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Abstract In this work, a path planning strategy for
both a car-like and a unicycle type assistive vehicles
is presented. The assistive vehicles are confined to
restricted environments. The path planning strategy uses
the environment information to generate a kinematically
plausible path to be followed by the vehicle. The
environment information is provided by a SLAM
(Simultaneous Localization and Mapping) algorithm
implemented on the vehicles. The map generated by
the SLAM algorithm compensates the lack of sensor at
the back of the vehicles’ chassis. A Monte Carlo-based
technique is used to find the optimum path given the
SLAM information. A visual and user-friendly interface
enhances the user-vehicle communication allowing
him/her to select a desired position and orientation
(pose) that the vehicle should reach within the mapped
environment. A trajectory controller drives the vehicle
until it reaches a neighborhood of the desired pose. Several
real-time experimental results within real environments
are also shown herein.
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1. Introduction

Maneuverability of assistive vehicles is currently
dependent on the user/driver skills. Furthermore, for
indoors vehicles, their movements are restricted by the
structure of the surrounding environment. In hospitals
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or rehabilitation centers, assistive vehicles are used
for medicine-carrying, assistance for the elderly and
disabled people and for patient transportation (see, e.g.,
(1; 2)). Although these vehicles provide a solution in
the assistance field, their lack of intelligence to move
autonomously into unexpected situations or unknown
environments limits their functionality to basic user
dependent behaviors. The robotics field offers a wide
spectrum of solutions to be applicable into the assistance
and rehabilitation areas. Moreover, the mobile robotic tools
can be directly applied to the assistive vehicles to improve
the assistance task. Thus, several tasks can be relegated
from the user control (i.e., user’s efforts) to be commanded
in an autonomous way, optimizing time and resources of
the vehicle.

Generally, the wunicycle type mobile robots are
circumscribed by a circle, thus, the robot can be considered
as a point and the obstacles are avoided according to the
radius of the circle to plan a path or to avoid an obstacle
reactively. In robotic wheelchair, that approach can not
be used in confined spaces, because the circumscribed
circle could be too big and some passageways could
become non-navigable. On the other side, the movements
of wheelchairs are restricted by the environment more
than other unicycle type vehicles. For example, if the
wheelchair is too close to a wall, it cannot rotate freely
because the front or back may collide with the wall
Other case is when the goal point can only be attained
by the wheelchair if it is correctly orientated. This case is
illustrated in Fig. 1.
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Figure 1. Example of wheelchair in a confined environment. The
initial posture is marked by A and the goal posture is marked by
B.

The limited steering angle in the car-like assistive vehicles
restricts their maneuverability, which implies that in
some confined environments the vehicle cannot attain its
objective with a smooth trajectory. For example, turning
back or turning +90 degrees within narrow passageways.

In open spaces, the classical Dubins’ results ((3; 4)) can
be used to obtain a minimal length path for car-like
vehicles. The resulting path consists of straight line
segments or arcs. The radius of the arc is restricted by
the minimum turning radius of the vehicle. However, in
confined spaces, like the one shown in Fig. 2, the Dubins’
approach is not valid because the walls restrict the space
of maneuverability. Thus, a different approach is required
to deal with the restriction imposed by the environment to
the vehicle’s movements.

A pose control (position and heading control) in open
spaces for car-like vehicles is shown in (5). That work
proposes a pose control in two stages. In the first stage the
vehicle is controlled to converge to a line which contains
the desired position and has the same orientation than the
desired one. In the second stage the vehicle is controlled
to converge to the desired position keeping constant the
vehicle’s heading. To deal with the space limitation due
to walls or obstacles, the sign of the vehicle velocity is
switched. However, a singular case may appear when
using this method. The work of (6), applies receding
horizon control method as a real-time optimization. By
applying the method, desirable control is realized for the
car-like robot’s garage parking problem even if there are
unexpected obstacles in the workspace. However, this
method presents local minima when the vehicle is stacked
near the wall or obstacles.

The cited works propose solutions for driving a car-like
mobile robots in confined environments based on
switching of moving directions. However, these works
do not guarantee that the vehicle will attain the objective
using their strategies.

Path planning algorithms and methods provide to the
vehicle the coordinates of a plausible path within the
environment of navigation. Two main categories of
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planning can be found in the scientific literature: local
planning and global planning ((7)). The local planning
is related to the maneuverability strategy from a local
reference frame attached to the vehicle’s motion. In
some cases, reactive navigation (such as sensor-based
navigation) is used instead of planning ((7; 8)) because of
the small amount of environment information used by the
robotic vehicle. Examples of this is the work of (9), where
the vehicle instead of planning, uses range sensor laser
information to instantaneously avoid obstacles within the
environment. On the other hand, the woks of (10) is an
example of local planning. In these works, a navigation
objective is determined within the local point of view
of the mobile robot and a trajectory controller drives the
vehicle to the objective of navigation. The information of
the environment used in the local path planning strategy
is restricted to the sensors measurements at the pose of the
mobile robot.

