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Abstract Parallel robots exhibit salient merits over their
serial counterparts in applications where both accuracy
and dynamic response are required. However, due to the
strong dependence of geometric parameters and their
performances, the corresponding design problems for the
parallel robots are much more complex and the adequacy
and effectiveness of the design method become more
critical. In this paper, a study in the design optimization
for a class of planar parallel robots is presented. The
robots feature an in-parallel structure with two degrees of
freedom. Dimension synthesis is performed through
maximization of two key performance characteristics,
addressing not only workspace but also dexterity of the
robots under consideration. Optimal designs are attained
using both parametric study and simplex algorithm.
Results are shown by way of computer simulations aided
with graphic visualizations.
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1. Introduction

In robot design as well as control coordination,
workspace and singularity characteristics are two

important geometric properties that should be
considered. The workspace is the region which the end-
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effector can reach with at least one orientation, whereas
the singularities are special geometric configurations
inherent to the workspace at which the manipulator can
lose-if actuated in series, or gain—if actuated in parallel,
one or more degrees of freedom.

Being able to avoid the singularities is more critical in
practice for parallel manipulators than their serial
to potential
associated with the unwanted, albeit instantaneous,

counterparts due control uncertainty
mobility even with all actuators locked. Such uncertainty
in poor force
performance, in that the manipulator cannot effectively
resist or apply forces or torques at the end-effector in
certain direction. Ideally a robot should have as large a

also manifests itself transmission

workspace and as small a density in singularity as
possible, both being functions of robot geometries.
Attaining such a kinematic property requires a dimension
synthesis process through some optimization.

Many researchers have addressed the topics of
workspace and singularity of parallel manipulators. For
examples, the boundary of the dexterous workspace for a
3-DOF planar parallel manipulator was determined by
geometric reasoning in [1]. Geometric algorithms were
presented to obtain the maximal as well as the total
orientation workspace for a similar type of manipulator
[2]. For a broader class of parallel manipulators, a study
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to classify the various shapes of workspace due to
changes in link length was reported in [3]. Representative
theoretical studies on the
manipulators can be found with geometrical approach,
by use of the Grasmaan geometry [4], screw theory [5], or
using related line geometry [6]. And in [7] this author
reported a study of workspace and
characteristics for two common types of 3-DoF planar
parallel manipulators, in which the complete workspace
and the singularity inherent to the systems were
characterized using computer simulations based on a
simple direct search algorithm aided with graphic
visualization. Both the workspace and the singularity
related properties have been, individually or together, as
primary objectives in many optimal design studies for
parallel robots. For examples the workspace was used
solely as the metric of optimization in [8],[9] whereas
indices of singularity, stiffness, and accuracy were used
either in composite (e.g., as a weighted sum in [10],[11])
or multi-criteria form in optimal design [12].

singularity of parallel

singularity

In this paper, a study in the design optimization for a
class of planar parallel robots is presented. The robots
feature an in-parallel structure with two degrees of
freedom. Dimension synthesis is performed through
optimization of two key geometric properties, namely
addressing not only workspace but also dexterity of the
robots under consideration. A convenient composite
index, defined as the ratio of the total available
workspace to the density of singularity within that
workspace, was developed in [7] to help inform the way
in which both characteristics vary with respect to various
geometric parameters. The proposed index, considered as
a more proper representation of the overall dexterity of
the robot, is adopted as the metric for optimal design in
this study. A solution to optimal design is arrived at and
validated by using both the parametric variations and the
simplex algorithm independently. Results are shown by
way of computer simulations aided with graphic
visualizations.

2. System Model

The robot of interest is a two-degree-of-freedom five-bar
planar parallel robot (see Fig. 1). The robotic mechanism
consists of a point P (‘wrist') supported by two articulated
arms. Each arm is composed of two links connected by
five revolute joints between the links (at points A and B,
P) and to the ground (points O1and O2).

The link lengths of each two- link arm are L and m,
respectively. Point Q is the tool center point which is
located at fim from the wrist point P along the upper right
arm.

