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Abstract This paper represents a self-structured organizing
single-input control system based on differentiable
cerebellar model articulation controller (CMAC) for an n-
link robot manipulator to achieve the high-precision
position tracking. In the proposed scheme, the single-input
CMAC controller is solely used to control the plant, so the
input space dimension of CMAC can be simplified and no
conventional controller is needed. The structure of single-
input CMAC will also be self-organized; that is, the layers
of single-input CMAC will grow or prune systematically
and their receptive functions can be automatically adjusted.
The online tuning laws of single-input CMAC parameters
are derived in gradient-descent learning method and the
discrete-type Lyapunov function is applied to determine the
learning rates of proposed control system so that the
stability of the system can be guaranteed. The simulation
results of robot manipulator are provided to verify the
effectiveness of the proposed control methodology.
Keywords Cerebellar model articulation controller
(CMAC), robot manipulator, gradient-descent method,
self-organizing, signed distance.

1. Introduction

In general, robotic manipulators have to face various
uncertainties in their dynamics, such as friction, and
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external disturbance. It is difficult to establish exactly
mathematical model for the design of a model-based
control system. In order to deal with this problem, the
braches of current control theories are broad include
classical control: neural networks (NNs) control [1]-[3],
adaptive fuzzy logic control (FLCs) [4]-[6] or adaptive
fuzzy-neural networks (FNNSs) [7]-[9]. They are classified
as adaptive intelligent control based on conventional
adaptive control techniques where fuzzy systems or
neural networks are utilized to approximate a nonlinear
function of the systems dynamics. However, many
adaptive approaches are rejected as being overly
computationally intensive because of the real-time
parameter identification and control design required.

Fuzzy logic control (FLCs) has found extensive
applications for plants that are complex and ill-defined
which is suitable for simple second order plants.
However, in case of complex higher order plants, all
process states are required as fuzzy input variables to
implement state feedback FLCs. All the state variables
must be used to represent contents of the rule antecedent.
So, it requires a huge number of control rules and much
effort to create. To address these issues, single-input
Fuzzy Logic controllers (S-FLC) was proposed for the
identification and control of complex dynamical systems
[10]-[12]. As a result, the number of fuzzy rules is greatly
reduced compared to the case of the conventional FLCs,
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but its control performance is almost the same as
conventional FLCs.

Neural networks (NNs) are a model-free approach, which
can approximate a nonlinear function to arbitrary
accuracy [1]-[3]. However, the learning speed of the NNs
is slow. To deals these issues,
articulation controller (CMAC) was proposed by Albus in
1975 [13] for the identification and control of complex
dynamical systems, due to its advantage of fast learning
property, good generalization capability and ease of
implementation by hardware [13]-[15]. The conventional
CMAC s, regarded as non-fully connected perceptron-like
associative memory network with overlapping receptive
fields which used constant binary or triangular functions.
The disadvantage is that their derivative information is
not preserved. For acquiring the derivative information of
input and output variables, Chiang and Lin [16]
developed a CMAC network with a differentiable
Gaussian receptive-field basis function and provided the
convergence analysis for this network. The advantages of
using CMAC over neural network in many applications
were well documented [17]-[21]. However, in the above
CMAC literatures, the structure of CMAC cannot be
obtained automatically. The amount of memory space is
difficult to select, which will influence the learning and
control schemes. Some self-organizing CMAC neural
networks were proposed for structure adaptation [22]-
[25]. In [22], [23] used a data clustering technique to
reduce the memory size and developed a structural
adaptation technique in order to accommodate new data
sets. However, only the structure growing mechanism is
introduced; the pruning mechanism was not discussed in
this. In [24], a self-organizing hierarchical CMAC was
introduced. The proposed a
hierarchical CMAC model and used Shannon’s entropy
measure and golden-section search method to determine
the input space quantization. However, their approach is
too complicated and lacks online real-time adaptation
ability. Online adjusting suitable memory space of CMAC
structure is our motivation. To address these issues, C. M.
Lin, T. Y. Chen proposed self-organizing control system
[25]. This control system does not require prior
knowledge amount of memory space, the layers of
CMAC will grow or prune systematically. However, the
dimension of the input space of CMAC control system is
reduced through a combination of sliding control model.
Recently, to deal with the problem simplified input, B. ]
Choi, S. W. Kwak and B. K. Kim proposed the S-FLC
[10]-[12] and its advantages which are mentioned above.
Based on the S-FLC, several literatures developed single-
input CMAC (5-CMAC) control system [26]-[27], which
adopts two learning stages, namely, an offline learning
stage and online learning stage. The disadvantage is that
their derivative information is also not preserved. So, M.
F. Yeh and C. H. Tsai proposed differentiable standalone