On the contrary, a global map is not attached to the mobile
robot’s pose. It is usually a fixed point of the environment
to which all information should be referred ((7)). A global
path planning strategy uses the information provided
by the global map to generate a plausible path between
the vehicle and the objective of navigation based on the
planning criterion. Different planning criteria have been
proposed by the scientific literature (see (11; 12)).

Once the optimization criterion has been established, a
search method or algorithm finds the best path between
all the possibilities. For example, the Dkjstra algorithm
((11)) is widely used by the scientific community to find
minimum cost paths ((11)); also the A*, the Graphs method
and the grid-based techniques ((13)) are examples of
global planning methods. A more complete description
of global planning techniques can be found in (11; 12). A
common situation of the global path planning methods
is that they use the environment information to generate
the appropriate path but the way the information was
acquired is usually not considered. Thus, the mobile robot
follows a path generated by a path planning algorithm that
uses prior map information ((13)) which is not necessary
related to the sensors available on the vehicle. Thus,
for example, the graph method ((8)) cannot be used
if the mobile robot has sonar sensors to acquire range
measurements because of the dispersion of the ultrasonic
readings; the graph method requires a prior precise
knowledge of the map of the environment. In order to use
the environment information, a mapping process should
also be included within the planning strategy.

Simultaneous localization and Map building (SLAM) is
a challenging field of research of the mobile robot area
((13; 14)). The SLAM algorithm is advocated to minimize
the errors involved in the localization and mapping
processes, returning a reliable estimation of both: the
pose —position and orientation— of the robot within the
environment and the features from that environment.
Self-localization of mobile robots is a fundamental issue
in autonomous navigation: a mobile robot must be able
to estimate its pose within a map of the environment it is



navigating ((15; 16)). However, in many applications of
practical relevance (like exploration tasks or operations in
hostile environments), a map is not available or it is highly
uncertain. Therefore, in such cases the robot must use
the measurements provided by its sensory equipment to
estimate a map of the environment and, at the same time,
to localize itself within that map.

Several techniques have been proposed to solve the
SLAM problem, such as the Extended Kalman Filter (EKF)
((17; 18)) which is one of the most used filters in SLAM
((13)). The EKF uses linearized models of the robot motion
and the environment. The estimation process considers
the system state as a Gaussian random variable. The
map constructed by the EKF-SLAM algorithm is usually
composed by geometric features from the environment.
The work of (16) shows an EKF-SLAM based on the
extraction of lines from the surrounding environment
whereas the work of (19) shows a point-based map (trees
were modeled as point-based features). The Information
Filter (IF) is another solution to the SLAM problem. It
is primary used to solve the processing time problem
of the EKF ((20)). The Unscented Kalman Filter (UKF)
is another approach ((13)). The main contribution of
the UKF is the managing of the non-linearities of both:
the measurement and the motion model. More recent
approaches use the Particle Filter (PF) as a solution to the
SLAM problem. The PF-SLAM ((13)) does not depend
on the non-linearities of the models and it is not sensitive
to non-Gaussian distributions. Although it seems to be a
better solution, the high processing time involved within
the estimation process makes it unsuitable for real time
implementations. For example, PF-SLAM based on grid
maps (Fast-SLAM) presented in (13), presents a very
accurate map reconstruction which is performed after the
navigation process takes place.

In this work, a path planning strategy for assistive
vehicles (both: unicycle and car-like types) operating in
confined spaces is developed combined with a visual
interface. The path is composed by semi-circle arcs
which lengths are limited by the walls or obstacles of the
environment. The Monte Carlo technique is used to find
the radius of these arcs in order to obtain the optimum
path according to a cost function. A SLAM algorithm
is implemented to extract a map from the environment
and to localize the vehicle. Also, that map is used during
the maneuverability strategy since the vehicles used in
this work, only have range sensors at the front of their
chassis. Therefore, the safety of the backward movements
is associated with the SLAM performance. Although this
work uses an EKF-SLAM algorithm that extracts corners
and lines from the environment, the path planning strategy
presented herein does not depend on the type of SLAM
algorithm used (as long as the SLAM algorithm allows a
geometric-based reconstruction of the environment). The
objective of the path planning can be divided into three: to
turn the vehicle until a desired heading is attained, to reach
a given point from the environment and to reach a given
point from the environment with a desired orientation.
A trajectory tracking control is used to drive the vehicle
over the planned path. A visual interface enhance

the user-vehicle communication, providing a friendly
interface to command the vehicle’s motion through the
environment. Many experiments are performed herein to
show the functionality of the proposed system.

