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1 Abstract—The important premise of the novel adaptive 

backup protection based on wide area information is to identify 
the fault in a real-time and on-line way. In this paper, the 
principal components analysis theory is introduced into the 
field of fault detection to locate precisely the fault by mean of 
the voltage and current phasor data from the PMUs. Massive 
simulation experiments have fully proven that the fault 
identification can be performed successfully by principal 
component analysis and calculation. Our researches indicate 
that the variable with the biggest coefficient in principal 
component usually corresponds to the fault. Under the 
influence of noise, the results are still accurate and reliable. So, 
the principal components fault identification has strong anti-
interference ability and great redundancy. 
 

Index Terms—Fault identification, Noise, Principal 
component analysis, Wide area measurement system, WAMS. 

I. INTRODUCTION 

Under the competitive and deregulated environments 
during recent years, the complexity of power systems has 
become more and more high. As a result, how to implement 
the better and advanced security monitor and control of 
power system has also become an increasing important 
problem, especially for the power system relay protections. 
Though the backup protection in the protective system is 
still playing an important role, the coordination of these 
protections is to be confronted with the great difficulty. It is 
a matter of fact that about 75% of the large-scale power 
cascading outages worldwide have some concerns of the 
backup protection [1]. The traditional backup protection 
based only on the local information even adds fuel to the 
flames in the process of some accidents. With the increasing 
installation of phasor measurement units (PMUs) and the 
implementation of wide area measurement system (WAMS) 
[2]–[6], it is able to provide phasor measurement 
information, including nodal voltage phasors and branch 
current phasors, in the whole electric power system 
synchronically. The phasor information reflects both 
realistically and objectively the operation condition of the 
current system and provides a new perspective to the design 
of backup protection. 

When a disturbance happens in the power system, the 
voltage and current information in the whole network will 
change accordingly. Especially, the monitoring and the 
control of oscillation have become an important direction to 
the application of WAMS. As to relay protection, how to 

extract the fault features and to detect the fault from the 
large amount of measurement information supplied by the 
WAMS is the key problem for the backup protection based 
on the identification of fault [7]–[9]. Different to the 
traditional fault diagnose methods relying on the 
information of circuit breakers statues change and primary 
or backup protection trip signals, the realization of novel 
backup protection has the potential requirement for real-time 
and online identification of the fault, in which the new 
mathematical method should be introduced to deal with the 
synchronical vector information in the overall system. 
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Principal component analysis (PCA) [10]–[13] is a linear 
technique for mapping a multi-dimensional data set into a 
lower dimension space while minimizing the loss of 
information. It is an important and essential technique for 
data reduction, image compression, and feature extraction. 
And it has been widely used in many fields including data 
communication, pattern recognition, and image processing. 
In the present paper, the fault identification based on 
WAMS will be discussed carefully. The PCA method will 
be introduced into the field of fault detection to locate 
precisely the fault by mean of the voltage and current phasor 
data from the PMUs. Considering the influence of noise, we 
will extract the distinct features of faults. 

II. A BRIEF INTRODUCTION OF WIDE AREA MEASUREMENT 

SYSTEM 

WAMS, Wide Area Measurement System, can obtain 
phasor information on node voltage and branch current with 
uniform time scale and monitor the running state of the 
current power system. Phasor measurement unit is the 
remote measurement devices of the WAMS, which is the 
product of the wide application of Global Position System 
(GPS) in the world. In 1980s, Professor Arun G. Phadke and 
James S. Throp created the first PMU equipment in Virginia 
Tech in USA [2]. Except the GPS receiver, the basic 
structure and principle of PMUs is very similar to a 
computer relay. PMUs dispersedly equipped in the electric 
power system could obtain the same sampling clock by 
utilizing the synchronized clock signals from GPS. And the 
corresponding input signals (consisting of nodal voltages 
and feeder currents) will be sampled and converted into 
positive sequence quantities, negative sequence quantities 
and zero sequence quantities. Consequently, the operation 
condition of the power system in one snapshot is to be 
depicted with mutil-points synchronized phasors indicating 
in the same coordinate. 
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Fig. 1 presents a typical structure in PMU [2]. Compare to 
the traditional measurement system such as Supervisory 
Control and Data Acquisition (SCADA)/Energy 
Management System (EMS) with Remote Terminal Unit 
(RTU), the modern measurement system PMU/WAMS not 
only could implement the functions required in the 
conventional measurement system, but also will or has 
brought profound impact on state estimation, dynamic 
monitoring and system protection and so on. 

