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Abstract. In this paper we derive certain asymptotic properties of composi-

tion operators involving the shift operators, Berezin transform and a class of

unitary operators defined on the Bergman space. We also discuss about some

intertwining properties of composition operators which leads to obtain many

ergodicity properties of composition operators.

1. Introduction

Let dA(z) denote the Lebesgue area measure on the open unit disk D, normal-

ized so that the measure of the disk D equals 1. The Bergman space L2
a(D) is

the Hilbert space consisting of analytic functions on D that are also in L2(D, dA).

For z ∈ D, the Bergman reproducing kernel is the function Kz ∈ L2
a(D) such that

f(z) = 〈f,Kz〉 for every f ∈ L2
a(D). The normalized reproducing kernel kz is the

function Kz
‖Kz‖2 . Here the norm ‖ · ‖2 and the inner product 〈, 〉 are taken in the

space L2(D, dA). For any n ≥ 0, n ∈ Z, let en(z) =
√
n+ 1zn. Then {en} forms an

orthonormal basis for L2
a(D). Let K(z, w̄) = Kz(w) = 1

(1−zw)2 =

∞∑
n=0

en(z)en(w).

For φ ∈ L∞(D), the Toeplitz operator Tφ with symbol φ is the operator on L2
a(D)

defined by Tφf = P (φf); here P is the orthogonal projection from L2(D, dA) onto

L2
a(D). The Hankel operator Hφ : L2

a(D) → (L2
a(D))⊥ with symbol φ ∈ L∞(D) is

defined by Hφf = (I − P )(φf). The little Hankel operator Sφ : L2
a(D) → L2

a(D)

is defined by Sφf = PJ(φf) where J : L2(D, dA) → L2(D, dA) is defined as

Jf(z) = f(z). Let H∞(D) be the space of bounded analytic functions on D and

h∞(D) be the space of bounded harmonic functions on D. Let Aut(D) be the Lie

group of all automorphisms (biholomorphic mappings) of D. We can define for each

a ∈ D, an automorphism φa in Aut(D) such that

(i) (φa o φa)(z) ≡ z;
(ii) φa(0) = a, φa(a) = 0;

(iii) φa has a unique fixed point in D.
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In fact, φa(z) = a−z
1−az for all a and z in D. An easy calculation shows that the de-

rivative of φa at z is equal to −ka(z). It follows that the real Jacobian determinant

of φa at z is Jφa(z) = |ka(z)|2 =
(1−|a|2)

2

|1−az|4 . Given λ ∈ D and f any measurable func-

tion on D, we define a function Uλf on D by Uλf(z) = kλ(z)f(φλ(z)). Notice that

Uλ is a bounded linear operator on L2(D, dA) and L2
a(D) for all λ ∈ D. Further, it

can be verified that U2
λ = I, the identity operator, U∗λ = Uλ, Uλ(L2

a(D)) ⊂ L2
a(D)

and Uλ((L2
a(D))⊥) ⊂ (L2

a(D))⊥ for all λ ∈ D. Thus UλP = PUλ for all λ ∈ D. Let

φ : D→ D be analytic. Define the composition operator Cφ from L2
a(D) into itself

by Cφf = foφ. The operator Cφ is a bounded linear operator on L2
a(D) and ‖Cφ‖ ≤

1+|φ(0)|
1−|φ(0)| . Given a ∈ D and f any measurable function on D, we define the function

Caf = foφa, where φa ∈ Aut(D). The map Ca is a composition operator on L2
a(D).

Let L2
h(D) = L2

a(D)
⊕

(L2
a(D))0 where (L2

a(D))0 = {f̄ : f ∈ L2
a(D), f(0) = 0} and

L1
h be the space of harmonic functions in L1(D, dA). Let H(D) be the space of

holomorphic functions from D into itself.

In this paper we discuss about some asymptotic properties and ergodicity prop-

erties of composition operators defined on the Bergman space. In section 2, we

derive certain asymptotic properties of composition operators involving the shift

operators, the Berezin transform and the class of unitary operators Uλ, λ ∈ D. In

section 3, we established certain intertwining properties of composition operators

and exploited these to obtain some ergodicity properties of composition operators.

The applications of these results are discussed in section 4.

Let L(L2
a(D)) be the space of all bounded linear operators from L2

a(D) into itself

and LC(L2
a(D)) be the set of all compact operators in L(L2

a(D)). For a bounded

linear operator S on L2
a(D), the Berezin transform of S is the function B(S) on

D defined by B(S)(z) = 〈Skz, kz〉 = S̃(z). The Berezin transform B(φ)(z) of a

function φ ∈ L∞(D, dA) is defined to be the Berezin transform of the Toeplitz

operator Tφ. In other words,

B(φ)(z) = B(Tφ)(z) =

∫
D
φ

(
z − w
1− z̄w

)
dA(w) = φ̃(z).

The last equality follows from a change of variable in the definition of the Berezin

transform. The above integral formula extends the Berezin transform to L1(D, dA)

and clearly gives (Bφ)(z) = φ(z) for any harmonic function φ ∈ L1(D, dA). For

φ ∈ L1(D, dA), Bφ = φ̃ is an infinitely differentiable function on D and if φ is

bounded then so is Bφ = φ̃ and ‖φ̃‖∞ ≤ ‖φ‖∞. If φ ≥ ψ, then φ̃ ≥ ψ̃. On D, the

only measure left invariant by all Mobius transformations is the pseudo-hyperbolic

measure dη(z) = dA(z)

(1−|z|2)2 . It turns out that the Berezin transform behaves well

with respect to the invariant measures. The mapping B : f → f̃ is a contractive

linear operator on each of the spaces Lp(D, dη), 1 ≤ p ≤ ∞. Further, the Berezin
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transform B is a bounded operator on the spaces Lp(D, dA), 1 < p < ∞ but B is

not a bounded operator on L1(D, dA). For details see [12].

Let T = {z ∈ C : |z| = 1} and L2(T) be the space of square integrable, mea-

surable functions on T with respect to the normalized Lebesgue measure on T.

The sequence {eint}∞n=−∞ form an orthonorml basis for L2(T). Given f ∈ L1(T),

the Fourier coefficients of f are an(f) =
1

2π

∫ 2π

0

f(eiθ)e−inθdθ, n ∈ Z where Z

is the set of all integers. The Hardy space H2(T) is the subspace of L2(T) con-

sisting of functions f with an(f) = 0 for all negative integers n. Since an(f) is

a bounded linear functional on L2(T) for any fixed n, and H2 =
⋂
n<0

ker an, it

follows that H2(T) is a closed subspace of L2(T) and therefore a Hilbert space.

Let P denote the orthogonal projection from L2(T) onto H2(T). Let L∞(T) be

the space of all essentially bounded measurable functions on T. For ϕ ∈ L∞(T),

the Toeplitz operator Lϕ from H2(T) into itself is defined by Lϕf = P(ϕf) and

the Hankel operator Dϕ from H2(T) into itself is defined by Dϕf = P(J (ϕf)).

Here J is the mapping from L2(T) into L2(T) defined by J f(eit) = f(e−it). Let

H∞(T) = {f ∈ L∞(T) : an(f) = 0 for n < 0, n ∈ Z}. A function q ∈ H∞(T) is

said to be an inner function if |q(eit)| = 1 almost everywhere on T.

Let H and K be nonzero complex Hilbert spaces. The tensor product of x ∈ H
and y ∈ K is a conjugate bilinear functional x ⊗ y : H × K −→ C defined by

(x ⊗ y)(u, v) = 〈x, u〉〈y, v〉 for every (u, v) ∈ H ×K. The collection of all (finite)

sums of tensors xi ⊗ yi with xi ∈ H and yi ∈ K, denoted by H ⊗K, is a complex

linear space equipped with an inner product 〈, 〉 : (H⊗K)×(H⊗K) −→ C defined,

for arbitrary

N∑
i=1

xi⊗ yi and

M∑
j=1

wj ⊗ zj in H ⊗K, by

〈
N∑
i=1

xi ⊗ yi,
M∑
j=1

wj ⊗ zj

〉
=

N∑
i=1

M∑
j=1

〈xi, wj〉 〈yi, zj〉 (the same notation for the inner products on H, K and H ⊗

K). The tensor product on H⊗K of two operators T in L(H) and S in L(K) is the

operator T ⊗ S : H ⊗K −→ H ⊗K defined by (T ⊗ S)

N∑
i=1

xi ⊗ yi =

N∑
i=1

Txi ⊗ Syi

for every

N∑
i=1

xi⊗ yi ∈ H ⊗K, which lies in L(H ×K). The completion of the inner

product space H ⊗K, denoted by H⊗̂K, is the tensor product space of H and K .