cerebellar model

authors multilayer
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CMAC control system [28] to provided better system
learning control. In addition, the
quantization of input space could be reduced while using
the differentiable standalone CMAC. However, the
disadvantages are that the structure of S-CMAC cannot to
obtain automatically.

status in the

In this paper, we suggest a novel self-structured
organizing single-input CMAC (SOSICM) control system
for an n-link robot manipulator to achieve the high-
precision position tracking. This control system combines
advantages of S-CMAC and it does not require prior
knowledge of a certain amount of memory space, and the
self-organizing approach demonstrates the properties of
generating and pruning the input layers automatically.
The developed self-organizing rule of S-CMAC is clearly
and easily used for real-time systems. Moreover, the
developed system is solely used to control the plant and
no conventional or compensated controller. The online
tuning laws of CMAC parameters are derived in
gradient-descent method.

This paper is organized as follows: System description is
described in section 2. Section 3 presents SOSICM control
system. Numerical simulation results of a two-link robot
manipulator under the possible
uncertainties are provided to demonstrate the tracking
control performance of the proposed SOSICM system in
section 4. Finally, conclusions are drawn in section 5.

occurrence  of

2. System Description

In general, the dynamic of an n-link robot manipulator
may be expressed in the Lagrange following form:

M(q)g+C(q.9)q+G(@)+N =7 1)

Where ¢,4,§ € R" are the joint position, velocity and
acceleration vectors, respectively, M(q) € R"" denotes
the inertia matrix, C(q,q) € R™" expresses the matrix of
centripetal and Coriolis forces, G(¢) € R™ is the gravity

vector, N e R™ represents the vector of external

YA

Y>

Figure 1. Architecture of two-link robot manipulator.
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disturbance ¢, , friction term f(¢) , and un-modeled

. x1 . . .« s
dynamics, 7 € R™ is the torque vectors exerting on joints.

For convenience, a two-link robot manipulator, as shown
in Fig.1, is utilized to verify dynamic properties are given
in section 4.

The control problem is to force ¢;(t) e R",i=1,2,---m
bounded
signal g, (t) € R" . Let ¢,;(¢) be the tracking error vector

to track a given reference  input

as follows:
€ =4qq —4i> i:172’ e m (2)

and the system tracking error vector is defined as

(ky 0 o 0 ¢
0 ky -+ 0 ¢
& = . .
0o 0 . 0 :
0 0 - Ky e
= ke, ke - km‘e;H] i=1,2, - m (3)
=ley €u 5;71‘_1 >

Where K,; e R™ is the scaling factor matrix for the

system tracking vector e; Afe; ¢ e/ '1eR",

i=12,--m.

Based on [10], [11], then the tracking error &; € R" is
transformed into a single variable, termed the signed

distance d; € R™, which is the distance from an actual

state &, € R" to the switching line as shown in Fig. 2 for

a 2-D input. The switching line is defined as follows:

ey ﬁn_lef_z +ot e+ A4 =0 )

1

Where 4,_, €R"" is a constant. Then, the signed

distance between the switching line and operating point

& A
(:,€)

dsi /
dy; >0
- >

< &;
X
d,; <0 &
N

Figure 2. Derivation of a signed distance
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Standalone Scheme
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Figure 3. Block diagram of standalone CMAC control system.