(@) (b)

Figure 2. Path planning based on Dubins’ results. a) The figure
shows the case when the robot has to turn to the right of the
passageway. On the other hand, b) shows the case when the robot
has to turn back within the passageway. The blue lines represent
the planned path.

2. Related Work

As was stated in section 1, the maneuverability problem
for vehicles is a latent issue for assistive applications.
Either for kinematic constrains (such as in car-like mobile
robots) or for dimensions constrains (such as in motorized
wheelchairs), the maneuverability problem has been
studied during the last years by the scientific community.

The solutions to the maneuverability problem of assistive
vehicles can be divided into two: a human-computer
interface based solution and an intelligent control
solution. Among the human-computer interfaces based
solutions, the effort was concentrated on linking the
user’s capabilities with the mobile robot system. Thus,
the work of (21) presents a camera based joystick. The
system detects the movements of the head of the user
and thus it generates the motion commands of the robotic
wheelchair. The work of (22) presents a Brain-Computer
Interface (BCI). This BCI generates a finite state machine
based on evoked visual potentials. Each state of the
BCI is associated with motion commands of the robotic
wheelchair. Therefore, the user is able to command
the robotic wheelchair by means of his/her evoked
visual potentials. Due to the fact of the limitations of
generating evoked visual potentials, the speed of the
finite state machine associated with the BCI is limited
by the user’s learning. Also, the work of (23; 24) show
different examples of BCI's combined with rehabilitation
devices. The work of (25) presents a Muscle-Computer
Interface (MCI) to command a mobile robot motion
based on supination and pronation movements. In this
research line, the works of (26; 27) also offer different
applications of MCI to command a mobile robot. Despite
of the human-computer interface used, the common
denominators of the work presented before is that the body
of the user is considered as a sophisticated joystick. The
joystick device, when used, it is associated with the user
capabilities. Thus, we can find hand-joysticks, joystick
governed by the tongue and by feet ((28)), etc.
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On the other hand, the intelligent control solutions to the
motorized wheelchair maneuverability problem involves
the human-computer interactions, the learning algorithms
and the control system design to drive the vehicle in a
safe manner. Thus, the work of (29) presents an intelligent
wheelchair that allows the user to avoid obstacles and
plans movements by means of a visual interface. The work
of (30) presents a maps managing algorithm for robotic
wheelchair systems. The maps managing algorithm
allows the storage of multiple real maps from known
environments. Thus, if the user of the wheelchair has
to go to a specified location within a stored map, then
the system generates a feasible trajectory to drive the
vehicle to the desired position. This work uses the Dkjstra
((11)) algorithm to generate the best path from all possible
solutions and it considers the kinematic constrains of the
vehicle. Another example is the work of (31), where
the authors present a strategy to deal with populated
environments when navigating a motorized wheelchair.

Although the presented works offer different solutions to
the maneuverability problem, they do not manage the lack
of environment information problem. Thus, the robotic
wheelchair is considered as a point for control purposes,
therefore, environmental restrictions are not considered.
For example, the robotic wheelchair presented in (32) is
1.2 meters long and 0.7 meters wide. If that wheelchair
were located within a 1 meter wide corridor, it would
probably will not be able to turn back without a great
effort of the user. Furthermore, considering that the user’s
capabilities might not allow him/her to look back, then an
intelligent control technique should assist the user when
executing this kind of tasks. For this specific problem,
the authors have already published experimental and
theoretical solutions ((33-36)). Although, these solutions
are concentrated in guiding the robotic wheelchair to a
desired orientation within the environment. In this work,
we extend our solution to guide the assistive vehicle to a
desired point and/or a desired orientation. Also, the visual
interface that we present in this work can be adapted to the
user’s capabilities.

3. System Architecture

Figure 3 shows the general system architecture presented
in this work.

Figure 3 can be briefly summarized as follows.

e While the robot is driven within the environment, it
performs a SLAM algorithm to acquire a feature-based
map of the environment and to localize itself
minimizing errors.

* Once the turning algorithm is invoked, the system
uses both the map information and the vehicle’s
pose estimation provided by the SLAM to generate
an obstacle-free semi-circle inspired trajectory which
switches the direction of the motion according to the
map disposition. The benefits of using SLAM are
shown in the reverse drive of the robot due to the
fact that the vehicle does not have range or proximity
sensors at the back of its chassis. The SLAM allows the
vehicle to drive safely.
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e A kinematic trajectory controller is used to drive the
vehicle.

e Once the vehicle has reached the desired
orientation/position/postion&orientation it stops its
execution. The vehicle returns to its navigational
operation modus.

