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Applications and curricula of decision analysis currently do not include methods to compute Bayes’ rule
and obtain posteriors for nonconjugate prior distributions. The current convention is to force the deci-

sion maker’s belief to take the form of a conjugate distribution, leading to a suboptimal decision. Bayesian
inference using Gibbs sampling (BUGS) software, which uses Markov chain Monte Carlo methods, numerically
obtains posteriors for nonconjugate priors. By using the decision maker’s true nonconjugate belief, the problems
explored suggest that BUGS can produce a posterior distribution that leads to optimal decision making. Other
methods exist that can use nonconjugate priors, but they must be implemented ad hoc because they do not have
any supporting software. BUGS offers the distinct advantage of being implemented in existing software, and
with simple coding can solve a wide range of decision analysis problems. BUGS is useful in making optimal
decisions, and it is easy to learn and implement; therefore, including BUGS in decision analysis curricula is
valuable.
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Introduction
As operations research (OR) educators, we often
have to remind students that mathematical models
are only an abstraction of reality, with just enough
detail, we hope, to yield improved solutions to the
real problem at hand. Thus when we teach linear
programming, we remind students to ensure that all
relations are approximately linear, that the variables
can be modeled as continuous, and that uncertainty
can be ignored. Furthermore we make them aware
that should these assumptions be unrealistic, there are
more advanced methods, such as nonlinear program-
ming for nonlinear relations, integer programming
for discrete variables, and stochastic programming for
handling uncertainty. And we always encourage them
to use the simplest possible methods and to reserve
the more advanced toolkits until there is evidence
that they are indeed necessary. Similarly, in stochas-
tic OR we give priority to analytical methods that
assume the Markov property, but we make sure we
also cover simulation methods to handle more com-
plex situations.

This paper identifies an area of OR for which we
regularly tell our students that the methods require a
simplifying assumption, yet we fail to mention readily

available tools for dealing with situations when this
assumption is clearly not satisfied. We hope this paper
will raise the awareness about such tools and thereby
increase their application to yield better decisions.

The Decision Analysis Setting
Decision analysis can be loosely defined as the sci-
ence of making good decisions under uncertainty. It is
widely taught (see Table 1) and practiced. The uncer-
tainty is modeled by probability distributions of
uncertain events and parameters, often based initially
on the subjective belief of the decision maker. As addi-
tional information about the events and parameters
becomes available, Bayes’ rule can be used to objec-
tively update the decision maker’s subjective prior
distribution to a posterior distribution that incorpo-
rates the new information.

When the distributions are discrete, Bayes’ rule can
be readily implemented, but when continuous distri-
butions are involved, Bayes’ rule becomes problem-
atic (see Chap. 9 of Lee 2012). In such cases, to make
Bayes’ rule computationally feasible, it is common to
force the decision maker’s subjective belief to take
the form of a specific type of distribution (conjugate
distribution; see Section 2.1 of Lee 2012). Although
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the resulting distribution may not accurately repre-
sent the decision maker’s true beliefs, this method is
widely taught and used.

In the literature, there exist methods such as
Bayesian inference using Gibbs sampling (BUGS) to
compute posteriors for prior distributions of any form
(nonconjugate distributions). However, these meth-
ods are currently absent from applications and cur-
ricula of decision analysis. This paper advocates that
such methods should be taught extensively and that
their use should be encouraged in decision analysis
practice.

The term BUGS has several meanings:
• The BUGS method: a Markov chain Monte Carlo

method (MCMC) that uses Gibbs sampling and the
Metropolis-Hastings algorithm to numerically per-
form Bayesian inference (Gilks et al. 1994).

• The BUGS Project: the project that spawned the
BUGS method and led to the development of BUGS
software (BUGS Project 2012a).

• BUGS software: software implementing the
BUGS method, e.g., WinBUGS (Lunn et al. 2000),
OpenBUGS (Lunn et al. 2009), and JAGS (Plummer
2003).

• The BUGS language: the language used to code
models within the various BUGS software packages.
In the context of this paper, unless stated otherwise,
BUGS refers to OpenBUGS software.

Whereas currently the decision maker’s subjective
belief is forced to take the form of a conjugate dis-
tribution, if BUGS were adopted it would allow the
decision maker’s subjective belief to take any form.
This would produce a posterior distribution that more
accurately reflects the decision maker’s true beliefs,
thus allowing the decision maker to make a more
informed decision and thereby facilitate better deci-
sion making.