177 IntJ Adv Robotic Sy, 2011, Vol. 8, No. 4, 176-183

Yo Qey)
pm 8,
P
m
m
By
83 B

A

L L

6 62

04 b 0, x

Figure 1. The 5R planar parallel robot
2.1 Forward Position Kinematics

The robot is driven by the two angles 01 and 0:. Each set
of (01, 02) corresponds to a scalar couple (X, Y) which
represents coordinates of the tool point Q. The following
derives the expressions of X and Y in terms of 01 and 0..
The coordinates of point Q can be expressed, from the
side 0102BQ and the side O1APQ, as:

X =b+LcosO, + m(1+ B)cosh,
= L cos6, + m cosfz + fm cosb, 1)

Y = Lsinf, + m(1 + B)siné,
= Lsinf; + m sinf; + fm sinf, 2)

Isolating the cosés and siné terms from the second
equations above, then squaring and adding the two
resulting equations to eliminate @, the following
expression is obtained:

Acos6,+Bsing,+C=0 3)
where

A =2(b+ Lcos@, — Lcosb,); B = 2(Lsinf, — Lsinb,)
1
C= p” [(b + LcosB, — LcosB;)? + (Lsinf, — Lsinb;)?]

Equation (3) is a linear trigonometric equation, which can
be solved by using the tan-half angle transformation to
give two closed form solutions of cosé,and siné,in terms
of 01 and 02 Then by equations (1) and (2), the position
coordinates of tool point Q can be obtained. The forward
kinematic solution is necessary to help visualize the robot
corresponding to any given set of inputs 01 and 02. The
two possible configurations corresponding to a given set
of input angles (01, 02) are illustrated in Fig. 2.
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Figure 2. Two configurations for the same inputs (61,02)

2.2 Inverse Kinematics Solution

The inverse kinematics solution specifies the expressions
of 61 and 6: in terms of the tool point coordinates (X, Y).
The closed form expressions for 0: and 0: are derived
next. Starting from the left branch, equations (1) and (2) is
rewritten as:

X —b — LcosO, = m(1 + B)cosb, 4)
Y — Lsinf, = m(1 + B)sinb, (5)
Summing the squares of (4) and (5) gives:

2(X — b)cosO, + 2YL sinf, + m2(1 + )% — L? —
X—b?-Y2=0 ©)

Equation (6) again is a linear trigonometric equation in 02,
which can be solved, similar to equation (3), to yield two
solutions of cos0: and sin0:. From equations (4) and (5),
the following expressions for 04 can be obtained:

cosf, = (X — b — Lcos8,)/(m(1 + B)) (7)
sinf, = (Y — Lsin8,)/(m(1 + B)) 8)

Now considering equations for the right branch in
equations (1) and (2), we have:

(X — Bm cosb,) — L cosf; = m cosO; 9)
(Y — Bm sinf,) — L sinf; = m sinf; (10)
The sum of the squares of equations (9) and (10) gives:
D cosf, +E sin8, +F =0 11)
where
D =2(X — Bmcosb,); E =2(Y — fmsinb,)
F=m?—1?— (X — pmcost,)? — (Y — Bm sind,)?

Equation (11) again yields two solutions for 1. Thus
there are four possible configurations for the robot to
reach a given point (X, Y). Note that, because singularity
is a property of geometric configuration, the robot can be
at singularity in any one of the four configurations.
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2.3 Velocity Kinematics Analysis

The kinematics equation relating the velocity of the tool
point and the input joint rates, is characterized by a linear
mapping matrix J, known as the Jacobian. The Jacobian is
required for the characterization of geometric
singularities of the system. This section specifies the
Jacobian for the planar robot under study.

To derive the Jacobian matrix, equations (6) and (11) are
differentiated, respectively:

(X — b — Lcos8,)X + (Y — LsinB,)Y =
[(Y — LsinB,)cos8, — (X — b — Lcos8,)sind,] L, (12)

(X — Bmcos8, — Lcos8,)X + (Y — Bmsiné, — Lsin8,)Y +
af, = [(X — pmcosb, — Lcos,)sinb; — (Y — fmsinb, —
Lsin®;)cosb,] Lo, (13)

where

a = 2Bm[(X — Bmcos6, — LcosB,)sinb,
— (Y — Bmsin6, — Lsin6,)cos6,]

In order to express 94 in terms of X, ¥, and 91, equations
(7) and (8) are differentiated, which lead to two
possibilities:

6, = 1 ¥ Lcos0, 0. ] o = 0
* 7 m(1 + B)cosé, m(L + B)cosb, L5 if sinf, =

) -1 ; Lsiné, o
O if sinB, #0

- m(1+ ﬁ)sin94x " m( + B)sinb, '

Upon substitution and arrangement, equations (12) and
(13) can be written using the matrix form:

x) _ . (6

]p (Y ]t <02>

Gpn J:mz) (X) _ thl ]}12) 9:1
p21  Jp22/\Y t21 Je22/ \ 6,

That is,

where

Jp11 = 2(X — b — Lcos6,)
jplZ = Z(Y - LSlnez)