Figure 3 shows the different Human-Computer Interfaces
(HCI) that can be used within our maneuverability
strategy proposal. Though we are using a hand-based
joystick, the system could be adapted to the user’s
capabilities. The motion control generated by the HCI is
directly sent to the robotic wheelchair. In this case, the user
has a full control of the vehicle. Once the user has to reach
a desired orientation, position or both, the wheelchair’s
control passes to the Maneuverability Strategy.

Once the user has to attain a desired orientation and/or
position, the path planning strategy generates a Monte
Carlo based set of feasible paths. Only one path is chosen
based on a predefined criterion. In this work, we have used
the kinematic energy associated with a path as a criterion
to chose the best path. The path generation stage uses both:
the robot position and the environment information to
generate feasible paths. This information is passed by the
SLAM algorithm. The SLAM algorithm is implemented
on an Extended Kalman filter (EKF) and extracts corners
and lines from the environment. The corners can be both:
concave or convex and lines are associated with walls from
the environment.

Once a path is chosen, a trajectory controller generates
the driving commands to control the robotic wheelchair
motion which, in turn, interacts with the environment.
The following sections will explain in detail each of the
blocks of Fig. 3.

Maneuverability Strategy

Brain- Computer Path
Interface Plannln
Muscle-Computer Trajectory
RObOUC SLAM Contro\ler
Wheelchalr

Vehicle's

General Human-
Computer Interfaces

Kinematic
Model

]

User s
Intentions

Figure 3. General system architecture.

3.1 Human-Robotic Interface

The visual interface used in this work allows the user
to choose both, the desired orientation and/or the
desired final position by means of a hand joystick.
Considering that the hand joystick is also used during
the non-autonomous navigation of the robotic wheelchair,
some considerations must be taken into account. Thus,
if the maneuverability strategy presented in this work is
not required by the user, the full motion command of the
robotic wheelchair remains on the hand joystick governed
by the user. Once the user has to maneuver within a
confined space, the control of the robotic wheelchair passes



to the maneuverability system presented herein, but the
decision must be taken by the user.

robotic
wheelchair

control
commands

No State 1

Visual

Interface

State 2

Figure 4. Finite state machine of the joystick associated with the
HMI.

Visual Interface

First Screen Second Screen

0

]
]
I/
Space Scanning
(meters)

180
Angle Scanning
(degrees)

Figure 5. Visual interface. The screen on the left shows how the
angle scanning works whereas the screen on the right shows how
the space scanning works. The map loaded at the screen on the
right corresponds to the map generated by the SLAM algorithm.
Solid red segments are associated with lines from the environment
and the green dots are associated with corners.

Therefore, in this work we have implemented a finite
state machine specially designed to interpret the joystick
commands. Then, let y; be the lean forward value of the
hand joystick and —y; the respective lean backward value;
let x; be the lean right value of the joystick and —x; its
corresponding lean left value. Figure 4 shows the layout of
the finite state machine presented herein. In Fig. 4, a; and

B are positive constants such that a; > B, nj =,/ x% + y%

y 0) = atan2{—y;, x;}. The variables m; and 6; are defined
as the magnitude and the orientation, respectively, of the
joystick.

The finite state machine begins at the state ”1”.
Considering that it needs a signal from the joystick to leave
the non-autonomous modus and start the autonomous
navigation, the backward movement of the joystick is used
to make such transition. The rest of the joystick movements
will drive the robotic wheelchair in a conventional way
when operating in a non-autonomous modus. The
backward movement of the robotic wheelchair will be
performed in a special way: it will be at very low speed
and proportional to the joystick lean when —a; < y; < 0.
When y; < —aj then the finite state machine passes from
state “1” to state ”2”. The state “2” represents the visual
interface that will be explained following. To leave the
visual interface and return to state ”1”, the user has to
generate a backward movement of the joystick such that
y; < —aj. Figure 4 shows the general representation

of the finite state machine used to command the robotic
wheelchair.

The visual interface associated with state ”2” in Fig. 4 is
represented in Fig. 5. As it can be seen, Fig. 5 is represented
by two screen: one screen is associated to the orientation
desired by the user whereas the second screen is associated
with the position desired by the user. To choose a desired
orientation, the system works as follows.

(i) The arrow at zero degrees —see Fig. 5- waits five
seconds before starting the rotation.

(ii) If during the five seconds of the last item, the user
generates a backward movement with the joystick
such that y; < —a;, then an angle scanning begins.

(iii) The angle scanning is a moving arrow that starts at
zero degree —from a local reference frame attached to
the vehicle— up to 360 degrees, with a step jump of
one degree.

(iv) If during the angle scanning a backward movement
of the joystick is detected with y; < —a;, then that
angle is selected as the desired orientation for the
planning strategy. Then, the control passes to the
second screen to select the desired position within the
map.

(v) If after two angle scanning of 360 degrees the user
does not select a possible orientation, the control
passes to the second screen, in order to select a
possible desired position.