The extension of T ⊗S over the Hilbert space H⊗̂K denoted by T ⊗̂S, is the tensor

product of T and S on the tensor product space, which lies in L(H⊗̂K).
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2. Asymptotic Properties Involving Shift Operators and Berezin

Transform

Let R : L2
a(D) → L2

a(D) be such that (Rf)(z) = f(z)−f(0)
z . Let S = Tz, the

Toeplitz operator on L2
a(D) with symbol z which is called the Bergman shift opera-

tor. Suppose f(z) =

∞∑
k=0

akz
k. Then Sf =

∞∑
k=0

akz
k+1, and S∗f =

∞∑
k=1

k

k + 1
akz

k−1.

Notice that RS = I,R1 = 0 and Rzj = zj−1, j ≥ 1. Moreover,

Tz̄z
j = P (z̄zj) = P (|z|2zj−1) =

{
j
j+1z

j−1, if j ≥ 1;

0, otherwise.

Hence R = Tz̄ + K where K is a compact operator on L2
a(D) and if {ej}j≥0 =

{
√
j + 1zj}j≥0 is the standard orthonormal basis for L2

a(D), then

〈Rej , ei〉 =

{ √
j+1
i+1 , if j = i+ 1;

0, otherwise.

Barria and Halmos [3] introduced the concept of asymptotic Toeplitz operators on

the Hardy space as follows. An operator T ∈ L(H2(T)) is asymptotic Toeplitz if

{L∗nTLn}∞n=0 converges in the strong operator topology in L(H2(T)) where L is

the unilateral shift on H2(T). Shapiro in [27] obtained conditions on φ such that

the composition operator Cφ on H2(T) is asymptotic Toeplitz. In this section we

obtained conditions on φ such that {S∗nCφSn} converges strongly as n→∞. We

have shown that if φ : D → D is holomorphic, then the sequence {S∗nCφSn} and

{S∗nC∗φSn} converges in SOT. Further, we have shown that if φ fixes the origin

but is not a rotation then the sequence {S∗nCφSn} converges to 0 in the SOT.

Theorem 2.1 If φ : D → D is holomorphic, then S∗nC∗φS
n → 0 strongly and

S∗nCφS
n → 0 strongly.

Proof : Fix f and n. Then choose g ∈ L2
a(D), ‖g‖ = 1 such that ‖S∗nC∗φSnf‖ =〈

S∗nC∗φS
nf, g

〉
. Thus

‖S∗nC∗φSnf‖ = 〈Snf, CφSng〉

= 〈znf, φn(goφ)〉

≤
∫
D
|f ||goφ||φ|ndA

≤
(∫

D
|f |2|φ|2ndA

) 1
2
(∫

D
|goφ|2dA

) 1
2

≤ ‖Cφ‖
(∫

D
|f |2|φ|2ndA

) 1
2

.
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Since |φ| < 1 on D, the last integral above converges to 0 as n → ∞ which estab-

lishes that S∗nC∗φS
n → 0 strongly. Now we shall show S∗nCφS

n −→ 0 strongly.

Fix f ∈ L2
a(D) and observe that because ‖S∗‖ = 1, ‖S∗nCφSnf‖2 ≤ ‖CφSnf‖2 =

‖φn(foφ)‖2 =

∫
D
|φ|2n|foφ|2dA. Since |φ| < 1, we have |φ|n → 0 a.e. on D. Now

because foφ ∈ L2
a(D), we see that ‖S∗nCφSnf‖2 → 0 by the Lebesgue dominated

convergence theorem. �

Theorem 2.2 If φ fixes the origin but is not a rotation, then the sequence {S∗nC∗φSn}
converges to 0 in the strong operator topology provided we assume 0.∞ = 0.

Proof : The reproducing kernels {Kz : z ∈ D} have linear span dense in L2
a(D)

and the operator norms ‖S∗nC∗φSn‖ are uniformly bounded, so it suffices to prove

that lim
n→∞

‖S∗nC∗φSnKz‖ = 0 for all z ∈ D where S = Tw. Notice that

(SnKz)(w) = wnKz(w) =
wn

(1− zw)2

=
1

z̄n

[
Kz(w)− Pn−1(w)

1− zw

]

where Pn−1(w) =

n−1∑
k=0

(zw)k. Thus (C∗φS
nKz)(w) = 1

zn

[
Kφ(z)(w)− C∗φ

Pn−1(w)
1−zw

]
.

Since φ(0) = 0, the operator Cφ has lower triangular matrix with respect to

the orthonormal basis {en}∞n=0 for L2
a(D). Thus C∗φ has upper triangular ma-

trix, that is, C∗φz
k is a polynomial of degree ≤ k for each nonnegative integer

k. Now C∗φ

(
1

1−zw

)
= 1

1−φ(z)w
and S∗n 1

znC
∗
φ

(
1

1−zw

)
= 1

znS
∗n
(

1

1−φ(z)w

)
=(

φ(z)
z

)n
1

1−φ(z)w
. Further,

S∗n
1

zn
C∗φ

(
zw

1− zw

)
= S∗n

1

zn
C∗φ

[
1

1− zw
− 1

]
= S∗n

1

zn

[
C∗φ

(
1

1− zw

)
− C∗φ1

]
= S∗n

1

zn

[
1

1− φ(z)w
− 1

]

=

(
φ(z)

z

)n
1

1− φ(z)w
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and

S∗n
1

zn
C∗φ

(
z2w2

1− zw

)
= S∗n

1

zn
C∗φ

[
1

1− zw
− (1 + zw)

]
= S∗n

1

zn

[
C∗φ

(
1

1− zw

)
− C∗φ(1 + zw)

]
= S∗n

1

zn

[
1

1− φ(z)w
− 1− C∗φ(zw)

]

=

(
φ(z)

z

)n
1

1− φ(z)w
− 0 =

(
φ(z)

z

)n
1

1− φ(z)w
.

Similarly we can calculate

S∗n
1

zn
C∗φ

(
zkwk

1− zw

)
=

(
φ(z)

z

)n
1

1− φ(z)w
for all k = 0, 1, 2, ........, n− 1.

Thus (
S∗nC∗φS

nKz

)
(w) = S∗n

1

zn
Kφ(z)(w)− S∗n 1

zn
C∗φ

Pn−1(w)

1− zw

=

(
φ(z)

z

)n
Kφ(z)(w)−

n−1∑
k=0

(
φ(z)

z

)n
1

1− φ(z)w

=

(
φ(z)

z

)n [
Kφ(z)(w)−

n−1∑
k=0

1

1− φ(z)w

]

=

(
φ(z)

z

)n [
Kφ(z)(w)− n

1− φ(z)w

]
.

Hence ‖S∗nC∗φSnKz‖ ≤
∣∣∣φ(z)
z

∣∣∣n [‖Kφ(z)‖+ ‖ n

1−φ(z)w
‖
]
. Now since

1

1− φ(z)w
=

∞∑
k=0

(
φ(z)

)k
wk,

we obtain ∫
D

1∣∣∣1− φ(z)w
∣∣∣2 dA(w) =

∞∑
k=0

|φ(z)|2k
∫
D
|w|2kdA(w)

=

∞∑
k=0

|φ(z)|2k

k + 1

= log
1

1− |φ(z)|2

and n‖ 1

1−φ(z)w
‖ = log 1

(1−|φ(z)|2)n tends to ∞ as n→∞. Thus

‖S∗nC∗φSnKz‖ ≤
∣∣∣∣φ(z)

z

∣∣∣∣n [‖Kφ(z)‖+ n log
1

(1− |φ(z)|2)

]
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for all n ≥ 0 and z ∈ D. Since φ fixes the origin and is not a rotation, the Schwarz

lemma guarantees that |φ(z)| < |z| for all z ∈ D and
∣∣∣φ(z)
z

∣∣∣n ‖Kφ(z)‖ −→ 0 as

n → ∞ for each z ∈ D and
∣∣∣φ(z)
z

∣∣∣n n log 1
(1−|φ(z)|2) −→ 0 as n −→ ∞ provided we

assume 0.∞ = 0.�

Englis in [13] has shown that the set of all Toeplitz operators Tφ, φ ∈ L∞(D) is

dense in L(L2
a(D)) in strong operator topology. In fact, the result remains in force

if we consider Toeplitz operators with symbols in any w∗ dense subset of L∞(D).