&; € R" can be expressed by the following equation:

-1 ) .
d = Eni +/1n71‘9(nn71)i ot ey A8y, )
si T
\/1+/1i,1 NE

According to the standalone CMAC control system is
shown in Fig. 3. This control scheme provided better
control characteristics due to using the differentiable
CMAC in the system. The advantage is that derivative
information of input and output variables is preserved in
learning process. In addition, the generalization error
caused by quantization of input space could be reduced
while using the differentiable CMAC.

Based on the standalone CMAC control system, we
propose the SOSICM control system as shown in Fig. 4,
which combines advantages of standalone CMAC and it
does not require prior knowledge of a certain amount of
memory space. The self-organizing approach demonstrates
the properties of generating and pruning the input layers
automatically. The developed self-organizing rule of
CMAC is clearly and easily used for real-time systems.

SOSICM Scheme
(- T T T = T \
I Self-Organizing of I
I S-CMAC Layers I
I Hi I
I i I
9ai + € c, I

A
qi | - ¢ |
i Pkf' l
_____ Bl
P |
B |
. 7 | P |
9 Learning
> Error Term | Rate l
I\ ” I
- e e e e e e e e - - - -~
i Robot | T

Manipulators |

Figure 4. Block diagram of proposed SOSICM control system.
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3. Adaptive SOSICM Control System
3.1. Brief of the S-CMAC

An S-CMAC is proposed and shown in Fig. 5, in which is
composed of an input space, association memory space,
weight space and output space. The signal propagation and
the basic function in each space are expressed as follows:

1. Input space D, ; assume that each input state
variable d_; can be quantized into N; discrete
states and that the information of a quantized state
is regarded as region for each layer n,th .
Therefore, there exist N; +1 individual points on

the d_; - axis. Fig. 6 shows the case of N; =10.

Each activated state in each layer becomes a firing
element, thus, the weight of each layer can be
obtained. The Gaussian basic function for each
layer is given as follows:

(dsi_miz
¢k,-<dm-)=exp{—2 a) |
Ok
i=12,--,m, k=12, ,n (6)

Where ¢, represents the kth layer of the input
d; with the mean m,; and the variance 0.

2. Output space O: The output of S-CMAC is the
algebraic sum of the firing element with the weight
memory, and is expressed as

i

T = zakiwki¢ki dy) (7)
=1

Where w,; denotes the weight of the kth layer,
ay =ay(dy), k=1,2, - nyis the index indicating
whether the ith memory element is addressed by

the state involving d; . Since each state addressed

exactly n,; memory elements, only those addressed

a,;’ s are one, and the others are zero.

The block diagram in Fig. 3, in which only the S-CMAC
play a major role in the control process, thus to have a
trade-off between the desired performance and the
computation loading we must to choose a reasonable
number of layers. However, if the number of layers is
chosen too small, the learning performance may be
insufficient to achieve a desired performance. Otherwise,
if the number of layers is chose too large, the calculation
process is too heavy, so it is not suitable for real-time
applications. To deal this problem, a self-structured
organizing S-CMAC is proposed which includes
structure and parameter learning as shown in Fig. 4.
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Figure 5. Architecture of a single-input CMAC
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Figure 6. Block division of CMAC with Gaussian basic function

3.2 Self-Structured Organizing S-CMAC

In this section, structural learning is necessary to
determine whether to add a new layer in association
memory A depends on the firing strength ¢;; € R" of

each layer for each incoming data dsi. If the firing

strength ¢@,; € R"“ of each layer for new input data d;

falls outside the bounds of the threshold, then, SOSICM
will generate a new layer. The self-structured organizing
S-CMAC can be summarized as follows:

1. Calculate the firing strength @, € R"* of each layer
for each input data d_; in (6).

2. Using Max-Min method is proposed for layer
growing. Find

kAi =arg min ¢ki (dsi) s k= 1’ 2’ RO (8)
1<k<ny;