Table 1 Current Decision Analysis Curricula

BUGS/other
Influence Conjugate nonconjugate

Institution Course Type of document Reference diagrams distributions methods

Stanford University MS&E 353 Frontiers of Decision Analysis/MS&E 355
Influence Diagrams and Probabilistic Networks

Syllabus Howard (2011) • •

Princeton University WWS594O Risk Analysis Syllabus Craft (2012) •
UC Berkeley IEOR 166 Decision Analysis Course description Oren (2012) •
University of Michigan IOE 460 Decision Analysis Course description Bordley (2004) •
University of Singapore IE5203 Decision Analysis Syllabus Leng (2012) •
University of Minnesota IE 5545 Decision Analysis Syllabus Gupta (2007) • •
University of Illinois GE 550 AA—Decision Analysis II Syllabus Abbas (2013) •
Hong Kong Polytechnic

University
AMA484 Decision Analysis Syllabus Hoi-Lun (2008) • •

Auburn University INSY 5630 Decision Analysis and Real Options Syllabus Park (2005) •
Purdue University IE 546 Economic Decisions in Engineering Syllabus Liu (2010) • •
Total 10 7 7 0

The Current Situation
Curricula
Current decision analysis course descriptions posted
on the Internet from 10 engineering institutions
(Table 1) reveal that the majority (7 of 10) include con-
jugate priors but none mentions BUGS software or
any method to compute Bayes’ rule for nonconjugate
priors.

We can infer that many of the decision analysis
courses examined in Table 1 are Bayesian since they
teach conjugate distributions. BUGS is recognized as
a valuable Bayesian tool, as evidenced by its inclu-
sion in several courses that teach Bayesian methods
(see BUGS Project 2012b for a list of courses teaching
BUGS). Despite this, BUGS appears to be absent from
decision analysis courses.

Applications
The BUGS method was created by and is typically
used by statisticians (see BUGS Project 2012c for a
sample of relevant publications). Despite exhaustive
searching, we do not find a single paper discussing
the use of BUGS in the context of decision analysis
practice.

Miller and Rice (1983) discuss the discretization of
probability densities to obtain posteriors. This con-
verts the integral in Bayes’ theorem to a Riemann
sum. However, for this to be a good approximation,
the discretization requires a large number of bins,
which then makes the problem computationally infea-
sible. In the context of hybrid influence diagrams,
i.e., those that include continuous distributions, meth-
ods exist that address the shortcomings of conjugate
distributions. Poland and Shachter (1993) describe
mixtures of Gaussian influence diagrams, though
this requires several assumptions about the problem.
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To simplify the integral in Bayes’ theorem, Moral
et al. (2001) approximate nonconjugate priors with
mixtures of truncated exponentials; similarly, Shenoy
and West (2011) approximate the probability densities
with mixtures of polynomials. All of these methods
must be implemented ad hoc because they do not
have any supporting software.

There appear to be no references to BUGS, mix-
tures of polynomials, mixtures of truncated exponen-
tials, or any other method of computing posteriors for
nonconjugate priors being used to solve specific, real-
world problems.

In contrast, there are recent papers that use
conjugate priors in decision making. For example,
Greenland (2001) uses conjugate priors to model epi-
demiologic risk and Huang (2008) uses conjugate pri-
ors to determine an optimal cost sharing warranty
policy. The published evidence indicates that decision
analysis practitioners currently use conjugate priors.
Both Greenland and Huang state that conjugate priors
are used for simplified computation. This indicates a
perceived difficulty with using nonconjugate priors,
which leads them to use conjugate priors as taught in
curricula.

Better Decisions with BUGS in an
Insurance Context
This setting is an extension of Hesselager (1993), who
describes a class of conjugate priors with applications
to excess-of-loss reinsurance, and Martínez-Miranda
et al. (2012), who mentions the need for insurance
companies to meet their claims liability cash flows.

An auto insurance company had 1,000 collision
claims exceeding $5,000 in the previous year; these
claims totalled $8 million. The auto insurance com-
pany decides to purchase reinsurance on its collision
claims. They decide to buy an excess-of-loss cover for
a $10,000 layer in excess of $5,000; i.e., for a collision
with severity s ≥ $51000, the auto insurance company
can claim c = min4s − $510001$1010005 from the rein-
surer. The reinsurer will pay the auto insurance com-
pany a lump sum at the end of each year.