If D(D) is the set of all infinitely differentiable functions on D whose support is

a compact subset of D then the set {Tφ : φ ∈ D(D)} is strong operator topology

dense in L(L2
a(D)). There is a natural intermediate function space between D(D)

and L∞(D), namely C(D), the functions continuous on the closed unit disk D.

Englis also proved that [13], the norm closure of {Tφ : φ ∈ C(D)} coincides with

{Tφ : φ ∈ C(D)}+ LC(L2
a(D)). We shall show below that if ψ ∈ C(D) is harmonic

and if Cφ is neither the identity nor a compact operator on L2
a(D) then Tψ − Cφ

cannot be compact. Now fix a composition operator Cφ, which is neither the

identity nor compact and a Toeplitz operator Tψ where ψ ∈ C(D) is harmonic and

set ∆ = Tψ − Cφ. We claim ∆ is not compact. Assume ψ is not a.e. zero on T,

since otherwise Tψ is the zero operator and then ∆ = −Cφ, which we are assuming

non compact. It is enough to show that the adjoint operator ∆∗ = T ∗ψ − C∗φ is not

compact. Since ka → 0 weakly as |a| → 1−, to show ∆∗ is not compact, it suffices

to show that {‖∆∗ka‖} does not converge to zero as |a| → 1−. In what follows we

shall prove {〈∆∗ka, ka〉} does not converge to zero. Now

〈∆∗ka, ka〉 =
〈
Tψka, ka

〉
−
〈
C∗φka, ka

〉
=
〈
ψka, ka

〉
−
(
1− |a|2

)2 〈
Kφ(a),Ka

〉
= ψ̃(a)−

(
1− |a|2

)2
Kφ(a)(a)

= ψ̃(a)−
(
1− |a|2

)2(
1− φ(a)a

)2

where ψ̃ denotes the Berezin transform of ψ. Since Cφ is not the identity operator

on L2
a(D), the map φ is not the identity on D. By the “ boundary uniqueness ”

property of bounded holomorphic functions [10], the set E = {ξ ∈ T : φ(ξ) 6= ξ}
therefore has full measure : m(E) = 1 where dm denotes the Lebesgue measure on

T and φ(ξ) denotes the radial limit of φ at ξ (which exists at m a.e. point of T, see

[10]). Since we have assumed ψ is not a.e. zero on T, the set F = {ξ ∈ T : ψ(ξ) 6= 0}
has positive measure. Thus E ∩ F has positive measure and in particular is not

empty. Fix a point ξ ∈ E ∩ F. We have as r → 1−, ψ̃(rξ) → ψ(ξ) 6= 0 and
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(1−r2)
2

(1−φ(rξ)rξ)
2 −→ 0

(1−φ(ξ)ξ)
2 = 0 (the denominator of the last function is not zero

because φ(ξ) 6= ξ). Thus lim
r→1−

〈∆∗krξ, krξ〉 = ψ̄(ξ) 6= 0, thus establishing that ∆∗

and therefore ∆ is not compact.

Let H2(D) denote the space of analytic functions on D which are harmonic ex-

tensions of functions in H2(T). It is not very important to distinguish H2(D)

from H2(T). For details see [33]. Hence in the sequel we shall always refer Lφ

as a Toeplitz operator on H2(T) or H2(D) with symbol φ ∈ L∞(T). Suppose

φ ∈ H(D). Then φ induces a linear operator Eφ on the Hardy space H2(D) as

follows : Eφf = foφ. The operator Eφ is called the composition operator induced

by φ on H2(D). Let Lzf = zf, z ∈ D, f ∈ H2(D).

Theorem 2.3 If φ, ψ ∈ H(D), then (Uz⊗̂Lz)∗
n
(Cφ⊗̂Eψ)

s−→ 0 in L(L2
a⊗̂H2) for

all z ∈ D, where Lz is the operator of multiplication by z on H2(D). Further,

(Uz⊗̂Lz)∗
n
(Cφ⊗̂Eψ)(Uz⊗̂Lz)n

s−→ 0

and

(Uz⊗̂Lz)∗
n
(C∗φ⊗̂E∗ψ)(Uz⊗̂Lz)n

s−→ 0.

Proof The operator Uz is an unitary operator for all z ∈ D and Lz is an isometry

on H2(D). Hence by [22], Uz⊗̂Lz in L(L2
a(D)⊗̂H2(D)) is an unilateral shift for all

z ∈ D. Hence (Uz⊗̂Lz)∗
n s−→ 0 and ‖(Uz⊗̂Lz)‖ = ‖Uz‖‖Lz‖ = 1.

Further (Uz⊗̂Lz)∗
n
(Cφ⊗̂Eψ)(Uz⊗̂Lz)n = (U∗z

nCφU
n
z )⊗̂(L∗z

nEψLnz ). It follows

from [27] that L∗z
nEψLnz

s−→ 0 and L∗z
nE∗ψLnz

s−→ 0. The result follows since

‖U∗z
nCφU

n
z ‖ ≤ ‖Cφ‖ for all n. �

Theorem 2.4 Let q be an inner function in H∞(T) and Lq be the Toeplitz op-

erator on H2(D) with symbol q and Eψ be the composition operator with sym-

bol ψ on H2(D). If φ, ψ ∈ H(D), then (Uz⊗̂Lq)∗
n
(Cφ⊗̂Eψ) −→ 0 in SOT in

L
(
L2
a(D)⊗̂H2(D)

)
for all z ∈ D. Further,

(Uz⊗̂Lq)∗
n
(Cφ⊗̂Eψ)(Uz⊗̂Lq)n

s−→ 0

and

(Uz⊗̂Lq)∗
n
(C∗φ⊗̂E∗ψ)(Uz⊗̂Lq)n

s−→ 0 for all z ∈ D.

Proof The proof is similar to theorem 2.3, as Lq is an isometry on H2(D) and

it follows from [26] that L∗q
nEψLnq

s−→ 0 and L∗q
nE∗ψLnq

s−→ 0 in L(H2(D)) for all

inner functions q ∈ H∞(T). �

Recall that {en(z)}∞n=0 = {
√
n+ 1zn}∞n=0 is an orthonormal basis for L2

a(D). Let

{un}∞n=0 is an orthonormal basis for (L2
a(D))⊥. Reindexing the sequence {un}∞n=0 by

a subset of Z×Z, we obtain the collection fij(i ≥ 1, j ∈ Z) which is an orthonormal
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basis for (L2
a(D))⊥. Thus L2(D, dA) is the Hilbert space with an orthonormal basis

formed by the vectors {ei}i≥0 and {fij}i≥1,j∈Z .

Define the function r : N→ N by r(k) = s whenever 2s−1 ≤ k < 2s(k ≥ 1, s ≥ 1).

Define T ∈ L(L2(D, dA)) by

Tfi,j = fi,j−1 (i ≥ 1, j 6= 0)

Tfi,0 = 4−ifi,−1 (i ≥ 1)

Tej = ej+1

(
j /∈ {3k : k = 1, 2, ......}

)
Te3k = e3k+1 + fr(k),3k (k = 1, 2....).

Let H0 = L2
a(D, dA) and Hi =

∨
{fij , j ∈ Z}, i = 1, 2, .... . Then L2(D, dA) =

∞⊕
i=0

Hi. In this decomposition T can be written in the matrix form as

T =


S0 0 0 · · ·
Q1 S1 0 · · ·
Q2 0 S2 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·


where S0 is the unilateral shift (forward shift) and Si(i ≥ 1) is a bilateral weighted

shift. All weights of Si(i ≥ 1) but one are equal to 1 and these are “backward”

shifts.