The architecture of WAMS could be divided as different 
levels. In each level, the Phasor Data Concentrator (PDC) 
could match the time tags of data received from the various 
PMUs. Then the phasor data stream will be created for 
application, and communicated to upper levels [14]. In this 
structure system, different level will take on various 
functions. Especially, in the researches of the authors, the 
regional or central control centers will be the appropriate 
target levels to implement the wide area backup protection, 
which requires the phasor data from much wider areas, even 
the whole system, with the longer time delay. A classical 
architecture of the WAMS has been shown in Fig. 2. 

 
Figure 1. A simple depiction of the phasor measurement unit 

 

 

 
Figure 2. A typical hierarchical structure of wide area measurement system 

III. PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis is concerned with explaining 
the variance-covariance structure of a set of variables 

through a few linear combinations of these variables. Its 
general objectives are [15]–[17]: 
 Dimension reduction;  
 Interpretation variables; 
 Identifying patterns of association among variables. 
Generally, the principle of PCA is explained as follows. 

Let '
1 2( , , , )px x x x   be imen p -d sional random variable. 

One assumes its corresponding second-order moments exist. 
In practical data acquired by PMU, the column represents 
collecting time of PMU, and the corresponding raw is the 
sychro-phasor information of current and voltage measured 
by PMU in real-time. The mean vector and covariance 
matrix of x  are: 
                           ( ),    ( )E X D X    .                          (1) 
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or it can be expressed as 
                               'f A x                                          (3) 

wherein '
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Then, the problem to search for new variables can

) 

 be 
transformed into another one; that is, under the condition of 

1 2, , , mf f f  are mutually independent, one can solve ia  

aximize '( )i i iD f a awhich will m   . One therefore defines

The first principal com  '
1 1
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ponent is f a x  that maximizes 
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2 1cov( , )a x a x2 1 0  . 

…… 
  principal component is The thk '

k kf a x  that 

ma kximiz '( )f a aes k kD    subject to ' 1k ka a   and 

cov( , ) ( )' 'cov( , )k i 0  k if f i ka x a x   . 

Specifically, in order to get the first principal component, 
objective function needs to be constructed, 

' '
1 1 1 1 1 1( , ) ( 1)a a a a a  

an 
                            (6) 

Let us differentiate it, 
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that is, 

1( )a                                        (8

Furthermore, left multiplicatio one can get 

) 

n '
1a , 

'
1 1a a                                            (9) 

In conclusion, the covariance matrix of '
1 2( , , , )px x x x   

is  , and its characteristic roots are 1 2 0p      , 

 un tion characteristic vectors are in 
sequ pa . Therefore, the principal 

components are respectively 
            ' ' '
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IV. FAULT IDEN ON BASED ON WIDE AREA 

MEASUREMENTS 

ul 
ful 

whenever mental objects into 
su

t accounts for as much of the 

ollecting electric 

In the course of concrete treatment, these vectors can be
further broken down into amplitude acquisition vector and
phase angle acquisition vector with sequence component 
form and phase component form. Take voltages as exam

TIFICATI

Principal component analysis is one of the most usef
technologies for screening multivariate data. It is help

we want to group experi
bgroups of similar types. It allows us to re-express the 

data so that the first few resulting new variables account for 
as much of the available information as possible. It allows 
the researcher to reorient the data so that the first few 
dimensions account for as much of the available information 
as possible. If there is substantial redundancy present in the 
data set, then it may be possible to account for most of the 
information in the original data set with a relatively small 
number of dimensions. Generally speaking, the principal 
components have three characteristics [17]: 
 They are uncorrelated; 
 The first principal component accounts for as much of 

the variability in the data as possible; 
Each succeeding componen
remaining variability as is possible. 