The reinsurance manager assumes that the num-
ber of collision claims exceeding $5,000, n, is Pois-
son distributed with unknown rate �. The manager
also assumes that the severity of the collision claims
exceeding $5,000, s, is Pareto distributed with mini-
mum value $5,000 and unknown shape parameter �.

The manager is interested in forecasting the total
claim cost,

∑n
i=1 ci, so the reinsurance company can

build the monetary reserves needed to meet its lia-
bility at the end of the year. The manager would
like to build a monetary reserve of size M equal
to the expected liability, Ɛ4

∑n
i=1 ci5 = Ɛ4liability5; i.e.,

the manager’s goal is to minimize the deviation of

M from the expected liability, minM D, where D =

�M − Ɛ4liability5�. Because the number of claims and
their severity are assumed to be independent, the
expected liability is equal to the expected number
of claims multiplied by the expected claim amount,
Ɛ4liability5= Ɛ4n5Ɛ4c5.

To solve the problem, the manager must choose
prior distributions for the unknown parameters �
and � using expert knowledge. Suppose the manager
agrees that the following gamma distribution (which
is conjugate to the Pareto sampling distribution of s)
is appropriate for �.

� ∼ â4�� = 110001�� = 3755

Suppose that the manager does not believe � follows
a gamma distribution (which is conjugate to Poisson)
but instead follows a lightly left- or right-skewed dis-
tribution, a heavily left- or right-skewed distribution,
or a bimodal distribution (seen in Table 2). Through
a Monte Carlo simulation, we can find the expected
liability for each of the priors. Suppose the man-
ager builds a monetary reserve equal to the expected
liability.

Over the following year, the auto insurance com-
pany has N = 988 claims exceeding $5,000, each with
known severity Si (in the absence of real claims data,
these values were generated from a Pareto distribu-
tion, Si ∼ Par4xm = $510001� = 2045). Using data from
the first year, the manager must forecast the total
claims cost and decide on the size of the monetary
reserve to be built for the end of the second year. This
requires the manager’s prior of � to be updated using
the 988 generated samples of severity, which is easily
done using the formulas for conjugacy. The manager’s
nonconjugate prior of � must also be updated using
the sample data n1 = 988. Current teaching would
suggest forcing the manager’s prior to be a gamma
distribution and updating this using the formulas for
conjugacy. With BUGS we can update the manager’s
true belief, the nonconjugate prior, and obtain the
expected liability through a Monte Carlo simulation.

We find that for the nonconjugate priors of �, the
true expected liability will range from $2.64 million
to $2.67 million, and by building a reserve of size
M equal to the expected liability the manager can
achieve D = 0. Had we used the currently accepted
assumption of conjugacy, in the worst case when
the manager believes � follows a heavily left-skewed
prior and builds a monetary reserve according to
the solution from the conjugate approximation (M =

$2065 million), the company would incur an expected
$2.67 million liability, resulting in a deviation D =

$181700. For other priors, the approximate solution
leads to smaller deviations, summarized in Table 2.
In all cases BUGS can be used to make a better
decision.
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Table 2 Nonconjugate Priors/Posteriors and Impact of Conjugate Approximations—Insurance Setting

Outcome using
solution from
best conjugate

Prior Posterior approximation

D = $111200
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ty
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950 1,000 1,050 1,100 1,150 1,200 1,250

0.
00

0
0.

00
4

0.
00

8
0.

01
2 Mean = 1,000    Sd = 31.8

Lightly right-skewed

Lambda

D
en

si
ty

950 1,000 1,050 1,100

0.
00

0
0.

01
0

0.
02

0

Mean = 991.4    Sd = 20.48
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600 700 800 900 1,000

0.
00

0
0.

01
0

0.
02

0

Mean = 1,000    Sd = 31.8

Heavily left-skewed

Lambda

D
en

si
ty

900 950 1,000 1,050

0.
00

0
0.

01
0

0.
02

0

Mean = 1,001    Sd = 20.67

Lambda

D
en

si
ty

D = $81500

1,000 1,100 1,200 1,300 1,400

0.
00

0
0.