¢/€, (dg) <Ky )

Here K . is a value of

gi
adaptation 0 < Kgl- <1, in our case Kgl- =0.1. then,

threshold

a new layer should be generated.

www.intechweb.org
www.intechopen.com



This means that for a new input data, the exciting
value of existing basic function is too small. In this
case, number of layers increased as follows:

n(E+)=n,(t)+1 (10)

Where 7n,;is the number of layers at time t. in the

meanwhile, a new layer will be generated and then
the corresponding parameters in the new layer such
as the initial mean and variance of Gaussian basic
function in association memory space and the
weight memory space will be defined as

m, =d, (11)
Oy, =0 (12)
w, =0 (13)

Another self-structured organizing learning process is
considered to determine whether to delete existing layer,
which is inappropriate. A Max-Min method is proposed
for layer pruning.

Considering the output of SOSICM in (7), the ratio of the
kth component of output is defined as

MM,G:E, k=1,2,-,n, (14)

i

Where v;; = ¢kiwkl-, Then, the minimum ratio of the kth

component as follows:

k, =arg nklin MM, (15)
1<k<ny;
If
MM; <K, (16)

Here K ;i is a predefined deleting threshold, in our
case K, =0.03. Then, the lzth layer will be deleted.

This means that for an output data, if the minimum
contribution of a layer is less than the deleting threshold,
then this layer will be deleted.

3.3 On-line learning algorithm

The central part of the learning algorithm for a SOSICM is
how to choose the weight memory w,;, mean m,;,
variance 0y, of the Gaussian basic function, and km- are
the scaling factors of the error e; and the change of
error ¢;, which will significantly affect the performance

of SOSICM. For achieving effective learning, an on-line
learning algorithm, which is derived using the supervised
gradient descent method, is introduced so that it can real-
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time adjust the parameters of SOSICM. The energy
function E; is defined as

1 1
E, =5(61di _qi)z 2561‘2 (17)

According to the energy function (17) and the system
structure in Fig. 4, and the error term to be propagated is
given by

_OE, _ OE; 0q, oq,

= = e 1L (18)
0q; 0t; or;

1

o, =——"=
P or;

Where 0g, /07, represent the sensitivity of the plant with
respect to its input. With the energy function £, the
parameters updating law based on the normalized
gradient descent method can be derived as follows

1. The updating law for the kth weight memory can
be derived according to

OFE. OE. Ort.
Awy, ==P,; P —=-B. :
Wi ot; Ow, (19)
= akiﬂwi5pi¢ki (dsi)

Where f3,,is positive learning rate for the output

weight memory Wy, the connective weight can be

updated according to the following equation:
Wy (2 +1) = wi (1) + Awy (20)

2. The mean and variance of the kth Gaussian basic
function can be also updated according to

OE; OE; Or;
Amyy = =P ——==Pui -
omy; ot; Omy,
2(d; —my,)* =
= Qi i 0 pi Wi i (dsi)”o_—zkl
ki
OF; OE; Ot
Ao, =—f . —i —_pg =i “Ci
ki ﬂm ao—k[ ﬂwt 61,- ao_k[
2(d; —my,)? 22
= 44 P5i0 pi Wi i (dsi)Slo_—3kl
ki

Where £,

i+ Do are positive learning rates for the

mean and variance, respectively. The mean and
variance can be updated as follows:

my; (¢ +1) = my, () + Amy, (23)
ou(t+)=0,)+Acy (24)
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3. Finally, the updating law for scaling factors can be
derived as follows:

OFE; Or; d
ﬂm m _ﬂm 81 6d k_
T m
nz pl Zaktwkz¢kl(dsz)M (25)
o
ﬂ’negl 1

\/H’ﬁ—l +-~+}L§ +112

Where f3,. is the learning rate, and it can be updated
by the following:

km' (t + 1) = kni (t) + Akm' (26)

The plant sensitivity dg;/07; in (18) can be calculated if
the plant model is exactly known. However, the plant
model is unknown, so 5qi / ot ; can not obtained in

advance. To deal with this problem, in [28], a simple
approximation of the error term of the system can be use
as follows:

Op =€ te (27)

3.4 Convergence Analysis

The update laws of equations (19), (21), (22), and (25)
require a proper choice of the learning rates f,;, B,
P, and B, in order to the convergence of the output

error is guaranteed; however, this is not easy which
depends on each person’s experience. To train the S-
CMAC effectively, the variable learning rates which
guarantee convergence of the output error are derived in
the following.