To power system, in different time for c
quantities before and after some faults, the global 
information uploaded by PMU can be equivalent to 
information vector with specific dimensions, that is, the 
voltage vector of each node at the same time can constitute a 
voltage acquisition vector with the dimension of total nodes. 
In the same way, the current vector of each branch at the 
same time can constitute a current acquisition vector with 
the dimension of total branches. Suppose there are n nodes, 
b branches in system, the voltage acquisition vector and the 
current acquisition vector can be expressed as, 
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wherein, ( )Mag and ( )Ang  represent amplitude and phase 

an corresponding vectors respect
 us consider IEEE9-Bus sy

f IEE Bus sy
le-phase to 

ve sequence 

gle of the ively. 
Firstly, let stem, the electric 

diagram o E 9- stem can refer to [9]. In the 
structure of electricity grid, Bus-1 appears sing
ground fault. By BPA simulation and program calculation 
with MATLAB, the vector-valued of corresponding 
variables is only exported one times in each period. 
According to the current measurement precision of PMU, 
suppose the standard deviation of voltage vector and current 
vector is 0.006, and the mean error is 0 [18]. Using these 
actual measurement data of corresponding variables and 
considering the influence of noise at this level, we can carry 
through fault identification of fault component. 

A.  Fault identification of IEEE9-Bus system based on node 
positive sequence voltage 

For IEEE9-Bus system, we can get node positi
voltages at 1t , 0t (Fault) and 1t  three times. Firstly, the 

covariance matrix of node positive sequence voltages could 
be

 Eigenvalues  Proportion Cumulative 

 calculated. In the covariance matrix, the covariance of 
Bus1 is 0.054049, which is the biggest. One can analyze 
preliminarily that the Bus1 is a probable fault component. 
The eigenvalues of covariance matrix have been listed in 
Table I. 

TABLE I. THE EIGENVALUES OF COVARIANCE MATRIX BASED 
ON NODE POSITIVE SEQUENCE VOLTAGE 

No.

1 0.15354686 0.9972 0.9972 

2 0.00043502 0.0028 1.0000 

The fi rin on xprst p cipal comp ent can be e ressed as, 

1

7 8 9

0.592521 0.225182 0.246964

      0.433424 0.447242 0.229076

f x x x1 2 3

4 5 6

      0.231830 0.129255 0.162516  

x x x

x x x

  

  
  

         (13) 

Because the cumulative of the first principal component has 
reached 99.72%, in this place, we only need to e
first principal component. 

xtract the 

Based on a comprehensive analysis of these present results, 
a main conclusion has been reached as followings: From the 
feature of the first principal component, Bus1 corresponds 
with variable 1x , and the coefficient of 1x  is 0.592521, 

which is also the biggest, so, Bus1 is just the fault 
component. This conclusion is entirely identical with the 
fault set in advance. 

B.  Fault identification of IEEE9-Bus system based on node 
negative sequence voltage 

Except for the positive sequence component, PMUs can 
also provide other negative and zero sequence data. Having 
taken into account for the effect of the ground points of 
transformers on the zero sequence component, the negative 
one will be chose to make further study. Similarly, we can 
also get node negative sequence voltages at 1t , 0t (Fault) 

and 1t  three times from the simulation of BPA software. 

With the help of MATLAB, the covariance matrix of node 
negative sequence voltages can be calculated. 

Aft r the analysis of diagonal elements in the covariance 
matrix, the covariance value 0.037868 corresponding to the 
Bus1 has an obvious feature, which is the biggest one in all 
th

e

e diagonal elements. Hence, the Bus1 may be the fault 
section according to the remarkable difference from other 
components. 
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f the above covariance matrix, which has been 
sh

es Proportion  Cumulative 

In order to obtain accurate and convincing conclusion on 
the fault section, it is necessary to calculate and solve the 
eigenvalues o

own in Table II. 

TABLE II. THE EIGENVALUES OF COVARIANCE MATRIX BASED 
ON NODE NEGATIVE SEQUENCE VOLTAGE 

No. Eigenvalu

1 0.08817267 0.9989 0.9989 

2  0.00009718 0.0011 1.0000

Finally, the cipal co t can be d as, 

9

first prin mponen  expresse

1 15287 0 2 0 3

4 5 6       0.413928 0.446243 0.188606

7 8

0.65 .197807 .209107

       0.236759 0.102741 0.122857

f x x x
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  

              (14) 

In addition, the cumulative of the first principa
component is also given as 99.89% in the same data table
which illustrates that the principal component can be 
extracted to finish the identification of the fault. Accor
to

l 
, 

ding 
 the detailed expression of the first principal component 

shown as 1f , the section in power system related to variable 

1x  has the biggest coefficient as 0.655287, which is the real 

location of the fault. Since the Bus1 has been set as this 
variable 1x  in the process of mentioned calculation, the fault 

mponent Bus1 is determined. The result is absolutely 
identical with the prior fault set. 