It can be verified similarly as in [25] that the operator T is a power bounded

operator

(
lim sup
n→∞

‖Tnf‖ <∞
)

and Tn
w−→ 0 in L2(D, dA). Since any two sepa-

rable infinite dimensional Hilbert spaces are isometrically isomorphic, there is an

unitary map U from L2(D, dA) onto L2(D, dη). Thus M = UTU∗ ∈ L(L2(D, dη))

and M = UTU∗ is power bounded and Mn = UTnU∗
w−→ 0 in L(L2(D, dη)).

Thoerem 2.5 If φ, ψ ∈ H(D), then as an operator on L2(D, dη), {MnCφB
n} con-

verges to 0 in the strong operator topology and (Bn⊗̂Mn)(Cφ⊗̂Cψ) → 0 in the

strong operator topology in L
(
L2(D, dη)⊗̂L2(D, dη)

)
.

Proof: Since L1(D, dη) ⊂ L1(D, dA), the Berezin transform B is defined on the

former space and

|f̃(w)| =
∣∣∣∣∫

D
f(z)

(1− |w|2)2

|1− wz|4
dA(z)

∣∣∣∣
≤ B(|f |)(w).
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Thus ∫
D
|f̃(w)| dA(w)

(1− |w|2)2
≤
∫
D

(∫
D
|f(z)| (1− |w|

2)2

|1− wz|4
dA(z)

)
dA(w)

(1− |w|2)2

=

∫
D
|f(z)|

∫
D

dA(w)

|1− wz|4
dA(z)

=

∫
D
|f(z)| dA(z)

(1− |z|2)2
,

the change of order of integration being justified by the positivity of the integrand.

It follows that B is a contraction on L1(D, dη). The same is true for L∞(D) and

from the Marcinkiewicz interpolation theorem it follows that B is a contraction on

Lp(D, dη), 1 ≤ p ≤ ∞. Further on L2(D, dη), Bf = F (∆h)f where ∆h is the self

adjoint operator given by ∆h = (1− |z|2)2 ∂2

∂z∂z on D and

F (x) =

∞∏
n=1

(
1− x

n(n+ 1)

)−1

=
πx

sinπ(
√
x+ 1

4 −
1
2 )
.

Thus the spectrum of B must be contained in [0,1]. Let E(λ) be the resolution of

identity for the self adjoint operator B. Then

‖Bnf‖2 =

∫ 1

0

|λn|2d〈E(λ)f, f〉.

Hence by Lebesgue monotone convergence theorem,

‖Bnf‖2 → ‖(I − E(1−))f‖2 = ‖Pker(B−I)f‖2.

Since there is no nonzero harmonic function in L2(D, dη) and (B − I)g = 0 implies

g is harmonic in L2(D, dη), hence ker(B − I) = {0} and therefore ‖Bnf‖ → 0.

That is, Bn → 0 strongly in L2(D, dη). Since Mn is power bounded, there exists a

constant k such that ‖Mn‖ ≤ k for all n. Now for f ∈ L2(D, dη),

‖MnCφB
nf‖ ≤ ‖Mn‖‖Cφ‖‖Bnf‖

≤ k‖Cφ‖‖Bnf‖ −→ 0 as n→∞.

Since Bn −→ 0 strongly and ‖Mn‖ ≤ k, hence by [22], the sequence {Bn⊗̂Mn} −→
0 in strong operator topology in L

(
L2(D, dη)⊗̂L2(D, dη)

)
. Thus

(Bn⊗̂Mn)(Cφ⊗̂Cψ) = (BnCφ⊗̂MnCψ) −→ 0 in SOT as n→∞.�

Let T ∈ L(L2
a(D)). We say T is power bounded if lim sup

n→∞
‖Tnf‖ < ∞ for all

f ∈ L2
a(D). If T ∈ L(L2

a(D)) is similar to a contraction, that is, if there exists an
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invertible operator U ∈ L(L2
a(D)) with ‖UTU−1‖ ≤ 1, then T is power bounded,

for in this case

‖Tn‖ = ‖U−1UTnU−1U‖

≤ ‖U−1‖‖UTU−1‖n‖U‖

≤ ‖U−1‖‖U‖

for each n ∈ N. The converse is not true; a power bounded operator need not be

similar to a contraction [17]. The operator Cφ : L2
a(D)→ L2

a(D) is an isometry [5]

if and only if φ is a rotation. Below we find conditions such that Cφ is similar to

an isometry.

Proposition 2.6 (i) Let Cφ be similar to a contraction on L2
a(D) and the set

{f ∈ L2
a(D) : lim

r→1+
‖(r − 1)

1
2 (rξ − Cφ)−1f‖ = 0 for every ξ ∈ T} is dense in L2

a(D)

then (CaCφCa)n → 0 and (UaCφUa)n → 0 in the strong operator topology in

L(L2
a(D)).

(ii) Let Cφ ∈ L(L2
a(D)) be such that the sequence {‖Cnφf‖}n≥1 converges for every

f ∈ L2
a(D), and let Bφ be the operator given by

〈Bφf, g〉 = lim
n→∞

〈C∗φ
nCnφf, g〉, f, g ∈ L2

a(D).

Then Cφ is similar to an isometry if and only if Bφ is invertible.

Proof :(i) The result follows from [31] as (CaCφCa)n = CaC
n
φCa and (UaCφUa)n =

UaC
n
φUa for all n ∈ N and a ∈ D and Cφ is power bounded.

(ii) Suppose that Cφ is similar to an isometry. Then there exists a positive invertible

operator S ∈ L(L2
a(D)) with ‖S‖ = 1 such that C∗φSCφ = S. Thus

〈C∗φ
n(I − S)Cnφf, f〉 → 〈(Bφ − S)f, f〉

as n → ∞ for every f ∈ L2
a(D). Since I − S ≥ 0 we obtain Bφ − S ≥ 0. Thus Bφ

is invertible because S is positive and invertible in L(L2
a(D)). Conversely, if Bφ is

invertible then since C∗φBφCφ = Bφ, we obtain Cφ is similar to an isometry. �

The operator T ∈ L(L2
a(D)) is asymptotically regular if lim

n→∞
‖Tnf−Tn+1f‖ = 0

for all f ∈ L2
a(D). If the convergence of this limit is uniform, that is, ‖Tn−Tn+1‖ →

0 as n→∞, we then say that T is uniformly asymptotically regular. The operator

T ∈ L(L2
a(D)) is strongly stable if lim inf

n→∞
‖Tnf‖ = 0 for all f ∈ L2

a(D). For a ∈ D,

let ma be the geodesic midpoint between 0 and a, that is, ma =
1−
√

1−|a|2
|a|2 a.

Lemma 2.7 For any a ∈ D, the operators Ca, Ua are not asymptotically regular

and not uniformly asymptotically regular. Further, these operators are not strongly

stable.
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Proof : The points to note are the following :

(i) Caf = f if and only if f = goφma where g is an even function.

(ii) Uaf = f if and only if f = (goφma)kma , g is an even function.

For proof of these see [32]. Since C2
a = I and U2

a = I for all a ∈ D, hence there exists

f, g ∈ L2
a(D) such that lim

n→∞
‖Cna f −Cn+1

a f‖ 6= 0 and lim
n→∞

‖Una g − Un+1
a g‖ 6= 0. It

may be noted here that ‖Cna −Cn+1
a ‖ = ‖I −Ca‖ and ‖Una −Un+1

a ‖ = ‖I −Ua‖ for

all n ∈ N which does not tend to zero as n→∞. Further, lim inf
n→∞

‖Cna f‖ = ‖f‖ 6= 0,

if f = goφma , g even, g 6≡ 0 and lim inf
n→∞

‖Una f‖ = ‖f‖ 6= 0 if f = (goφma)kma , g

even, g 6≡ 0. �

The Berezin transform B on L2(D, dη) has no nonzero fixed points [11] and B

is strongly stable as by theorem 2.5, Bn → 0 in the strong operator topology on

L2(D, dη). But it is not known to authors if B is uniformly asymptotic regular.