Defined a discrete-type Lyapunov function can be given by
1>
Vitk) =~ (k) (28)

Thus, the change of the Lyapunov due to the training
process is obtained as

An<k>=V,-(k+1>—V,-<k>=%[e3(k+1)—ef(k>] 9)
Where ¢, (k + 1) is represented by [28]

e.(k+1)=e;(k)+Ae (k) =e, (k){a;gk)

l

} AP, (30)
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Where Ae; represents the in the learning process, AP,

denotes a change of an adjustable parameters. Using
equation (18), we
have Oe; [OP, ==& iar,./e,.(k)ag and

AP, =~f3,, OE,; |OF; = [,;5,; 0t;[OP,, where 8, is the

learning rate for the parameter Pi.

Thus:

AV; (k) = Ae (k){ei (k) +%Aei (k)}

_ﬂpié‘;l %2 ( )_lﬂpl _iz
e; (k) e; (k)
1 0 A
=~ p 5215 i 31
zﬂpl pi 6P ﬁpz(e (k)] (31)
If the learning rate /3, is selected as:
2
0< B, <2/[5,: Je;(0)P|or /op) (32)

then AV;(k)<0, therefore V,(k+1)<V;(k), the
Lyapunov stability (system stability) and the convergence
of the tracking error could be guaranteed. In addition, the
optimal learning rate can be found for achieving faster
convergence by taking the differential equation (31) with

respect to ﬂpi and equals to zero. Finally, the optimal

learning rate can be determined as follows:

By =1/l6, /e 0 los, jor ©3)
Where 07; /0P, for P, = wy;, my;, o and k,;, it can be
obtained as:
0t;
P (k) =—==ayy.
oWy
or; 2d.. —m,.:
P,i(k)= - Wi i (Sl—zmkl)
omy; Oi
ot; 2(dg —m i)2
P (k)= P = AW —3k
Ok O
or, | ~2(d; —my;)
B (k)= = Zakiwki¢ki (dsi)—k
Ok ; k=1 Oki
(34)
lne}l’lql 1

\/1+/1ﬁ_1 bt B A7
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4. Simulation Results

A two-link robot manipulator as shown in Fig.l is
utilized in this paper to verify the effectiveness of the
proposed scheme. The detailed system
parameters of this robot manipulator are given as: link

control

mass m;, m, (kg), lengths [,,l, (m) and angular

positions ¢, g, (rad).

The parameters for the equation of motion (1) are
adopted in [4].

(ml +m; )112

M(q){

mZlez(Slsz +¢ic) )}

2
m21112(5152 +0102) myl;

. 0 -4
V(‘I»q):mzlllz(clsz _51‘72){ . qz}
—q 0

Glg) = {_ o+ )Z‘gsl} (33)

—mylygs,
Where qe R? and the shorthand
notations ¢; =cos(q;), ¢, = co0s(q,), s, =sin(g;) and

s, =sin(q,) are used.

For the convenience of the simulation, the nominal

parameters of the robotic system are given asm; = 4.6 (kg)
m, =2.3(kg), [, =0.5 (m), 1, =0.2 (m) and
g=9.8(m/s?) and the
conditions ¢, (0) =0.5, g, (O) =0.5, ¢ (O) =0 . The desired

reference trajectories are g, (t) =sin(¢), ¢,,(t) =cos(t),

initial

respectively.