The selected angle in the procedure explained before
determines the desired angle that the wheelchair should
reach based on the planning algorithm presented in this
article. Once the control passes to the second screen, the
user has the possibility of choosing a possible desired
position within the environment constructed by the SLAM
algorithm. This procedure works as follows.

(i) The map of the environment is loaded within the
second screen. This map is obtained from the SLAM
system state, which has the parameters of the lines
and corners detected from the environment.

(ii) This map is held for five seconds. If during this time
the user generates a backward movement with the
joystick such that y; < —aj, then a scanning begins.

(iii) This space scanning is equivalent to the one shown
in (30). In this article, a blue circle scan the
navigable space of the mapped area ((12)). The scan
is performed horizontally (in Fig. 5, the line that is
followed by the blue circle is the dashed black line).
If the users choose a point that does not belong to the
navigable space of the mapped area, then the visual
interface quits without passing any reference to the
planning strategy.

(iv) The user is able to select a navigable point by
generating a backward movement with the joystick
such that y; < —a;. Then, the center of mass of the
blue circle represents the desired orientation chosen
by the user.

(v) If after two scans the user does not select a position,
the planning algorithm is executed with the desired
orientation information —if available-. Otherwise, the
finite state machine returns to state ”1”.
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Thus, the visual interface of Fig. 5 can return the desired
orientation, the desired position or both. In the following
sections, the path planning algorithms will be explained
for each case.

3.2 EKF-SLAM

The SLAM algorithm implemented in this work is a
sequential EKF feature-based SLAM ((13)). The features
extracted from the environment correspond to lines
and corners -concave and convex-. The system state
is composed by the vehicle estimated pose and the
features of the environment. For visualization and map
reconstruction purposes, a secondary map is maintained.

This secondary map stores the beginning and ending
points of the segments associated with the lines of the
environment. Thus, the secondary map allows finite walls’
representation. The secondary map is updated according
to the feature correction in the SLAM system state, and
if a new feature is added to that system state, it is also
added in the secondary map ((37)). Equations (1) and (2)
shows the system state structure and its covariance matrix.
All elements of the SLAM system state are referenced to a
global coordinate system.

sy — | Tolklk)
) = | 500 W
_ | Poo(klk) Pom(klk)

P = | peni | ?
In Eq. (1), £(k|k) is the system state estimate; £,(k|k) =
[ 2o, (klk) %o,y (k|k) %0 (k|k) ] T is the estimated pose of
the vehicle; £, (k|k) represents the map of the environment
and it is composed by the Cartesian coordinates that define
a corner and the polar coordinates that define a line in the
environment. The order in which lines and corners appear
in %, (k|k) depends on the moment they were detected.
P(k|k) is the covariance matrix associated with the SLAM
system state; Py, (k|k) is the covariance of the vehicle
pose and Py, (k|k) is the covariance of the features of
the environment. The rest of the elements of the P(k|k) are

the cross-correlation matrices.

The covariance matrix initialization techniques and the
EKF definition can be found in (17; 18). A sequential EKF
((13)) was implemented in order to reduce computational
costs.

The features extraction algorithm and modeling can be
found in (25).

3.3 Robotic Wheelchair

The robotic wheelchair used in this work was developed
by the Electrical Engineering Department of the
Universidade Federal do Espirito Santo, Brazil —see Fig. 6-.
The hardware architecture of the robotic wheelchair shown
in Fig. 6 is composed by: a commercial electric wheelchair
from which only motors and the mechanical structure
are used; two encoders directly connected to the motors;
a MSP430F1611 microprocessor —from Texas Instrument;
an on board computer and range sensor laser (built by
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SICK). This laser acquires 181 measurements from 0 to 180
degrees, with a maximum range of 30 meters. The laser is
used to extract corners and lines from the environment for
the EKF-SLAM algorithm. All the algorithms developed
herein were implemented on Windows operative system
using Microsoft Visual C++.

range sensor
Laser

Micr
I Controller

Figure 6. Robotic wheelchair used herein.

As it can be seen in Fig. 6, the robotic wheelchair is a
unicycle type vehicle. Its kinematic model is shown in

Eq. (3).

Xxt Xx,t—1
Xyt = | Xyt-1
Xot ] Xg,t—1

In Eq. (3), u; is the linear velocity command whereas wy
is the angular velocity command; A; is the sampling time
of the system; xy, Xy, Xg are the position and orientation
of the vehicle within a global reference frame; & is
the Gaussian noise associated with the vehicle’s model.
Additional information regarding this topic can be found
in (34).

+ At | sin(xgs—1) 0

011 0 “f}+c1>t 3)

wt

cos(xg,-1) 0} [

3.4 Path planning problem

The path planning problem can be divided into three

sub-problems according to their respective objectives:

® Path planning to reach a desired orientation.