Further if φ ∈ L∞(D) is such that Hφ is a Hilbert schmidt operator then

∞∑
n=0

‖Bnφ−Bn+1φ‖2L2(D,dη) ≤ ‖Hφ‖2HS <∞.

For details see [2].

A power bounded operator T on a Hilbert space H is called almost weakly stable

if 0 is a weak accumulation point of every orbit {Tnx : n ∈ N}, x ∈ H.

Theorem 2.8 Let φ, ψ ∈ H(D). Then there exists a sequence of almost weakly

stable unitary operators Tm on L2
a(D) and a sequence {zm}∞m=1 in D with |zm| → 1

such that (Uzm⊗̂Tm)(Cφ⊗̂Cψ)
w−→ 0 in L(L2

a(D)⊗̂L2
a(D)). If lim

|z|→1−

1− |z|2

1− |φ(z)|2
= 0

then (Uzm⊗̂Tm)(Cφ⊗̂Cψ)→ 0 in strong operator topology in L
(
L2
a(D)⊗̂L2

a(D)
)
.

Proof: Since span{kz : z ∈ D} is dense in L2
a(D), it suffices to show that for all

z, w ∈ D, we have lim
m→∞

〈Uzmkz, kw〉 = 0. Fix z, w ∈ D. For m ≥ 1,

〈Uzmkz, kw〉 = (1− |w|2)(Uzmkz)(w)

= (1− |w|2)kz(φzm(w))kzm(w)

=
[(1− |w|2)(1− |z|2)(1− |zm|2)]

[(1− 〈φzm(w), z〉)(1− 〈w, zm〉)]2
.

Since |〈φzm(w), z〉| ≤ |z| and |〈w, zm〉| ≤ |w|, we obtain

|〈Uzmkz, kw〉| ≤
(1− |w|2)(1− |z|2)(1− |zm|2)

(1− |z|)2(1− |w|)2
.

It then follows that lim
m→∞

〈Uzmkz, kw〉 = 0. From [14], it also follows that there

exists a sequence of almost weakly stable unitary operators Tm such that Tm → I

in norm in L(L2
a(D)). Thus from [22], it follows that (Uzm⊗̂Tm)

w−→ 0. Now if
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K is compact then KUzm
s−→ 0 as m → ∞ in L(L2

a(D)). If φ : D → D is ana-

lytic and lim
|z|→1−

1− |z|2

1− |φ(z)|2
= 0, then it is shown in [33], that Cφ is compact and

hence (Uzm⊗̂Tm)(Cφ⊗̂Cψ) = UzmCφ⊗̂TmCψ → 0 in SOT. This follows from [22]. �

An operator A on a Hilbert space H is said to be quasinormal if A commutes

with A∗A. Moreover A is said to be subnormal if there exists a normal operator

Q on a Hilbert space K such that H is a subspace of K, H is invariant under

the operator Q, and the restriction of Q to H is A. The operator A is said to be

hyponormal if and only if A∗A−AA∗ ≥ 0. The operator A is pure in case, the only

subspace of H reducing A on which A is a normal operator is the zero subspace. It

is well known that normal operators ⊂ quasinormal operators ⊂ subnormal opera-

tors ⊂ hyponormal operators. Excellent references on subnormal and hyponormal

operators are [6] and [7].

If Υ(z) = z + λz, |λ| < 1, then the Toeplitz operator TΥ defined on L2
a(D) is a

pure hyponormal operator. To verify this let G be the smallest reducing subspace

of TΥ which contains the image of the self-commutator of TΥ, TΥTΥ − TΥTΥ. By

direct computation TΥTΥ − TΥTΥ = (1 − |λ|2)(TzTz − TzTz). But, for all i ≥ 0,

(TzTz − TzTz)(zi) =
(
i+1
i+2 −

i
i+1

)
zi. Since the polynomials are dense in L2

a(D), it

follows that G = L2
a(D), and this will imply that TΥ is pure. Also, it is clear that

TΥ is hyponormal.

Under a smoothness assumption, Kriete and Cowen [9] have given conditions

on φ that are necessary and sufficient that C∗φ be subnormal on H2(T). For φ an

analytic map of the unit disk into itself, Cowen in [8] has shown that the subnormal-

ity of C∗φ on the Hardy space implies its subnormality on the Bergman space L2
a(D).

Theorem 2.9 Let φ : D → D be analytic. If C∗φ is a hyponormal contraction

on L2
a(D) which is also pure then C∗φ

n → 0 in SOT in L(L2
a(D)). Further, if for

some Υ ∈ L∞(D), the Toeplitz operator TΥ is a pure hyponormal contraction, then

TnΥCφT
∗
Υ
n → 0 in SOT.

Proof If C∗φ is a pure hyponormal contraction, then from [30] it follows that

C∗φ
n → 0 in SOT and if TΥ is a pure hyponormal contraction then for f ∈

L2
a(D), ‖TnΥCφT ∗Υ

nf‖ ≤ ‖TΥ‖n‖Cφ‖‖T ∗Υ
nf‖ ≤ ‖Cφ‖‖T ∗Υ

nf‖ → 0 as n→∞. �

3. Intertwining Property of Composition Operators

In this section we discuss about some intertwining properties of composition

operators and from it derive certain ergodicity properties of composition operators.

Theorem 3.1 Let T, S ∈ L(L2
a(D)) are power bounded and CaT = SCa for some

a ∈ D. Then Tn → 0 in WOT if and only if Sn → 0 in WOT. Further, if for
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each nonincreasing subsequence of positive integers (nj) and every f ∈ L2
a(D) the

limit lim
N→∞

1

N

N∑
j=1

Tnjf exists in norm topology then lim
N→∞

1

N

N∑
j=1

Snjf exists for all

f ∈ L2
a(D).

Proof Suppose Tn → 0 in WOT. Then 〈Tnh, h′〉 → 0 for all h, h′ ∈ L2
a(D). Thus for

all h, k ∈ L2
a(D) we have, 〈SnCah, k〉 = 〈CaTnh, k〉 = 〈Tnh,C∗ak〉 → 0 as n → ∞.

Hence Snf → 0 weakly for all f ∈ L2
a(D) as Range Ca = L2

a(D). Since S is power

bounded, we have Sn → 0 in WOT.

Conversely, suppose that Sn → 0 in WOT. Then S∗n → 0 in WOT and C∗aS
∗ =

T ∗C∗a . Hence T ∗n → 0 in WOT and so Tn → 0 in WOT.

Suppose lim
N→∞

1

N

N∑
j=1

Tnjf exists in the norm topology for each f ∈ L2
a(D). Then

lim
N→∞

1

N

N∑
j=1

SnjCaf = lim
N→∞

1

N

N∑
j=1

CaT
njf exists for each f ∈ L2

a(D). Since Range

Ca = L2
a(D) and the sequence 1

N

N∑
j=1

Tnj is bounded, the limit lim
N→∞

1

N

N∑
j=1

Snjf

exists for all f ∈ L2
a(D). �

This result shows that the intertwining relations with the composition operators

Ca, a ∈ D is important in describing certain asymptotic properties of composition

operators on Bergman space.

Definition 3.2 A function g(x, ȳ) on D × D is called of positive type (or positive

definite),written g � 0, if

n∑
j,k=1

cj c̄kg(xj , x̄k) ≥ 0..........(1)

for any n-tuple of complex numbers c1, c2, ......cn and points x1, x2, ......xn ∈ D. We

write g � h if g − h� 0. We shall say γ ∈ A if γ ∈ L∞(D) and is such that

γ(z) = Θ(z, z̄)........(2)

where Θ(x, ȳ) is a function on D×D meromorphic in x and conjugate meromorphic

in y. It is a fact that (see [19],[21]) Θ as in (2), if it exists, is uniquely determined

by γ. The function Θ satisfies the condition (?) if there exists a constant C > 0

such that

CK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� −CK(x, ȳ).

The function γ is said to satisfy the condition (??), if γ ∈ A and if γ(z) = Θ(z, z̄)

as in (2), then there exists a constant C > 0 such that

Θ1(x, ȳ) = Θ(x, ȳ) + Θ(y.x̄)
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and

Θ2(x, ȳ) = i[Θ(x, ȳ)−Θ(y, x̄)]

satisfy the condition (?).