The most important parameters that affect the control
performance of the robotic system are the external
disturbance ¢;, the friction term f (q) , in simulation,

parameter variation situation and disturbance situation
occurring at 5s are considered, which are injected into the
robotic system, and their shapes are expressed as follows:

1,(¢)=[5sin(5¢) 0.5sin(50)]" (36)

In addition, friction forces are also considered in this
simulation and given as

£(g)=1[204, +0.8sgn(¢,) 44, +0.1sgn(¢,)] (37)

In order to exhibit the superior control performance of the
proposed SOSICM control system, the control system
standalone CMAC is introduced in Fig. 3 is examined in
the mean time [28]. They are applied to control two-link
robot manipulator and the same setting of SOSICM and

www.intechweb.org
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standalone CMAC control system are chose in the
following: The inputs space of S-CMAC are d
and d,,, the mean and variance of Gaussian basic
functions are selected to cover the input
space {[—1 1] [—1 1]} ; all initial weight are set to zero,
ie, wy =w, =0, k=1,2,---ny; . The parameter A in
the switching line is one. For recording respective control
performance, the mean-square-error of the position-

tracking response is defined as:

1 T
msei=;2[qd,»(j)—q,»(j)]2, i=1,2  (38)

J=1

Where T is the total sampling instant, and ¢; and ¢, are
the elements in the vector g; and g, . In this paper, the

numerical simulation results carried out by using Matlab
software.

Example 1: Consider the standalone CMAC control system
is shown in Fig. 3.

For the standalone CMAC control system, the parameters
are chose in the

B, =005 B,.=005 fB, =005 |,

B = 0.02, the initial value of Gaussian basic functions and

following:

scaling factors are chosen as my; =—1.0, m,, =-0.8, -
my; =—0.6, my; =04, m5;=-02, mg =0.0,
my; =0.2, mg; =04, mg; =0.6 myy; =0.8 my; =1.0,
oy = 0.15, k; =0.5 and ky; =02 for
k=1,2,---11, i=1,2 . The simulation
standalone CMAC system, the responses of joint position,

MSE and tracking error are depicted Fig. 7(a), (b); (c), (d) and
(c), (d), respectively.

results of

Example 2: Consider the proposed SOSICM control
system is shown in Fig. 4.

For the proposed SOSICM control system, the parameters
are chose in the following:

* > 2
ﬁpi = 1/[5171'/@1' (k)] "ari/api" for B =wy, my, oy
and k,;, and the initial values of system parameters are
given as ny =2, the inputs of S-CMAC d, and d,,

the mean and variance of Gaussian basic functions are
selected to cover the input space{[—l l] [—l 1]} The

threshold value of K, is set as 0.1; K, is set as 0.03

fori=1,2. The simulation results of proposed SOSICM

system, the responses of joint position, MSE, layer
numbers and tracking error are depicted Fig. 7(a), (b); (c),
(d); (e), (f) and (g), (h), respectively.

ThanhQuyen Ngo and YaoNan Wang: Self- Structured Organizing
Single-InputCMAC Control for Robot Manipulator