Jpz1 = 2(X — Bm cos6, — L cos6,) ; if sin, =0
= 2(X — pmcos6, — L cos6;)
‘ ; if sinf, #0
m(1+ B)sinf, ’ if sinf,
. . a . .
]le = Z(Y_len91)+—m’ Lf 31n94 =0
=2(Y — Bm sinb, — Lcos6,); if sinf, #0
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And

Ji1 =0
Je12 = 2L [(Ycos8,) — (X — b)sinb,]

Jiz1 = 2L [(X — Bm cos6,)sin8; — (Y — fm sinb,)cos6, ]

o L cos0, ) i sing. = 0
Juz = am(l + B)cosb,’ If sinfy =
L sin@, L
= if sinf, # 0

= O + B)siné,’
Finally the Jacobian matrix ] can be obtained as:

J=Jp"Je
3. Evaluations of Geometric Properties

Workspace and singularity are the two most important
properties that are of concern in geometric design of robot.
In the case for the 2D robot being considered, the former is
the collection of all the points reachable by the tool points
and the latter corresponds to the configurations in which
the robot becomes singular (gaining a transitory degree of
freedom at uncertainty configuration).

3.1 Workspace Analysis

The inverse kinematic solution is used in the studies for the
workspace of the robot. Indeed, given the coordinates (X, Y)
of any point in the region, it can be determined if it belongs
to the workspace or not by verifying if at least one solution
for 01 and 0: exists. The workspace can be evaluated by
using a direct search algorithm which essentially 'grids’ the
potential region in conjunction with checking the existence
of an inverse kinematics solution for the robot. Such an
algorithm has been wused to study the workspace
characteristics of a class of three degree of freedom robots

(7]

Workspace of the 2 DOF parallel robot

Y-axis (mm)

Xeaxis (mm)

Figure 3. Workspace of the 2 DoF robot
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Fig. 3 shows the workspace of the robot obtained using
such an algorithm implemented using Matlab based on
the inverse kinematics solution. One advantage of this
approach is that it allows for effective quantification of
workspace area as well as singularities.

3.2 Singularity Analysis

When the tool point Q is at a singular point of the
workspace, the robot is actually in a uncertainty
configuration in which it is uncontrollable. It is necessary
to identify so as to avoid all such configurations in
planning a trajectory for the robot. As such
characterization of singularity is just as important as that
of workspace, and some optimization of singularity
should be taken into consideration in the design of robot.

There are several indexes that characterize the degree of
singularity; the determinant-based manipulability and
the (reciprocal) condition number of the Jacobian, are the
two commonly used ones. When the determinant of the
Jacobian is equal to zero, the robot is at singularity.
However, the magnitude of the determinant cannot be
used as an appropriate measure of the degree of ill-
conditioning. To this end the better metric to use is the
reciprocal condition number of the Jacobian. The
condition number based index, icd, is bounded between 0
and 1. Obviously, the conditioning index depends on the
joints coordinates of the manipulator and therefore it is
posture-dependent. As each tool point is being identified
through the workspace analysis, the icd for corresponding
Jacobian can be readily computed to characterize the
singularity-degree of each point in the workspace.

In this study, the robot is considered being at or near a
singularity when icd < 0.01. A Matlab program was used
to generate a graph which gives the robot workspace and
its degree of singularity of each tool point as follows (see
Fig. 4):

Singularities of the 2 DoF parallel robot

Singular paint

¥-axis (mrn)

Good manipulability

Heaxis (mm)

Figure 4. Workspace and singularities of the 2 DoF robot
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Figure 5. Ambiguity of singular configuration due to multiplicity
of solutions for the same tool point

Recall that there are four possible robot configurations for
the same point of the workspace. Therefore, there are four
different Jacobians and thus four different icd’s for each
point of the workspace. This fact complicates the
characterization of singularity and, if only one of the
solutions is considered during the study, an incomplete
or even mistaken conclusion could result. For example in
Fig. 5, the first of the four possible configurations is at
singularity whereas the others are clearly not.

4. Design Optimization

In robot design, an ideal geometry is one that has the
widest workspace possible and the fewest singularities in
its workspace. Indeed, from a motion planning point of
view, a robot with a large workspace filled with many
singular points, is just as undesirable as one that has a
small workspace. In this study, an optimal design of the 2
DoF planar 5R robot is obtained for its link lengths by
taking both the workspace and singularity properties into
consideration. This is realized through the use of a
composite index relating the two properties as proposed
previously in [7].

