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Abstract Unmanned Aircraft Systems (UAS) have been
widely applied for reconnaissance and surveillance by
exploiting information collected from the digital
imaging payload. The super-resolution (SR) mosaicing
of low-resolution (LR) UAS surveillance video frames
has become a critical requirement for UAS video
processing and is important for further effective image
understanding. In this paper we develop a novel
super-resolution framework, which does not require
the construction of sparse matrices. The proposed
method implements image operations in the spatial
domain and applies an iterated back-projection to
construct mosaics  from  the
overlapping UAS surveillance video frames. The
Steepest Descent method, the Conjugate Gradient
method and the Levenberg-Marquardt algorithm are
used to numerically solve the nonlinear optimization

super-resolution

problem for estimating a super-resolution mosaic. A
quantitative performance comparison in terms of
computation time and visual quality of the super-
through the
techniques is presented.

resolution mosaics three numerical
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1. Introduction

An Unmanned Aircraft System (UAS) [1] is an aircraft or
ground station that can be either remote controlled
manually or is capable of flying autonomously under the
guidance of pre-programmed GPS waypoint flight plans
or more complex on-board intelligent systems. UAS
aircrafts have recently found extensive applications in
military reconnaissance and surveillance, homeland
security, precision agriculture, wildlife conservation, fire
monitoring and analysis and other different kinds of aid
during disasters. Through surveillance videos captured
by a UAS digital imaging payload over the areas of
interest, different UAS missions can be conducted.
However, the data analysis of UAS videos is frequently
limited by motion blurring, resulting from frame-to-
frame movement induced by aircraft rolling, wind
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gusting, less than ideal atmospheric conditions, the noise
inherent within the image sensors, etc. Therefore, the
super-resolution mosaicing of low-resolution UAS
surveillance video frames has become a critical
requirement for UAS video processing and a pre-step for

further effective image understanding.

Given multiple images of a particular scene, multi-frame
super-resolution reconstructs a high-resolution image
with a resolution above the limits of the camera [2-4]. The
super-resolved image should have more details than any
of the low-resolution images. Mosaicing is the alignment
or stitching of two or more images into a single more
informative composition representing a 3D scene [5-6].
Generally speaking, the mosaicing creates a panorama,
which is impossible to visualize with only one video
frame.

Super-resolution mosaicing combines both multi-frame
super-resolution and mosaicing and has a number of
applications when surveillance video from UAS or
satellite is applied. One clear application is the
surveillance of certain areas, even during night, with the
use of an infrared (IR) imaging system. The UAS can fly
over areas of interest and generate super-resolved
mosaics that can be analysed at the ground control
Other important applications
supervision of high voltage transmission lines, oil pipes,
highway systems, etc. NASA also uses super-resolution
mosaics to study the surface of Mars, the Moon and other

station. involve the

planets.

Super-resolution mosaicing has been studied by several
researchers. Zomet and Peleg [7] applied overlapping
areas within a sequence of video frames to create a super-
resolved mosaic. In their method, the SR reconstruction
technique proposed in [8] is applied to a strip rather than
a whole image. This means that the resolution of each
strip is enhanced by the fusion of all the frames that
contain that particular strip. The disadvantage is that this
method is computationally expensive. Ready and Taylor
[9] introduced a Kalman filter to compute the super-
resolved mosaic. They added unobserved data to the
mosaic using Dellaert’s
constructed a matrix for the observed pixels to estimate
pixel values. This matrix is constructed using a
homography matrix and the point spread function (PSF).
The problem is that this matrix is extremely large, so they
used a Kalman filter and diagonalization of the
covariance matrix to reduce the amount of storage and
computation. The drawback of this algorithm is the use of
a large matrix and the best results with synthetic data
obtain a PSNR of 31.6dB. Simolic and Wiegand [10]
developed a method based on image warping. In this
method, each pixel from every frame is mapped into the
SR mosaic and its grey level value is assigned to the