® Path planning to reach a desired position.

e Path planning to reach a desired orientation and a
desired position.

The three problems will be analyzed within this section.

In addition, the restrictions adopted to generate a feasible

path can be summarized as:

® The vehicle must follow a kinematic compatible path.

¢ The path must be obstacle-free.

® The vehicle is considered as a rigid body.

Thus, if the path generated by a path planning technique is

not compatible with the vehicle’s kinematics, then it would

probably not succeed on its task ((8)). Also, a path should

not cross any known element from the environment in

order to avoid possible collisions. Within the same line,

the robot is considered as a rigid body instead of a point in

order to avoid collision risks.

Following, we present our path planning proposals.



3.4.1 Path planning first approach: Reaching a desired
orientation

The path planning algorithm is inspired in the work of (5),
where a linear trajectory was followed by a car-like robot to
park it. In this work, the vehicle follows a semi-circle path.
The direction of the driving changes when the vehicle is
close to an element of the environment, as it is shown
in Fig. 7. This process continues until the vehicle has
successfully reached the desired orientation. Considering
that the vehicle follows a semi-circle trajectory, the final
path is a kinematic plausible path ((8)). Also, the radius of
each arc is variable from zero —which represents the turn
of the vehicle over its point of control- to infinite —-which
is associated with a straight line, therefore, the vehicle
follows a straight line—. In the case of car-like robots, the
radius are generated from the minimum radius of turning
of the vehicle to infinity. The arc generation procedure is
based on the Monte Carlo method. This procedure was
previously presented by the authors in (33). The path
generation procedure can be summarized as follows.

(i) From the wheelchair’s pose and having into account
the map information provided by the SLAM
algorithm, N arcs are generated. These arcs have
different radius generated by the Monte Carlo
method ((36)). The arcs go from the wheelchair’s pose
to the closest element from the environment.

(ii) For each arc that reaches a neighborhood of an
element from the environment, N arcs are generated
from that precise point of collision but with an
opposite direction with respect to the previous one.
The entire perimeter of the vehicle is used to test
whether a point of such perimeter intersects any
element from the environment —and thus the vehicle
is considered as a rigid body-.

(iii) The arcs generation procedure continues until each
arc has reached the user’s desired orientation.

(iv) If after M arcs, the path planning method does not
find a plausible path for some specific orientation,
such path is then rejected from the system.

(v) From the set of all successful path, that path with
minimum kinetic energy associated with, will be
chosen by the system to be followed by the assistive
vehicle.

Thus, the path planning problem is solved by a classical

decision-tree problem ((11)), where the best path is the one

that reaches the desired orientation and has the minimum
kinetic energy. Further information about this topic can
be found in (36). Figure 7 shows an example of the path
planning algorithm with the radius’ arc generated by the
Monte Carlo method.

The path planning algorithm for this approach is shown in
the algorithm of Fig. 8

In Fig. 8, line of code 3 presents the Quit variable. Thus, if
Quit = true during the arc generation procedure —i.e., the
arc has reached the desired orientation- that arc generation
procedure is over and a feasible path is obtained. If
Quit = false the arc generation procedure continues. Line
of code 4 shows the user’s desired angle ¥. This angle
is obtained through the visual interface shown in Fig. 5;

Pyatns in line of code 5 represents all the feasible paths
obtained by the algorithm. In line of code 6, we introduce
the virtual map (MAPv) that circumscribes the entire map
generated by the SLAM algorithm, as it is shown in Fig. 7,
by solid blue segments. This virtual map is necessary in
order to restrict the space of maneuverability of the vehicle.
In that way, the unknown space remains outside of the
virtual rectangle. The segments of the virtual rectangles
are modeled according to (16). In lines of code 7 and
8, SIDE = true implies that the vehicle will first try to
turn to its right -SIDE = false represents a turning to
the left—- and DIRECTION = true implies that the first
movement of the robotic wheelchair following a prescribed
path should be backward -DIRECTION = false stands
for the opposite: the first movement will be forward-.

Y (meters)
~

9 I I
9 10 11 12 13
X (meters)

Figure 7. Example of the path planning method to attain a desired
orientation. In this case, the path planning has to generate a
feasible path to reach an orientation of —7r/2 with respect to the
vehicle’s current position. N = 10 paths are generated, where
each path should have no more than M = 5 arcs each.

