn atom 
will move towards P thereby reducing the symmetry to 
C3V. Taking this, the LVMs are worked out in the modi-
fied configuration of ZnSe : P atom and parameters. It is 
interesting to see that this 220 cm–1 appears here with the 
required degeneracy. 
 So, this present investigation predicts that ZnSe : P can 
have C3V symmetry (to explain the LVM 220 cm–1) 
provided JT distortion is taken into account. Since P is 
amphoteric impurity in ZnSe, the other possibility of P 
substituting Zn site is also considered for the present 
calculations. It is found out again that the 220 cm–1 is 
appearing in the A1 representation of C3V symmetry 
arising due to JT distortion. 
 In conclusion, it is to be mentioned that ZnSe : P can 
have C3V where JT distortion is assumed with about ~ 0⋅2 Å 
of relaxation of one of the atom towards P. 
 Further work is going on to see whether an interstitial 
defect will also have C3V symmetry, by working out the 
LVMs. 
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