method. Basically, they

Int J Adv Robotic Sy, 2013, Vol. 10, 249:2013

corresponding pixel in the SR mosaic within a range of
+0.2 pixel units. The drawback of this method is that it
requires that the motion vectors and homography must
be highly accurate, which is very difficult for real
surveillance videos from UAS. Wang, Fevig and Schultz
[11] used the overlapped area within five consecutive
frames from a video sequence. Then sparse matrices were
applied to model the relationship between the LR and SR
frames, which can be solved using maximum a posteriori
estimation. To deal with the ill-posed problem of the
adopted  hybrid
regularization. The drawback of this method is that
several sparse matrices have to be built for every five
frames. Therefore, this method is not appropriate for
dealing with a real video sequence, which contains
thousands of frames, in real time. Pickering and Ye [12]
proposed an interesting model for mosaicing and super-
resolution of video sequences, where the regularization
factor is based on the Laplacian operator. The problem
with the Laplacian factor is that it forces spatial
smoothness. Therefore, both noise and edge pixels are
removed in the regularization process. Arican and
Frossard [13] wuse the Levenberg-Marquardt (LM)
algorithm to compute the SR of omnidirectional images.
Chung [14] proposed a nonlinear least square solution
based on the Gauss-Newton method. The disadvantage of
this is that it only works for small images.

super-resolution  model,  they

Our method combines the ideas of most of these
techniques, but it also deals with super-resolution
mosaicing in a different manner, which does not require
the construction of sparse matrices. Therefore, it is
feasible to apply the algorithm to a relatively long image
sequence and obtain a video mosaic. In addition, we
adopt Huber regularization, which preserves high
frequency pixels and then sharp edges are also preserved.
Furthermore, we model the super-resolution mosaicing
problem in a convex framework [4], which guarantees the
convergence of the proposed algorithm.

2. Mathematical modelling
2.1 Observation Model

Assuming that there are K frames of LR images available,
the observation model can be represented as:

¥, = DB,W,R[x], +n, =Hx+n, (1)

Here, y, (k=12 ..., K), x and n, represent the k" LR
image, the part of the real world depicted by the super-
resolution mosaic and the additive noise, respectively. The
observation model in (1) introduces R[x], , which represents
the reconstruction of the k" warped SR image from the
original high-resolution data x. The geometric warping
operator and the blurring matrix between x of the real
world and the k" LR image frame y, are represented by
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W, and B,, respectively. The decimation operator is
denoted with D. The motion between frames is modelled
with planar homography. We compute the homography
based on the correspondences of SIFT (Scale Invariant
Feature Transform) features [15-16] and Random Sample
Consensus (RANSAC) strategy [17]. The robustness of the
SIFT feature has been verified in feature matching and object
recognition. The estimation of the unknown SR mosaic
image is not only based on the observed LR images, but also
on many other assumptions such as the additive noise and
the blurring process. The additive noise, 3, , is considered to
be independent and identically distributed (iid) white
Gaussian noise. The blurring effect is considered only from
the optical equipment. Therefore, the problem of finding the
maximum likelihood estimate (MLE) of the SR mosaic image
X can be formulated as:

K 2
X =argmin Z(yk—DBkaR[x]k) )

x k=1
where H H denotes the Euclidean norm. As the SR

reconstruction is an ill-posed inverse problem, we need to
add another term for regularization, which must contain
prior SR mosaicing. This
regularization term helps to convert the ill-posed
problem into a well-posed solvable problem. Here we
adopt the Huber regularization:

information for the

2

K
X =argmin Z:(yk - DBkaR[x]k) +4 z p(g,a)r (3)
X k=1 geG,

The Huber function is defined as:

2 ‘X‘Sa

X
p(x,a)= { 4)

Za‘x‘ —a?, otherwise

2.2 Super-resolution Mosaicing Using Steepest Descent
Method

Based on the gradient descent algorithm for minimizing
(3), the robust iterative update for X can be expressed as:

K

KD 2 g 4 o) {RT [ WIBLD™ (v, - DBW,RIZ™, )Ll 5

—2MWGT (G, a)}
where G is the gradient operator over the cliques [8, 18]
and 4™, the regularization operator can be computed as:

K 2
S oms)
=1

K plg a)

geG,

2 —
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Furthermore, the derivative of the Huber function is
given as:

2x, ‘x‘ <a

p'(x,a)= { @)

2asign(x), otherwise

The gradient operator G has the advantage over the
Total Variation (TV). The Huber function and its gradient
with respect to X
Therefore, the optimization problem can be solved using
the gradient-descent methods such as the steepest descent

and the conjugate gradient methods.

are continuous as well as convex [19].