The composite index, named as the overall dexterity
index, is calculated by taking the ratio of two metrics,
namely a percentage measure of the workspace relative to
a specific reference (chosen by the designer) and a
percentage measure of the extent of singularity relative to
the workspace. Since both properties of workspace and
singularity are functions of dimensions and geometric
configuration of the robot, the design problem for a
chosen robot configuration becomes one of finding the set
of link dimensions that maximize the dexterity index.
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Thus the design optimization problem, specifically for the
5R planar robot considered here, can be stated as:

Find the link lengths b, L, m and Pm that maximize an
objective function that quantifies the overall dexterity of the
robot.

In the evaluation of the objective function based on the
above dexterity index, the percentage of workspace is
obtained from the ratio of actual robot workspace area
relative to a reference area given by a circle with a radius
of (L+m+pm), which corresponds to the widest area the
robot could cover if it had only one arm.

The robot workspace area is obtained by associating a
small area to each point of the grid in a target window,
where 2Lmx is the size of the target window (x and y
ranging from -Lmax to +Lma) and n is the discretization
precision (the number of points in one axis). The
workspace area is computed by multiplying this small
area with the number of points for which the inverse
kinematics solutions exist. The percentage of singularities
is obtained from the ratio of area based on the collection
of those singular points (with icd less than 0.01) and the
area of the robot workspace.

4.1 Optimization by Parametric Variations

The design problem of interest here is one of
multivariable nonlinear optimization type. A basic
approach to finding a solution is by means of parametric
variation, where a candidate solution vector is generated
by locating the optimal value for each parameter while
keeping all others fixed, which candidate solution is then
used as the new basis for iteration by repeating the
aforementioned process to generate the next candidate.
The process stops until convergence is attained. This
method is similar to the successive substitution method
for root finding applications, which is tedious in its

process but quite effective in finding a solution.

In this case a candidate value for each of the link
parameters is identified numerically by characterizing
participation of each parameter in the dexterity for which
a graph may be generated as a function of a varying
parameter while keeping all other parameters fixed; the
value corresponding to the greatest dexterity is then
reported.

The optimization process is demonstrated in the
following with a discretization precision of 100 points in
the X-axis and the Y-axis. All link lengths, namely b, L,
and m, referred to heretofore may be of any convenient
unit as long as they are consistent, and £ is a
dimensionless parameter that sets the length of the end
effector.
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First Iteration - To start the optimization process, a
baseline design is first chosen as follows: b =1, L=3, m = 2,
B = 0.3. A series of simulations were then conducted to
obtain the four graphs of parametric variations as shown
in Fig. 6-9.

influence of beta on the dexterty withb=1 ,L=3 , m=2
153 —m— T T T T T T T T

¥ 005
W13
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I | | I |
03 0.4 05 0B 07 08 09 1
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a 0.1 0.2

Figure 6. Influence of § in the dexterity - optimal at § = 0.05
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Figure 7. Influence of L in the dexterity - optimal at L = 1.9

influence of m on the dexterity withb=1 L=3 , bet=0.3
12 T T T T T T T T T

dexterity

Figure 8. Influence of m in the dexterity - optimal at m =1.5
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Notice that in Fig. 7, the dexterity values are abnormally
high for L < 0.5b, which was found to be the natural effect
of small values in the denominator due mainly to the fact
that there is almost no singular point in the workspace.
This configuration, however, cannot be considered as
optimal because the workspace is extremely limited and
disjointed (Fig. 10). Also it can be noted in Fig. 9 that the
dexterity jumps for b > 6 (or 2L), which can be attributed
to the phenomenon of workspace changing from one to
two regions, similar to that illustrated in Fig. 10.

influence of b on the dexterity with L=3 , m=2 , bet=0.3
14 T T T T T T T T T

dexterity

Figure 9. Influence of b in the dexterity - optimal at b =1.8

From these graphs, the optimal values for the four design
parameters can be identified as: b = 1.8, L=1.9, m = 1.5,
P=0.05.