The main for-loop (lines of code 9 to 25) shows the paths
generation procedure whereas the inner for-loop shows
a single path generation method. The path generation
procedure starts with the radius generations based on the
Monte Carlo method presented in (34) —line of code 12—. As
stated before, the radius’ values go from zero to infinity for
wheelchairs and from the minimum radius of turning to
infinity for the case of car-like vehicles. Once the radius
of an arc is determined, the arc is generated based on
the robot’s current position and orientation, the map of
the environment (SLAM information), the virtual rectangle
and the current values of the SIDE and DIRECTION
variables. The arc generation returns the coordinates
values of the arg, its associated energy and whether or not
the arc reaches the desired orientation (Quit variable). The
arc algorithm can be found in (36). The arc energy is then
stored -line of code 19-. The inner for-loop breaks when
Quit = true. After all feasible paths were found, the one
with the lower kinetic energy associated with it will be
chosen as the final path to be followed by the vehicle. The
coordinates information of the path is then passed to the
trajectory controller.
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Figure 9. Example of the path planning method to attain a desired position. In this case, the two best paths are shown in solid magenta.
As it can be seen, the paths reach a point very close to the desired one —solid red point-. For this example, 100 paths were generated with
10 arcs for each path.

3.4.2 Path planning second approach: Reaching a desired position

This second approach is not too different from the first approach. In this case, the objective of the planning is more
complex but the same algorithm is used. In this second approach, the robotic wheelchair has to reach a position previously
determined by the user by following a path that will most closely drive the vehicle to that position with the lowest user’s

effort. This is accomplished by implementing the following minimization criterion:

Path®"" = argp,ymin{Pathenergy, distance (arc, desired position)}.

In Eq. (4), the minimization argument is a linear cost
argument: Cost = Energy + distance, therefore, the path
that has the lowest cost is the path that will be followed by
the vehicle.

Figure 9 shows an example where the robot has to reach
the position marked by a solid dot point. As it can be seen,
the path planning technique generates a path close to the
desired position but the reachability of that point is not
ensured given the environmental disposition. In addition,
the desired position parameter is passed by the user by
means of the visual interface shown in Fig. 5.

The algorithm shown in Fig. 11, represents the path
planning procedure to reach a desired position within the
mapped environment. As it can be seen, the procedure is
equivalent to the one shown in Fig. 8 except in the way
the best path is chosen -line of code 26-. Also, the arc
generation function passes one extra parameter —distance—
associated with the minimum distance of the points of arc

)

to the desired position. The main for-loop breaks when
the boolean variable Quit stands that the arc has reached
a certain neighborhood of the desired position. This is
necessary to ensure that the solution will be close to the
desired position. The magnitude of the neighborhood
must be previously determined by the designer.

3.4.3 Path planning third approach: Reaching a desired position
and orientation

In this third approach, the user has chosen an orientation
and a desired position from the interface shown in Fig. 5.
These parameters (desired orientation and position) are
passed to the path planning strategy. In this case, the
path planning strategy tries to find the best path such that
the robotic wheelchair be able to reach a neighborhood of
the desired orientation and a neighborhood of the desired
position.

The following minimization criterion is implemented
within the path planning algorithm.

Path®?" = argp,mmin{Pathenergy, distance(arc, desired position), distanceAngle(arc, desired orientation)}. )

In Eq. (5), the minimization criterion implies that, from the
set of all possible paths generated by the path planning
method, only the one that minimizes the cost function
Cost = Energy + distance + distance Angle will be chosen
to be followed by the mobile vehicle. distanceAngle is
the difference between the reached and the desired angle.
Figure 10 shows the general form of the path planning
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algorithm, where the main difference with the algorithm
of Fig. 8 is the minimization criterion shown in Eq. (5) and
repeated at line of code 26 in Fig. 10

Figure 12 shows two different examples of the path
planning algorithm proposed in Fig. 10. In lines of code 13
and 21, the Quit = true when the path has reached both



neighborhoods: a neighborhood of the desired orientation solution can be found that satisfies both conditions: angle

and a neighborhood of the desired position. and orientation, as can be clearly seen in Fig. 12, where
only one path is close enough to the desired position and
The algorithm shown in Fig. 10 does not ensures that a the desired orientation.
1: Let N be the number of arcs that will be generated for each path
2: let M be the number of paths that will be generated
3: Let Quit be a boolean variable. If during the arc generation procedure, the desired angle is reached, then Quit = true, otherwise

Quit = false.
4: Let ¥ be the angle desired by the user.
5: let Ppys be a variable that contains all possible paths.
6: Let MAPv be four virtual lines that circumscribe the map built by the SLAM algorithm —as shown in Fig. 7.
7: SIDE = true
8: DIRECTION = true
9: forj=1to Mdo
10:  TotalEnergy; =0
11:  fori=1to N do

12: radius = MonteCarloRadiusGeneration()

13: [ARC, ArcEnergy;, Quit, distance, distanceAngle] = ArcGeneration(robot’s position, radius, desired position, desired orientation,
SLAM, MAPYv, SIDE, DIRECTION)

14: if ARC intersects with MAPv then

15: SIDE = Opposite

16: DIRECTION = Opposite

17: break

18: end if

19: TotalEnergy; = TotalEnergy; + ArcEnergy;

20: Ppatnsj = [Ppuths,jr ARC]

21: if Quit = true then

22: break

23: end if

24: end for

25: end for

26: Path’!' = argp,mmin{Pathenergy, distance(arc, desired position), distanceAngle(arc, desired orientation) }
27: TrajectoryController(Path®P)

Figure 10. Path planning algorithm for attaining user’s desired position and orientation.