The following theorem gives a necessary and sufficient condition for the existence

of a bounded linear operator T on L2
a(D) with prescribed Berezin transform and is

such that TCa = CaT for all a ∈ D.

Theorem 3.3 Let f ∈ L∞(D). Then f(w) =
∫
D f(φz(w))dA(z) for all w ∈ D and

f satisfies (??), if and only if there exists T ∈ L(L2
a(D)) such that T̃ (z) = f(z) and

CaT = TCa for all a ∈ D.

Proof : Let f ∈ L∞(D) and f satisfies (??). Then by [11], there exists T ∈
L(L2

a(D)) such that T̃ (w) = 〈Tkw, kw〉 = f(w) for all w ∈ D. Now f(w) =∫
D f (φz(w)) dA(z) implies

〈Tkw, kw〉 =

∫
D

〈
Tkφz(w), kφz(w)

〉
dA(z)

=

∫
D
〈UzTUzkw, kw〉 dA(z)

=

〈(∫
D
UzTUzdA(z)

)
kw, kw

〉
= 〈T̂ kw, kw〉

for all w ∈ D where T̂ =

∫
D
UzTUzdA(z). From [11], it follows that T = T̂ . It is

shown in [32] that if T = T̂ then TCa = CaT for all a ∈ D. Conversely, if there

exists T ∈ L(L2
a(D)) such that T̃ (z) = f(z) and TCa = CaT for all a ∈ D, then

T̃ ∈ L∞(D) and T̃ satisfies the condition (??). For details see [11]. Now since

TCa = CaT for all a ∈ D we have T̂ = T . For more details see [32]. Hence

f(w) = T̃ (w)

= 〈Tkw, kw〉

=

〈(∫
D
UzTUzdA(z)

)
kw, kw

〉
=

∫
D
〈UzTUzkw, kw〉dA(z)

=

∫
D
〈Tkφz(w), kφz(w)〉dA(z)

=

∫
D
T̃ (φz(w))dA(z)

=

∫
D
f(φz(w))dA(z).
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The result follows. �

In the following theorem, we find conditions on Cφ such that CaCφ = CφC
∗
a .

Theorem 3.4 Let a ∈ D and Cφ be a positive composition operator on L2
a(D). If

Cφ ≤ Re(CaCφ), then CaCφC
∗
a = Cφ and hence CnaCφC

∗
a
n → Cφ strongly. Further

in this case φ = goφma where g is an even function.

Proof : For f ∈ L2
a(D), by Heinz inequality [20], we obtain

〈Cφf, f〉 ≤ 〈Re(CaCφ)f, f〉

= Re〈CaCφf, f〉

≤ |〈CaCφf, f〉|

= 〈Cφf, C∗af〉|

≤ 〈Cφf, f〉
1
2 〈CφC∗af, C∗af〉

1
2 ................(3).

Hence 〈Cφf, f〉 ≤ 〈CaCφC∗af, f〉 for all f ∈ L2
a(D) and thus

Cφ ≤ CaCφC∗a ..............(4).

In addition to Cφ ≤ Re(CaCφ); if Cφ = CaCφC
∗
a is assumed, then (3) yields

〈Cφf, f〉 = Re〈CaCφf, f〉

= |〈CaCφf, f〉|

= 〈CaCφf, f〉

for all f ∈ L2
a(D), and hence Cφ = CaCφ. From (4), since CaCφC

∗
a − Cφ ≥ 0, it

follows that Ca(CaCφC
∗
a − Cφ)C∗a ≥ 0, that is C2

aCφ(C∗a)2 ≥ CaCφC
∗
a . Repeating

this process n times, we have Cn+1
a Cφ(C∗a)n+1 ≥ CnaCφ(C∗a)n. Thus, {CnaCφ(C∗a)n :

n = 1, 2......} is an increasing sequence of positive operators. This sequence is

bounded, since C2
a = I. Therefore, it converges to a positive operator on L2

a(D),

say S, in the strong operator topology. Notice that

CaSC
∗
a = Ca

(
lim
n→∞

CnaCφ(C∗a)n
)
C∗a

= lim
n→∞

Cn+1
a Cφ(C∗a)n+1

= S

= lim
n→∞

C2n
a Cφ(C∗a)2n

= Cφ.
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Thus CaCφC
∗
a = Cφ and therefore CnaCφ(C∗a)n → Cφ strongly as n → ∞. From

Cφ ≤ (CaCφ+CφC
∗
a)

2 , we have

CnaCφ(C∗a)n ≤ [Cna (CaCφ + CφC
∗
a)(C∗a)n]

2

=
[Ca(CnaCφ(C∗a)n) + (CnaCφ(C∗a)n)C∗a ]

2
.

By letting n tends to ∞, we have S ≤ CaS+SC∗
a

2 = Re(CaS). Thus S = CaS. That

is, Cφ = CaCφ. Hence for all f ∈ L2
a(D), Cφf is a fixed point of Ca. In particular,

taking f(z) = z, we obtain that Cφz = CaCφz. That is φ = φoφa. From [32], it

follows that φ = goφma where g is an even function. �

Let T be a contraction (that is, a linear operator of norm ≤ 1 ) on the Hilbert

space L2
a(D). For T ∈ L(L2

a(D)), by MT we shall denote the uniformly closed

subalgebra of L(L2
a(D)) generated by T and I. Let T = {z ∈ C : |z| = 1} and

σ(T ) denote the spectrum of T . Let σu(T ) = σ(T )∩T, the unitary spectrum of T .

By lemma 2.7, the operators Ca, Ua are neither strongly stable nor asymptotically

regular. But the following holds:

Theorem 3.5 Let Cφ be a contraction on L2
a(D). Then if the Gelfand transform

of Γ ∈ MCφ vanishes on σu(Cφ), then ‖UaCnφΓCaf‖ → 0 as n → ∞ for all a ∈ D
and for all f ∈ L2

a(D).

Proof: Since Cφ is a contraction on L2
a(D), hence for every f ∈ L2

a(D), the limit

lim
n→∞

‖Cnφf‖ exists and is equal to inf
n∈N
‖Cnφf‖. Define an inner product on L2

a(D) by

the formula [f, g] = 〈Bφf, g〉 where 〈Bφf, g〉 = lim
n→∞

〈C∗φ
nCnφf, g〉. It is easy to see

that the limit on the right hand side exists. This induced a semi-norm on L2
a(D)

defined by p(f) = 〈Bφf, f〉
1
2 . Let E = ker p. It is clear that E is a closed, invariant

subspace of Cφ. If E = L2
a(D), then there is nothing to prove. Hence, we may as-

sume that E 6= L2
a(D). Let J : L2

a(D)→ L2
a(D)/E be the quotient mapping. Then

the semi-norm p induces a norm ˜̃p on K0 = L2
a(D)/E by ˜̃p(Jf) = p(f) and we have

‖Jf‖ = ( lim
n→∞

‖Cnφf‖2)
1
2 . Let K be the completion of K0 with respect to the norm˜̃p. Define V0 : K0 → K0 by V0J = JCφ. Since ‖V0Jf‖ ≤ ‖Cφ‖‖Jf‖, V0 extends to

a bounded operator V on K. Then we have V J = JCφ, where J : L2
a(D)→ K has

dense range. Also since [V p(f), V p(g)]=[p(f), p(g)],f, g ∈ L2
a(D), V is an isometry

on K. Let λ /∈ σ(Cφ). Since p((λ − Cφ)−1f) ≤ ‖(λ − Cφ)−1‖p(f), f ∈ L2
a(D), it

follows that λ /∈ σ(V ). Thus σ(V ) ⊂ σ(Cφ). Now assume V is an isometry but not

unitary. Then σ(V ) = D̄ and consequently, σ(Cφ) = D̄. Hence, σu(Cφ) = T. Let

Γ ∈ MCφ be such that Γ̂(ξ) ≡ 0 on σu(Cφ) where Γ̂ denote the Gelfand transform

of Γ. Since Γ ∈MCφ , there exists a sequence {pn(z)}∞n=1 of polynomials such that
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‖pn(Cφ)− Γ‖ → 0 and pn(z)→ 0 uniformly on T. By the Von-Newmann inequal-

ity, ‖pn(Cφ)‖ ≤ sup
ξ∈T
|pn(ξ)| → 0, and so Γ = 0. Hence we may assume that V is

an unitary operator. As above, there exists a sequence of polynomials {pn(z)}∞n=1

such that ‖pn(Cφ)−Γ‖ → 0. It follows that pn(z)→ 0 uniformly on σu(Cφ). Since

σ(V ) ⊂ σu(Cφ), we have ‖pn(V )‖ → 0. Now from the identity pn(V )J = Jpn(Cφ),

we obtain that JΓ = 0. Hence we have that lim
n→∞

‖CnφΓf‖ = 0 for all f ∈ L2
a(D).