Singularities of the 2 DoF parallel robot

(.Y) Singular point

o — r

Y-axis (rmrm)

ra

&l Good manipulability

Feaxis (mm)

Figure 10. An example of singularity-free solution

Second Iteration - Having found the first candidate
solution above, it is 'substituted' back to the optimization
process in which simulations are repeated to identify a
new set of optimal parameters as before. The results show
that the optimal values for = 0.05 and L = 1.9 which
remain the same as before; however, the optimal values
for m and S did change (from 1.5 and 1.8) to be m = 2.2
and b=1.34.
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Third Iteration - The next step of the optimization is now
to determinate whether the optimal value of m depends
on b and vice versa. To do so, the evolution of the
dexterity with respect to b with m = 2.2 (last optimal value
found for m) is first generated. The maximum dexterity is
obtained for b = 1.407. This is in turn used to investigate
the variations of dexterity relative to m with b = 1.407,
which renders a new optimal value for m = 2.1. Then by
substituting this new m value and repeating the
simulations again, the new b value is found to be
convergent at b = 1.407. With these new values for m and
b, the optimal values for § and L have to be verified. The
evolutions of the dexterity depending on f on the one
hand and on L on the other using these values for b and m
demonstrate that the optimum for g and L is not affected.

The Optimal Solution - The optimal parameters of the
robot are: b =1.407, L =1.9, m = 2.1, = 0.05. Fig. 11 shows
the optimal robot geometry and its workspace, and Fig.
12 gives the distribution of singularity. And the optimal

design corresponds to the following numerical
properties:

=  Workspace area : 40.9480

®* Normalized arearatio:  0.7735

= Singularity percentage:  0.0444

=  Dexterity : 17.4036

Warkspace of the 2 Dal” parallel fobot

Veais (mm)

, L L L L , L L L L L
E - 5 = = 0 T 2 3 7l 5
%ax1s (mm)

Figure 11. Workspace of the optimized 2 DoF robot
4.2 Optimization by Simplex Algorithm

The foregoing optimization, being a multi-variable,
unconstrained optimization problem, can also be solved
using a direct search algorithm available from the Matlab
function: fminsearch. The method uses the concept of a
simplex, which is a polytope of N+1 vertexes in N
dimensions: a line segment in one dimension, a triangle
in two dimensions, a tetrahedron in three-dimensional
space and so forth. The simplex algorithm is a direct
search optimization method that begins at a starting
vertex and moves along the edges of the polytope until it
reaches the vertex of the optimum solution.
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Singularities of the 2 DoF parallel robot
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Figure 12. Singularity characteristics of the optimized 2 dof robot

In order to corroborate the result obtained previously 'by
hand' the optimization was carried out using the built-in
Matlab function with a precision of 100 for the
discretization.

The optimization process was executed using the same
initial guess as before; namely b =1, L=3, m =2, f=0.3.
The following optimum is returned by the fminsearch
algorithm: b = 1.0545, L = 2.8806, m = 2.0228, f= 0.3074,
which corresponds to a dexterity of 11.6828, a value
different from the optimum found previously. This shows
that if the previous result is correct, the direct search
simplex algorithm did not find the true optimum but
only a local optimum close to the initial guess; this is no
doubt a pitfall of the simplex algorithm.

To validate the result found previously 'by hand,' a
second iteration is executed using those values found by
parametric variations as a new set of initial guess. The
following optimum is obtained: b = 1.4052, L = 1.9017, m =
2.1007, p = 0.0501, corresponding to dexterity of 17.9350.
Comparing these to the values found by hand, it can be
concluded that both results corroborated with each other.

One may wonder whether if the number of discretization
used will affect the results. To investigate the effect, a
different number for the discretization is used (n = 200,
namely 40,000 points). Again using the optimal values
found by hand as initial guess, the following optimum is
obtained: b = 1.4599, L = 1.8998, m = 2.1262, = 0.0500.
And the corresponding dexterity is 15.8167.

It is noted that the new dexterity value is lower than the
one found with n = 100 using the same initial guess
(which was 17.4036) whereas the optimal parameters are
practically the same. The lower value for the dexterity is
expected due to use of a finer grid in area calculations.
Having the same optimal parameters indicates that
changing the precision did not affect the optimal values
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for the parameters found by the direct search simplex
algorithm but only improves the corresponding dexterity.

5. Conclusions

The problem and solution of an optimal design for a 2-
DOF planar parallel manipulator were presented in this
paper. the complete
workspace and singularity were evaluated first. Then
using a dexterity index which quantifies the overall
interplay between the workspace and the singularity, the
design optimization were carried out two ways, first by
the method of parametric variations and then the simplex
direct search algorithm. An optimal design was obtained
and validated as a result. Moreover, it is found that
parametric variations could provide additional insights
into the interactions between the geometric parameters
explicitly, which insight could also serve to inform and
guide the automatic optimization process toward finding
the global
graphically to facilitate visualization. It is noted that the
work presented here dealt only with design optimization
related to robot geometry; it did not explicitly address
other kinematic aspects such as singularity avoidance in
path planning.

Using numerical simulations,

optimum. All results were presented
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