01
0

0.
02

0

Mean = 1,000    Sd = 31.8

Heavily right-skewed

Lambda

D
en

si
ty

950 1,000 1,050 1,100

0.
00

0
0.

01
0

0.
02

0 Mean = 990.8    Sd = 17.54

Lambda

D
en

si
ty

D = $61400

940 960 980 1,000 1,020 1,040 1,060

0.
00

0
0.

00
5

0.
01

0
0.

01
5 Mean = 1,000    Sd = 31.8

Beta bimodal

Lambda

D
en

si
ty

960 980 1,000 1,020 1,040

0.
00

0
0.

01
0

0.
02

0

Mean = 991.6    Sd = 26.82

Lambda

D
en

si
ty

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

1.
19

8.
22

3.
17

0]
 o

n 
12

 F
eb

ru
ar

y 
20

18
, a

t 0
6:

26
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Diaz and Frances: Using BUGS in Applications and Curricula of Decision Analysis
90 INFORMS Transactions on Education 14(2), pp. 86–95, © 2014 INFORMS

Better Decisions with BUGS in a
Fishing Context
This setting is an extension of Clark et al. (1985),
who use conjugate priors in deciding the optimal fish-
ing capacity for a developing fishery. Here we will
assume instead nonconjugate priors.

In the fishing industry, the proportion of fish stock
to be caught is commonly referred to as the fishing
capacity. A fisheries manager is responsible for setting
the optimal fishing capacity (F ) for a developing fish-
ery of prawn for the next nine years to maximize the
expected net present value (NPV) subject to expected
sustainability of the prawn population. The following
is a summarized and slightly simplified version of the
mathematical model in Clark et al. (1985).

max
F

NPV = Ɛ

( 9
∑

t=1

4Ctp�
t5

)

subject to: Ɛ4N95≥N01

(1)

where
• p = $605 kg−1 is the profit per kg of prawn fished.
• �= 0096 is a discount factor.
• Ct is the total catch of prawn in year t in kg,

given by

Ct =
F

F +M
41 − e−F−M 5Ntw0

• M is the natural mortality of the prawns, esti-
mated to be 0.1.

• F is the fishing capacity, to be set by the manager.
• w is the average weight of the prawns, estimated

to be 0.025 kg per prawn.
• Nt is the number of prawns after t years, with

the current population N0 estimated to be 2000 × 1010

prawns, which is assumed to follow the popular fish-
ery dynamics model:

Nt =Nt−1e
−F−M

+
Rt�4Nt−15

w
0 (2)

• �4Nt5 is the stock-recruitment function, estimated
to be equal to min411Nt/41050 × 101055.

• Rt is a sample annual recruitment of the prawns
in year t in kg. The random variable recruitment
(R) follows a lognormal distribution where lnR is
assumed to have a known standard deviation � = 005,
and lnR has unknown mean �.

The fisheries manager is assumed to have expert
knowledge that can be quantified into a prior dis-
tribution of �. Based on experience, the fisheries
manager does not believe that a conjugate normal
distribution is appropriate for �, the mean of lnR.
Suppose instead that the manager believes � follows
the right-skewed distribution in Figure 1. This prior

Figure 1 The Manager’s Prior of �

�
17.5

0.0

0.5

1.0

D
en

si
ty

1.5

18.0 18.5 19.0

Mean = 18.0
Sd = 0.28

19.5 20.0 20.5

distribution can be modeled as a transformed log nor-
mally distributed variable: L ∼ lnN (mean = 2, stan-
dard deviation = 00324), �= L/9 + 17013.

For a given capacity F , we can now compute
the objective and determine the feasibility of the
model in (1), i.e., compute the expected NPV and
the expected prawn population after 9 years. This is
accomplished through an ordinary Monte Carlo sim-
ulation. We can vary the value of F to find the fishing
capacity that produces the largest expected NPV and
is expected to be sustainable.

OpenBUGS was used to perform the Monte Carlo
simulation. Note that this does not require computa-
tion of Bayes’ rule, and therefore the BUGS method
was not used; OpenBUGS was simply used to per-
form a basic Monte Carlo simulation.