Since C2
a = I for all a ∈ D and Ua is an unitary operator and U2

a = I for all a ∈ D,

we obtain lim
n→∞

‖UaCnφΓCaf‖ = 0 for all a ∈ D and for all f ∈ L2
a(D).�

In the following theorem, we prove that if there is a self-adjoint composition

operator Cφ lying between the self-adjoint composition operator Cψ and UzCψUz

for some z ∈ D and if either σ(Cφ) or σ(Cψ) is a null set with respect to Lebesgue

measure on R then Cψ = Cφ = UzCψUz.

Theorem 3.6 Let Cφ and Cψ be self-adjoint operators on L2
a(D). If either σ(Cφ) or

σ(Cψ) is a null set with respect to Lebesgue measure on R and Cψ ≤ Cφ ≤ UzCψUz
for some z ∈ D then Mz = {(goφmz )kmz : g even} is a reducing subspace of

UzCψUz = Cψ = Cφ and if Cψ ≤ Cφ ≤ UzCψUz for all z ∈ D then Cψ = Cφ = αI.

In both the cases Unz CψU
n
z → Cψ strongly.

Proof : Without loss of generality, assume σ(Cψ) is a null set with respect to

Lebesgue measure on R. Choose λ > 0 such that Cψ + λI is positive and invert-

ible. Let T = (Cψ + λI)
1
2Uz. Then by our assumption, TT ∗ ≤ Cφ + λI ≤ T ∗T

and |T | = Uz(Cψ + λI)
1
2Uz = UzT . Thus T is a hyponormal operator on L2

a(D).

Notice that σ(|T |) is a null set with respect to Lebesgue measure on R because

σ((Cψ + λI)
1
2 ) is also a null set with respect to Lebesgue measure on R. Now

T = Uz|T | as U2
z = I. Since U∗z = Uz; thus Uz is a self-adjoint unitary operator

and Uz 6= ±I. This implies that the spectrum σ(Uz) = {−1, 1}. By [29], T is

normal. Thus Cψ = Cφ = UzCψUz. By the spectral decomposition, there exists a

unique orthogonal projection Pz on L2
a(D) such that Uz = Pz − P⊥z . Let Mz be

the range of Pz. Thus Uzf = f if and only if Pzf = f for any f ∈ L2
a(D). By

[32], Mz = {kmz (goφmz ) : g even}. Thus CψUz = UzCψ for some z ∈ D if and only

if CψPz = PzCψ. This is true if and only if Mz is a reducing subspace of Cψ. If

Cψ = Cφ = UzCψUz for all z ∈ D then CψUz = UzCψ for all z ∈ D, and therefore

Cψ = αI. For details see [11]. �

For ε ∈ T and f a function on D, let (Rεf)(z) = f(εz). Then R−1
ε = R∗ε = Rε

and Rε is an unitary operator on L2
a(D) and L∞(D). Thus the transformation

Ξ(T ) = R∗εTRε is an isometry in L(L2
a(D)) since Rε is unitary. The map Ξ also

maps compact operators onto the set of compact operators and it has the following
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interesting properties.

Theorem 3.7 (i) If φ(z) = αz, α ∈ C and ψ(z) = βz, β ∈ C then the following

hold: R∗ε
nCφR

n
ε = Cφ, R

∗
ε
nC∗φR

n
ε = C∗φ, R

∗
ε
nCφCψR

n
ε = CφCψ for all n, ε ∈ T

and hence {R∗ε
nCφR

n
ε }∞n=0, {R∗ε

nC∗φR
n
ε }∞n=0, {R∗ε

nCφCψR
n
ε }∞n=0 converges in norm

to Cφ, C
∗
φ, CφCψ respectively as n→∞.

(ii) If φ ∈ L∞(D), then R∗ε
nCRnε φ → Cφ in norm as n→∞.

(iii) If Tφ, Hφ, Sφ are the Toeplitz, Hankel, little Hankel operators on the Bergman

space L2
a(D) respectively with symbol φ ∈ L∞(D), then the following hold:

R∗ε
nTφR

n
ε = TR∗

ε
nφ, R

∗
ε
nHφR

n
ε = HR∗

ε
nφ, R

∗
ε
nSφR

n
ε = SR∗

ε
nφ

for all n and therefore

{R∗ε
nTRnε φR

n
ε }∞n=0, {RnεHRnε φ

Rnε }∞n=0, {R∗ε
nSRnε φR

n
ε }∞n=0

converges in norm to Tφ, Hφ, Sφ as n→∞ respectively.

Proof:(i)Since for all z ∈ D, f ∈ L2
a(D)

(R∗ε
nCφR

n
ε f)(z) = (CφR

n
ε f)(ε̄nz)

= (Rnε foφ)(ε̄nz)

= (Rnε f)(φ(ε̄nz))

= (Rnε f)(αε̄nz)

= f(εnαε̄nz)

= f(αz)

= (foφ)(z)

= (Cφf)(z)

hence R∗ε
nCφR

n
ε = Cφ for all n ∈ N and R∗ε

nC∗φR
n
ε = C∗φ for all n ∈ N. Thus

R∗ε
nCφR

n
ε → Cφ in norm as n → ∞ and R∗ε

nC∗φR
n
ε → C∗φ in norm as n → ∞.

Further

R∗ε
nCφCψR

n
ε = R∗ε

nCφR
n
εR
∗
ε
nCψR

n
ε

= CφCψ
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for all n. Hence {R∗ε
nCφCψR

n
ε } converges in norm to CφCψ on L2

a(D) as n→∞.

(ii)Since

(R∗ε
nCRnε φf)(z) = CRnε φf(ε̄nz)

= (foRnε φ)(ε̄nz)

= f(Rnε φ(ε̄nz))

= f(φ(εnε̄nz))

= f(φ(z))

= (Cφf)(z)

for all z ∈ D and f ∈ L2
a(D), hence R∗ε

nCRnε φ = Cφ for all n and R∗ε
nCRnε φ → Cφ

in norm as n→∞.

(iii) For z ∈ D, f ∈ L2
a(D), (R∗ε

nTφR
n
ε f)(z) = (TφR

n
ε f)(ε̄nz) and

(TφR
n
ε f)(ε̄nz) = P (φ(ε̄nz)f(z))

= P ((Rnε̄ φ)f)(z)

= (TRnε φf)(z).

Thus (R∗ε
nTφR

n
ε f)(z) = (TRnεφf)(z) for all z ∈ D, f ∈ L2

a(D) and thereforeR∗ε
nTφR

n
ε =

TRnε̄ φ on L2
a(D) and

R∗ε
nTRnε φR

n
ε = TRnε Rnε φ = Tφ.

Also

(R∗ε
nHφR

n
ε f)(z) = (HφR

n
ε f)(ε̄nz)

= (I − P )(φ(ε̄nz)f(z))

= (HR∗
ε
nφf)(z)

and the result follows. If Sφ is the little Hankel operator on L2
a(D), we proceed

similarly. For z ∈ D, f ∈ L2
a(D),

(R∗ε
nSφR

n
ε f)(z) = SφR

n
ε f(ε̄nz)

= PJ((φRnε f)(ε̄nz))

= PJ(φ(ε̄nz)Rnε f(ε̄nz))

= PJ(φ(ε̄nz)f(z))

= (SR∗
ε
nφf)(z).

Hence R∗ε
nSφR

n
ε = SRnε φ and therefore R∗ε

nSRnε φR
n
ε → Sφ in norm as n→∞. �
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If n is a nonnegative integer and z ∈ D, the function K
(n)
z (w) = 1

(1−zw)2+n , w ∈ D
is the reproducing kernel of z in the weighted Bergman space L2

a(dAn), where

dAn(w) = (n+ 1)(1− |w|2)ndA(w).