The spatial interactions are adopted in our proposed
method. The clique structure determines the spatial
interactions, where the activity is computed with finite
difference approximations to the second-order directional
derivatives

(vertical, horizontal and two diagonal

directions) in each super-resolution mosaic ™

2.3 Super-resolution Mosaicing Using Conjugate Gradient
Method

The solution of (3) can be estimated using conjugate
gradient as:

LD Z g g (@) ®)

where p™ is chosen to be conjugate to all previous
search directions with respect to Hessian matrix H:

ST &)
p<n>zvf(i<n>)+[ VEG™)TVEG®) ]M o

VRO D) TvirnD)

The gradient vector, Vf(fc(“)) , is described as follows:

K

VER™) = RT [WQ BID (y, - DBkaR[%“)]k)Ll )

- 2WGT p(Gx'V, )

The gradient operator G is the same as that in the
steepest descent method.

2.4 Super-resolution Mosaicing Using Levenverg Marquardt
Method

Similar to the gradient methods, the Levenberg-
Marquardt method [20] can converge from an initial
guess, which may be outside of the convergence region of
other methods. In order to minimize (3), we define
u=£(x) as:

2
f(x) = +A Y plga) (1)
geG,

K
> (v~ DB W,R[x])
k=1

f(x + 8x) = f(x) + J6x (12)
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where J(x) is the Jacobian matrix:

2

K
(Y ~DBWR[x] )| +2 Y p(g,)
](X) _ 6f(x) -3 k=1 geG
[5). Ox
K
~R"| W/BD' (y, - DB,W, R, )L (13)

_ l(n)GTp'(Gf((n),a)

The Levenberg-Marquardt method is an iterative process.
Initiating at the starting point %*), the method to solve
OX minimizes:

where ¢ =u-f(X) and then 6x can be found by solving a
linear least squares problem [18, 20]. The minimum is
attained when Jdx-¢ is orthogonal to the column space
of J. This leads to:

u-f(fH—é‘x)H z‘

u - f(X) —]5XH =

e-Jox| (1)

I"Tox=]"e (15)
Hox=]"¢ (16)

where H =]"] is called the pseudo-Hessian matrix.
Then the Levenberg-Marquardt method is to solve
Equation (16) by adding a damping term to the diagonal
elements of H . The
Marquardt equation is:

corresponding  Levenberg-

(H* + cI)5x =1Te 17)
where Ox is solved as:

ox =argmin
5x

‘(H +CI)§X—JT8H (18)

After o6x is known, we have:
KD = 3™ 4 5x (19)

Here c is the Levenberg-Marquardt damping term that
determines the behaviour of the gradient in each
iteration. If ¢ is close to zero, then the algorithm behaves
like a Gauss-Newton (GN) method, but if ¢— o, then
the algorithm behaves like the steepest descent (SD)
algorithm. The values of ¢ during the iterative process
are chosen in the following way. At the beginning of the
iterations, c is set to a large value, so that the LM method
integrates the robustness of SD and the initial guess of the
solution to (3) can be chosen with less caution. It is
necessary to save the errors for each iteration and carry
out the comparison between two consecutive errors. If
error, <error, ; , ¢ is decreased by a certain amount
so that LM behaves like the Gauss-Newton method and it
speeds up convergence. Otherwise, ¢ is increased to a

Int J Adv Robotic Sy, 2013, Vol. 10, 249:2013

larger value, the searching area is then extended, which

means that LM behaves like SD. The error, is defined
as:
X, . —X
error,, | = HkJrlAikH (20)
©) .

3. Experimental results

The experimental tests are based on three sets of data.
One is the synthetic data. The other two are the real UAS
data, where one is grey-level image data set and the other
is the colour image data set. We created synthetic LR
frames from a single high-resolution image. These LR
frames were first produced using different translations
(18 to 95 pixels), rotations (5° to 10°) and scales (1 to 1.5)
and then they were blurred with a Gaussian Kernel. The
real grey video data were captured by an experimental
small UAS operated by Lockheed Martin Corporation
flying a custom-built electro-optical (EO) and an
uncooled thermal infrared (IR) imager. The time series of
images are extracted from the UAS videos with a low-
resolution of 60 x 80. The colour image data are collected
with a regular camera mounted in a UAS by Cloud Cap
Technology company.