We find that optimally F = 00067. The manager sets
the fishing capacity to this value. Three years later,
the manager finds that the actual recruitment of the
prawns was the following:

R1
1 = 9080 × 107 kg1 lnR1

1 = 1804

R1
2 = 5094 × 107 kg1 lnR1

2 = 1709

R1
3 = 8086 × 107 kg1 lnR1

3 = 1803

for years 1, 2, and 3, respectively. This leads, via Equa-
tion (2), to an estimated prawn population of 2005 ×

1010 at the present time.
Now the prior distribution must be updated using

the three new data points for recruitment in order
to solve for the optimal fishing capacity for years 3
through 12. Because this prior is nonconjugate, it can-
not be updated analytically and thus decision analysts
using current curricula would not have learned the
methodology for dealing with this situation.

With BUGS, it is possible to obtain the poste-
rior for the manager’s true belief, the nonconjugate
right-skewed prior distribution of � in Figure 1.
Through Monte Carlo simulation we find that the
optimal F = 00072, resulting in an expected NPV of
$1.63 billion and a sustainable expected prawn pop-
ulation of 2005 × 1010 after nine years. Had we used
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Table 3 Nonconjugate Priors/Posteriors and Impact of Conjugate Approximations—Fisheries Setting

Outcome using
solution from
best conjugate

Prior Posterior approximation
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Figure 2 Hybrid ID of the Fisheries Problem, Three Year Time
Horizon

� mean
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population
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catch

C3,
catch

NPV

Sample
R

the best approximate normal conjugate prior as cur-
rently taught and applied in decision analysis, we
would find the optimal F = 00078. An evaluation of
this decision with the manager’s true prior distri-
bution yields an expected NPV of $1.74 billion and
an expected prawn population of 2000 × 1010 after
nine years. This represents a ãNPV of $110 million
but is infeasible because it leads to expected overfish-
ing and depletion of the prawn.

Other nonconjugate priors tested were the follow-
ing: a light left skew, a heavy left skew, a heavy
right skew, and a bimodal beta distribution. In all
cases, the solutions suggested by using the best possi-
ble conjugate approximations were found to be either
suboptimal or infeasible. Results are summarized in
Table 3.

Figure 3 BUGS Doodle of the Fisheries Problem, Three Year Time Horizon

�

Using BUGS in Decision Analysis
Courses
Influence diagrams are widely taught in decision
analysis. A hybrid influence diagram is one where
chance and/or decision variables are continuous.
We can think of the fisheries problem as a hybrid
influence diagram, as shown in Figure 2.

BUGS software can inherently accept influence dia-
grams without decision nodes to calculate the pos-
terior distribution of the NPV for a given fishing
capacity F .

At its most intuitive level, OpenBUGS allows the
user to graphically create models, referred to by
BUGS as Doodles, as shown in Figure 3.

Through OpenBUGS’s drop-down menus, students
can perform various actions, including loading the
model, updating posterior distributions, and viewing
statistics of variables of interest.

OpenBUGS converts the graphical model into
BUGS code, which the students can then compare
to the graphical model to help them understand the
code. Eventually students may wish to code models
instead of using the graphical interface. This is much
more efficient; each node or variable is essentially a
single line of code.

Except for the shorter time horizon, the Doodle in
Figure 3 produces code similar to Figure 4, which con-
tains the code used to solve the fisheries problem.

OpenBUGS has distinctly simpler and more ad-
vanced ways of performing the same tasks, which
helps students learn the software. We first included
this tool in a decision analysis course to a class of
about 50 senior undergraduate industrial engineer-
ing students in 2012. We noted that once a student
has achieved some proficiency, complex models can
quickly be coded and solved. We are again using it in
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Figure 4 Sample BUGS Code, Fisheries Setting

list(tau=4, M=0.1, F=0.073, N0=2.05E+10, p=6.5, ...
alpha=0.96, samplnR=c(18.4,17.9,18.3))

model{
L ~ dlnorm(2, 9.5)
#mu = L/9+18.87 #left skewed prior of mu
mu = L/9+17.13 #right skewed prior of mu

#H ~ dlnorm(1.1, 2.9)
#mu <- -H/8+18.45 #heavily left skewed prior of mu
#mu <- H/8+17.55 #heavily right skewed prior of mu