116



o OHR 59Tk o o ~
. nm nWUA 2] m S g w p— m ey © T T T ° T T T T m . m
o0 —_— 0w o «© = | | |
o =S > I h g 15 I I I I I
L B © - nU/4 -2 =1 ! ! !
SE-NOI] S Q E= = | | | I I I I I
(= m M m > 8 g, | | | | | | | |
. 2 8
- Y49 m\nquO 3 o L ~ ___1__J@ -t _Jo \\ﬁ\\”\\w\\”\\ =) ”
& o ® 0w B g 'R | H B e N et fre) | | | e} 42 L_____td1____] 3
208 =2 —-38 23 , , | R |
o) w..C.d\ir/m @) > ! ! ! | | | | !
< o Y £ /nw\t 9] = = =] ! ! ! | | | | |
s ¥ s g ES g O 5 o I I |
- e g LEs8S 0 & = | = __le S A 1 I R = i o
S 0 g NO < n . 3 5 5 < | | | T | T | g b Q
nEglwecYUg S o Lo ,
R = | EA(/\ ! ! ! ” ” ” ”
5 95 e H & o ¢ M P | | I
n 89§y 9* o L - P | | | = Lo —
5 =25 u = U ®© A __Jo= | - S F=1C7) B e e e N e e Lo o»
STt Egi e ol EE 0 EEr 1 192
8 E o .5 Y= Ao O o | | | = =
S22 ggss i £ = o = B = ! E
2 = 0O = a9 7] c | | | =
c 2 0O 02 5 = [ =] | | | | |
= 8 © =R ! | ! < - —+--- 48 I
2 _D..W o = 58 ° 2 g o S [~ — 18 DR B | | | | D -1 &
m b=l ‘T © m © 2 | | | | |
% .8 m = © 3 n — 9 | | | | |
-
) S o EZHHV/M mu.mu | | | | |
< o g 2 S © Q o | I | I I
= 2 Ec o 2o |1 ___ SR E e - Je (A i R SR S °
o= 2 m =3 M E 85 5 8 L -
S = [=I )
X B G = %d..hh.wd W« | ” | |
= gM = £ o g E g = ! . |
o .= - 2 & 2 3 X i =) 3 =)
MF m m.m 2 S n @ N - e i N N - o - o < : ; | > o ) =3
SgRFBEE TS T ©I) [ YUI[ J0J UOL}ISO ~
2EQ8 oo £ ESE (eylimpioguonsed () g yurg o) uontsod (pex) 1 1utof 10§ ASN (pes) 7 U0f 103 ASIA [DVIND-S Joquiny 10Ke]
o0
— 3 — 8 T e — 8 8 2 £
= = | | |
-8 -2 ” I I I &
Z 7 , I I I =
=3 g , I I I -
| | |
<18 | 8 [ N e S 2 g Z
| | |
” | | | Ecw,
5 P , B 3
Ste=—"-7-- =4 L -2 =} -t g F--Fr--+--+--12% =] < =
4} 3 = , | | | N
= , | | | 9]
, | | | @
! — | | | —~ g
iN 8% _ U 8z _ [ By o8 82 8% &
2E I gz | = E® EE C
g ! g g2 ==
= = I | I [l = g
&= ,r - | | | S
|- - < L . __.__lo o o =
. --—+--48 A IS ” I I I o 2 h g
| | | | ¥
| | |
| | | | S
- _ = | | | =
\\\\\\\ --42 | L T <} T - [T T = e <
- | | | | E
| | | | g
| | | | 53
| |
I . o i N
i o oA « h~ =y o ©
N - o Y - _0 M s ° 3 S o ; ; > v
' B
(peI) T YUI[ 10 UOT)ISOJ (pex) g ur| 10§ UONISO (pex) 1 3urof 10y SN (pex) g yurof 103 SN (pe1) 1 10110 SuryorI], (per) 7 To112 SuryoeI] 5o
) =

www.intechweb.org
www.intechopen.com

errors of the Standalone CMAC control system at joints 1 and 2.
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Figure 8. Simulated position responses, MSEs, number layers and
tracking errors of the SOSICM control system at joints 1 and 2.

5. Conclusion

In this paper, a SOSICM control system is proposed to
control the joint position of a two-link robot manipulator.
In the SOSICM system, system dynamics is completely
unknown and auxiliary compensated control is not
required in the control process. The online tuning laws of
S-CMAC parameters are derived in gradient-descent
learning method and the discrete-type Lyapunov
function is applied to determine the variable optimal
learning rates so that the stability of the system can be
guaranteed. This paper has successfully developed the
SOSICM control system for an n-link robot manipulator
not only requires low memory with online structure and
parameters tuning algorithm, but also the input space can
be reduced through the signed distance. The simulation
results of the proposed SOSICM system can achieve
favorable tracking performance for two-link robot
manipulator.
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