We conducted the three proposed algorithms for super-
resolution mosaicing on both synthetic data and real data
and then compared their performance. The mosaicing
results constructed from the low-resolution input images
are set as the initializations for the proposed algorithms.
The comparisons are based on PSNR (Peak Signal to
Noise Ratio), running time and iteration error for the
synthetic data sets and running time and iteration error
for the real data from UAS videos because there is no
ground truth data available to compute the PSNR for real
data. Figures 1, 2 and 3 show the super-resolution
mosaics produced from the three different algorithms on
the synthetic test data and two sets of real video data.
Tables 1, 2 and 3 list the corresponding quantitative
comparisons for outcomes from the three different
algorithms. From Figures 1, 2, and 3 and Tables 1, 2, and
3, it can be seen that all the methods improve the
resolution of the LR mosaic and all of them improve the
colour, details and sharpness. However, when the image
is grey (IR images), the Levenberg-Marquardt method
produces some artefacts since it solves a linear square
equation that is close to being singular (13). The final
error for the steepest descent and conjugate gradient
algorithms decreases with every iteration, which means
that they converge to the optimal solution in every step.
However, this error from the Levenberg-Marquardt
algorithm can decrease or increase due to the use of the
damping factor, ¢, which accelerates the search for the
optimal solution. The Levenberg-Marquardt method,
interpolating between the Gauss-Newton method and
the Gradient Descent method, avoids the time-consuming

www.intechopen.com



computation of the inverse of the pseudo-Hessian matrix
in regular singular value decomposition (SVD).

Based on test results on synthetic data and real video data
captured from UAS, the Conjugate Gradient method
produces the best super-resolution mosaicing results in
visual performance. There is almost no difference in

visual performance on the super-resolution of the mosaic
images between the Levenberg-Marquardt method and
the Steepest Descent method. However, the experimental
outcomes show that the Steepest Descent method used
the least time among the three approaches to reach the
convergence and is the most efficient method.

Figure 1. Test on synthetic images. Comparison of the three proposed algorithms: steepest descent, conjugate gradient and Levenberg-
Marquardt. (a) LR mosaic. (b) Ground truth HR mosaic. (c) SR mosaic using steepest descent method. (d) SR mosaic using conjugate
gradient method. (e) SR mosaic using Levenberg-Marquardt method.

Final error
PSNR X 2 Total Processing Time on
Algorith X1 —X
gorithm (dB) |error,, = “171“ CPU (sec)
%

- luti i T td t
Supe.r resolution using steepest descent |, o, 0.006391 4605
algorithm

- luti i j t
Supe.r resolution using conjugate 4398 0.004381 5,047
gradient algorithm

-resoluti ing L -
Super-resolu ion using evenberg 4377 0.002833 5492
Marquardt algorithm

Table 1. Comparison of the three proposed algorithms to compute super-resolution mosaics for synthetic colour images.
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(@ (b)

(© (d)

Figure 2. Test on real IR video images captured from UAS. Comparison of the three proposed algorithms: steepest descent, conjugate
gradient and Levenberg-Marquardt. (a) LR mosaic. (b) SR mosaic using steepest descent method. (c) SR mosaic using conjugate gradient

method. (d) SR mosaic using Levenberg-Marquardt method.

Final error
% 2 Total Processing Time on
; X, .1 —X
Algorithm error,, = M CPU (sec)
Xy

Supe.r-resolutxon using steepest descent 0.065014 10.844
algorithm
Super-resolution using conjugate gradient

. 0.097590 11.907
algorithm
Supe.r-resolutxon using Levenberg-Marquardt 0.068155 11.750
algorithm

Table 2. Comparison of the three proposed algorithms to compute super-resolution mosaics for real video IR frames captured by UAS.

Figure 3. Test on real colour images captured from UAS. Comparison of the three proposed algorithms: steepest descent, conjugate
gradient and Levenberg Marquardt. The images belong to the first set of colour video frames captured from UAS.
(a) LR mosaic. (b) SR mosaic using steepest descent. (c) SR mosaic using conjugate gradient. (d) SR mosaic using Levenberg Marquardt.

Final error
Algorithm - ";‘M -%, " Total Processing Time on CPU
R o
k
Super-resolution using steepest descent 0. 002469 16218
method.
Super-resolution using conjugate gradient 0.005055 16.891
method.
Super-resolution using Levenberg Marquardt 0.005424 17.485
method.

Table 3. Comparison of the three proposed algorithms to compute super-resolution mosaics for real colour video frames captured by UAS.

4. Conclusions

The three optimization methods: the Steepest Descent
method, the Conjugate Gradient method and the
Levenberg-Marquardt method, are applied to model the
super-resolution of the mosaic images. Their running
efficiency and visual performance on synthetic test data
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and physical test data collected from UAS are compared.
Experimentally, the Conjugate Gradient method gives the
best super-resolution mosaic results in visual
performance while the Steepest Descent method is the
most efficient method to converge. There is no large
difference in visual performance in the super-resolution
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mosaicing from the Levenberg-Marquardt method and
the Steepest Descent method.
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