#B ~ dbeta(0.5, 0.5)
#mu <- 17.6+0.8 ∗ B #bimodel prior of mu

for(i in 1:3){
samplnR[i] ~ dnorm(mu, tau) #samples of log recruitment

}

for(i in 1:9){
logR[i] ~ dnorm(mu, tau) #logR is a variable name
log(R[i])<-logR[i] #transformation of logR to R

}

N[1]<-exp(-F-M) ∗ N0+(R[1]/0.025) ∗ min(N0/1.5E+10,1)
for(i in 2:9){

N[i]<-exp(-F-M) ∗ N[i-1]+(R[i]/0.025) ∗ min(N[i-1]/1.5E+10,1)
} #forecasting the prawn population

C[1]<-(F/(F+M)) ∗ (1-exp(-F-M)) ∗ N0 ∗ 0.025
for(i in 2:9){

C[i]<-(F/(F+M)) ∗ (1-exp(-F-M)) ∗ N[i-1] ∗ 0.025
} #computing the annual catch

NPV[1]<-C[1] ∗ p ∗ pow(alpha, 1)
for(i in 2:9){

NPV[i]<-NPV[i-1]+C[i] ∗ p ∗ pow(alpha, i)
} #computing the net present value of the annual catches

}

2013 to a similar group of similar size. We believe that
OpenBUGS can be considered a practical, functional,
and easy to learn tool for all Bayesian updating.

It is important to note that BUGS is a tool primar-
ily used by statisticians and does not solve for opti-
mal decisions. For example, it does not automatically
find the value of the decision variable F that maxi-
mizes the expected NPV in the fisheries setting. Stu-
dents could manually change the value of F , rerun
BUGS, and find the optimal F in this way. Alter-
natively, students can use the BRugs package by
Thomas et al. (2006), which provides a comprehensive
R interface to OpenBUGS. BRugs allows students to
code iterative procedures to replace the extensive typ-
ing and clicking required by OpenBUGS. For exam-
ple, to solve our influence diagram, we need only
load up the model, inject a value of F into the data
set, compute the expected NPV, and loop this pro-
cedure for different values of F while storing the
F value that produces the highest expected NPV.
Sample BRugs code to perform this task is shown in

Figure 5. Further BRugs examples can be found in
Kruschke (2010).

Conclusion
Conjugate distributions continue to be taught and
applied in decision analysis. There are cases where
a conjugate approximation of a nonconjugate prior
will lead to significantly suboptimal decision making.
BUGS provides value by allowing more realistic non-
conjugate priors and producing an overall optimal
decision.

BUGS has a graphical interface in the form of
Doodles as well as a more advanced coding mode.
The transition from graphical models to coding allows
the student to start with a more intuitive method
before advancing to more efficient but abstract meth-
ods. For a wide range of problems, BRugs can solve
hybrid influence diagrams and find the optimal deci-
sions with a simple exhaustive search.

We conclude that there is significant value in
including BUGS in decision analysis curricula and
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Figure 5 Sample BRUGS Code, Fisheries Setting

library("BRugs")

NPVopt = 0
FTEMP = 0.05

for (i in 1:50){
FTEMP = FTEMP+i/1000 # F value to be used

#inject F value into the data set
bugsData(list(mu0 = 18, tau = 4, M = 0.1, F = FTEMP, N0 = 2.05E+10, ...
p = 6.5, alpha = 0.96, samplnR = c(18.4,17.9,18.3)), "fishdata.txt")
modelCheck("fishmodel.txt") #load the model from Figure 4
modelData("fishdata.txt") #load the data
modelCompile(numChains = 1) #number of markov chains = 1
modelGenInits( ) #generate initial chain values
modelUpdate(20000) #posterior computation burn in
samplesSet(c("N[9]", "NPV[9]")) #set a watch on variables of interest
modelUpdate(20000) #compute posteriors

susttest = samplesStats("N[9]")[1,1] #pull population value
NPVtest = samplesStats("NPV[9]")[1,1] #pull NPV value

if (susttest> = 20500000000){ #check if sustainable
if (NPVtest>NPVopt){ #check if NPV is optimal

FOPT = FTEMP #store F value if optimal
sustopt = susttest

NPVopt = NPVtest
}

}
samplesClear("∗") #clear sample collection before next simulation
} #loop

practice. With this tool, students will know a practical
way to proceed when conjugate priors are not accept-
able to the decision maker.
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