The n-Berezin transform of an operator S ∈ L(L2
a(D)) is defined as

(BnS)(z) = (n+ 1)(1− |z|2)2+n

n∑
j=0

(
n
j

)
(−1)j

〈
S(wjK

(n)
z ), wjK

(n)
z

〉
.

It is clear that BnS ∈ L∞(D) for every S ∈ L(L2
a(D)). Using the fact that

n∑
j=0

(
n
j

)
(−1)j |w|2j = (1− |w|2)n,

we see that if S = Tφ with φ ∈ L∞(D), then

(Bnφ)(z) = (BnTφ)(z)

= (n+ 1)(1− |z|2)2+n

n∑
j=0

(
n
j

)
(−1)j

∫
D

φ(w)|w|2j

|1− zw|2(2+n)
dA(w)

=

∫
D
φ(w)

(1− |z|2)2+n

|1− z̄w|2(2+n)
(n+ 1)(1− |w|2)ndA(w)

=

∫
D
φ(φz(ρ))(n+ 1)(1− |ρ|2)ndA(ρ),

where the last equality comes from the change of variables w = φz(ρ). Notice that

‖Bn(φ)‖∞ ≤ ‖φ‖∞ for all φ ∈ L∞(D). The 0-Berezin transform of an operator is

the usual Berezin transform, which has been extensively used in this work. The

n-Berezin transforms of functions (not necessarily bounded) were introduced by

Berezin in [4]. It is not difficult to verify that for S ∈ L(L2
a(D)) and n ≥ 0;

(n+ 2)(1− |z|2)Bn (S − Tw̄STw) (z) = (n+ 1)Bn+1 (T1−w̄zST1−wz̄) (z)

for every z ∈ D and ‖BnS‖∞ ≤ (n+ 2)2n‖S‖.
In the following theorem we use the concept of n-Berezin transform to describe an

intertwining property of composition operators. This theorem can be compared

with theorem 3.3. For φ ∈ L∞(D, dA), we define a function φ̂ on D as follows:

φ̂(z) =

∫
D
φ(φw(z))dA(w).

This should not be confused with the Berezin transform defined previously. As one

can verify, the function φ̂ differs spectacularly from Bφ for harmonic functions φ.

Theorem 3.8 Let Cφ be a composition operator on L2
a(D) and suppose there is

p > 3 such that

sup
z∈D
‖T(BnCφ)oφz1‖p < C and sup

z∈D
‖T ∗(BnCφ)oφz

1‖p < C............(5)
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where C > 0 is independent of n. Then CaCφCa = Cφ for all a ∈ D if and only if

C̃φ(w) = ψ̃(w) where ψ = lim
n→∞

B̂nCφ for all w ∈ D.

Proof : Let Cφ ∈ L(L2
a(D)) and satisfies the condition (5). It follows from [28]

that, TBnCφ → Cφ in L(L2
a(D)) norm. It is shown in [32] that CaCφCa = Cφ if and

only if C̃φ(w) =
∫
D〈UzCφUzkw, kw〉dA(z). Thus

C̃φ(w) =

〈(∫
D
UzCφUzdA(z)

)
kw, kw

〉
=

〈(∫
D
Uz( lim

n→∞
TBnCφ)UzdA(z)

)
kw, kw

〉
= lim
n→∞

〈(∫
D
(UzTBnCφUz)dA(z)

)
kw, kw

〉
= lim
n→∞

〈
T
B̂nCφ

kw, kw

〉
=

〈
T

lim
n→∞

B̂nCφ
kw, kw

〉

= B
(

lim
n→∞

B̂nCφ

)
(w)

= B(ψ)(w) = ψ̃(w)

where ψ = lim
n→∞

B̂nCφ. �

Corollary 3.9 If Cφ ∈ L(L2
a(D)) and there exists a sequence {ψn} such that

Tψn → Cφ strongly then there exists a sequence {φn} such that Tφn → Cφ strongly

and T ∗φn → C∗φ strongly in L(L2
a(D)).

Proof: It is well known [18] that if {An} is a sequence of operators on a Hilbert

space H and An → A in strong operator topology, then there exists {Bn}, Bn =
mn∑
k=1

γkAk such that γk ≥ 0,
∑
γk = 1, Bn → A strongly and B∗n → A∗n strongly.

The corollary is a direct consequence of this. �

4. Applications

The applications of these asymptotic results and the intertwining property of

composition operators in this article are manifold (see [3],[16],[27]). We shall present

here only one application of these results relating to distances between the unitary

operator Ua and Cφ, a ∈ D. Notice that if φ ∈ H(D) (the space of all holomorphic

functions from D into itself) a ∈ D, then ‖Ua − Cφ‖ < 1 implies the operator Cφ

is invertible. This is so for the following reasons : since Ua is unitary and U2
a = I

hence ‖I − UaCφ‖ = ‖U2
a − UaCφ‖ = ‖Ua − Cφ‖ < 1. Thus UaCφ is invertible

and therefore Cφ = Ua(UaCφ) is invertible. This implies φ is conformal [24]. The

following is also true.

Theorem 4.1 (i) Let φ ∈ H(D) be conformal and (xn) be a sequence of real
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numbers such that xn = o(1). Suppose ‖Uaf − rTBnCφf‖ < 1 + xn for some real

number r > 1 and for all f ∈ L2
a(D) and n ∈ N. Then ‖Ua − Cφ‖ < 1.

(ii) Let φ ∈ H(D) be a rotation, that is, φ(z) = αz, |α| = 1. Suppose (xn) is a

sequence of real numbers such that xn = o(1). If ‖Uaf − TBnCφf‖ = 2 + xn for all

f ∈ L2
a(D) and for all n ∈ N then Ua + Cφ is not invertible.

Proof:(i) Suppose φ ∈ H(D) is conformal and ‖Uaf − rTBnCφf‖ = 1 + xn for all

n ∈ N and for all f ∈ L2
a(D). Then Cφ is invertible [24] and since TBnCφ → Cφ in

strong operator topology, we have for all f ∈ L2
a(D),

‖Uaf − rCφf‖ = lim
n→∞

‖Uaf − rTBnCφf‖

= lim
n→∞

(1 + xn) = 1.

Thus ‖Ua − rCφ‖ = 1. By [23], 0 is not in the approximate point spectrum of the

operator rCφ = ‖Ua−rCφ‖Ua+(rCφ−Ua) if and only if ‖(r−1)Ua−(rCφ−Ua)‖ <
(r−1)+‖rCφ−Ua‖ = r. Hence, r‖Ua−Cφ‖ = ‖rUa−rCφ‖ = ‖(r−1)Ua− (rCφ−
Ua)‖ < r and so ‖Ua −Cφ‖ < 1. This proves (i). For proof of (ii), let φ ∈ H(D) be

a rotation. By [5], this implies Cφ is an isometry on L2
a(D) and so ‖Cφ‖ = 1. Let

r > 1 = ‖Cφ‖ and W =
Ua+Cφ

r . Then Cφ = rW −Ua and ‖Ua − rW‖ = ‖Cφ‖ = 1.

Proceeding as in (i), one can show that W =
Ua+Cφ

r is not invertible if and only if

‖Ua− Ua+Cφ
r ‖ ≥ 1. That is, if and only if ‖(r−1)Ua−Cφ‖ = r. Equivalently, if and

only if ‖Ua−Cφ‖ = 1 + ‖Cφ‖ = 2. Thus we have shown that ‖Ua−Cφ‖ = 2 if and

only if Ua +Cφ is not invertible. In (ii), it is given that ‖Uaf − TBnCφf‖ = 2 + xn

for all f ∈ L2
a(D) and for all n ∈ N. Since TBnCφ → Cφ in strong operator topology,

hence for all f ∈ L2
a(D), ‖Uaf −Cφf‖ = lim

n→∞
‖Uaf −TBnCφf‖ = lim

n→∞
(2 +xn) = 2.

That is, ‖Ua − Cφ‖ = 2 and hence Ua + Cφ is not invertible. �
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