Now let us further study IEEE 39-Bus system, the electric 
diagram of IEEE 39-Bus system can also refer to [9]. In the 
structure of electricity grid, Bus-18 appears three-phase 
short-circuit to ground fault. 

co

By BPA simulation and 
p

 covariance 

84 4

9-Bus system. Hence, the Bus18 could be 
p

 POSITIVE SEQUENCE VOLTAGE OF IEEE 39-BUS 

Proportion  Cumulative 

rogram calculation with MATLAB, the vector-valued of 
corresponding variables is only exported one times in each 
period. According to the current measurement precision of 
PMU, suppose the standard deviation of voltage vector and 
current vector is 0.006, and the mean error is 0. Using these 
actual measurement data of corresponding variables and 
considering the influence of noise at this level, we can carry 
through fault identification of fault component. 

C.  Fault identification of IEEE 39-Bus system based on 
node positive sequence voltage 

Likewise, we calculate the node positive sequence voltage 
at t , t (Fault) and t  three times. Firstly, the1 0 1

matrix of node positive sequence voltages has been 
calculated. 

The covariance value at the 18th diagonal element is 
0.2 7 7, which is also the biggest one in the complete 
covariance matrix based on node positive sequence voltage 
of IEEE 3
reliminarily determined as one of the probable fault 

sections. 
Let’s further solve the eigenvalues of this covariance 

matrix, see Table III. 

TABLE III. THE EIGENVALUES OF COVARIANCE MATRIX BASED 
ON NODE

SYSTEM 
No. Eigenvalues 
1 1.60811522 0.9994 0.9994 
2 0.00095701 0.0006 1.0000 

Finally, the first princi nent is obtained, which 
can xp

pal compo
 be e ressed as, 

1

0
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             (15) 

Because the cumulative of the first principal component has 
reached 99.94%, in this place, we only need to extract the 
first principal component. 

Based on a comprehensive analysis of these present 
results, one can conclude as follows: From the feature of the 
first principal component, Bus18 corresponds with variable 

18x , and the coefficient of 18x  is 0.420796, which is the 

biggest. Consequently, Bus18 is just the fault component. 
Th

In c 

urrent vector as 0.006 and the mean error as 0, 
of the noise effect on the 

is conclusion is also entirely identical with the fault set in 
advance. 

D.  The analysis of noise influence 
 our researches, the basi idea is to extract the fault 

features from the coefficients of principal component. 
Because we have adopted the standard deviation of voltage 
vector and c
we will still carry on deep analysis 
feature of coefficients in the similar way. Therefore, the 
mean level of the coefficients error has been chosen to 
depict the special effect of the noise. 

Based on the node positive sequence voltage and node 
negative sequence voltage respectively in the standard test 
example of IEEE9-Bus system, the effect of the noise is 
calculated and shown in the Fig. 3 and Fig. 4. 

Wherein, the solid line and dotted line are used to 
represent the feature of the principal coefficients in the 
theoretical and noise situation respectively, and the dashed 
line is applied to depict the error existing in these two 
situations. In a conclusion, the mean error levels 
respectively which are corresponding to the node positive 
sequence voltage and node negative sequence voltage are 
2.6289% and 3.1891% from the principal component 
features. 

In the similar way, the mean error level of the node 
positive sequence voltage from the IEEE39-Bus system test 
example is also analyzed, which is 1.6362% shown in the 
Fig. 5. 

These instances have fully proven that the fault 
identification can be performed successfully by principal 
component analysis and calculation. Under the influence of 
noise, the results are still accurate and reliable. So, the 
principal components fault identification has strong anti-
interference ability and great redundancy. 
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Figure 3. The effect of noise on node positive sequence voltage in IEEE9-Bus system 

 
Figure 4.  The effect of noise on node negative sequence voltage in IEEE9-Bus system 

 
Figure 5. The effect of noise on node positive sequence voltage in IEEE39-Bus system
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