1: Let N be the number of arcs that will be generated for each path

2: let M be the number of paths that will be generated

3: Let Quit be a boolean variable. If during the arc generation procedure, the desired angle is reached, then Quit = true, otherwise
Quit = false.

4: Let Y be the angle desired by the user.

5: let Pys be a variable that contains all possible paths.

6: Let MAPv be four virtual lines that circumscribe the map built by the SLAM algorithm —as shown in Fig. 7-.

7: SIDE = true

8: DIRECTION = true

9: forj=1to M do

10:  TotalEnergy; = 0

11:  fori=1to N do

12: radius = MonteCarloRadiusGeneration()

13: [ARC, ArcEnergy;, Quit, distance] = ArcGeneration(robot’s position, radius, desired position, SLAM, MAPv, SIDE,
DIRECTION)

14: if ARC intersects with MAPv then

15: SIDE = Opposite

16: DIRECTION = Opposite

17: break

18: end if

19: TotalEnergy; = TotalEnergy; + ArcEnergy;

20: Ppaths,j = [Ppaths,/'r ARC]

21: if Quit = true then

22: break

23: end if

24: end for

25: end for

26: Path’Pt = argpammin{Pathenergy, distance(arc, desired position)})
27: TrajectoryController(PathFt)

Figure 11. Path planning algorithm for attaining user’s desired position.
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Figure 12. Example of the path planning method to attain a desired position and a desired orientation. In this case, the best path is shown
in solid magenta. The desired position is [x, y] = [10, 8.75] is it is represented by a solid red dot. The desired orientation is ¥ = 7. As it
can be seen, the paths reach a point very close to the desired one and with the desired orientation, although the rest of the paths are very
different between each other. For this example, 10 paths were generated with 10 arcs for each path.

4. Control Laws

Once a path a generated by means of any of the
three algorithms presented in this work (algorithms of
Figs. 8, 11 and 10), the path coordinates are sent to the
trajectory controller as was introduced in section 3.

Two control laws were implemented in this work: a
trajectory controller and an orientation controller. The
trajectory controller is used to follow the path generated
by the path planning algorithm. The orientation controller
corrects the heading error when a final posture is desired
for the vehicle.

4.1 Trajectory Controller

The tracking control law for non-holonomic vehicles
proposed in (38) is used in the present control system.
This is an asymptotically stable control law whose stability
was proved through Lyapunov theories. The inputs to the

vehicle are the reference posture [xx, x,, xp,]T and the
I

reference velocities [V, W,
The posture error is defined as follows:

Xe cosf, sin6, 0 Xy, — Xx,
Ve | = | —sinby cosy 0| | xy, —xy, 6)
Ge 0 0 1 X9, — Xg,

]T

where [xy, ¥y, Xg,]" is the current posture of the vehicle.

The control law is

@)

I’ V; cos 6, + Ky xe
W | ™ | Wy + Vi(Kyye + Ky sin6,)

where Ky, Ky and Ky are positive constants.

Kanayama also proposes a parameter selection to obtain
a critical damping in the control. The damping of the
tracking control can be calculated through

_ Ky
2,/K,

A critical damping in the control is obtained when { = 1.

¢
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4.2 Orientation Controller

The kinematic orientation control law implemented in this
work is shown in Eq. 8.

{VVVS"W*Q ®)

where k., is a positive constant and 6 = Xg, —
xg. Considering a regulation control, xy, ~the desired
orientation— is constant and,

Xg = —ij ©)

By replacing Eq. 8 and 9 in the kinematic model of the
vehicle (see Eq. 3) the following holds.

Xy =0
Xy, =0 (10)
0=koig+ X5

Therefore, ¥y — 0 ast — oo.

5. Experimental Results

In this section we show de different experimental results
for each proposal presented in this work. The experiments
were carried out at the Engineering Department of the
Federal University of Espirito Santo, ES, Brazil. The robotic
wheelchair used is the one shown in Fig. 6.

As it is shown in Fig. 6, the robotic wheelchair has a laser
SICK mounted at the middle of its footrest. The laser is
used to detect the features (corners and lines) from the
environment. Also, the sensor acquires 181 measurements
between 0-180 degrees with a maximum range of 30
meters. The onboard computer is used to process the
SLAM information, to plan the maneuverability strategies
and it also serves as the user-machine interfacer. The
kinematic measurements of the robotic wheelchair is
accomplished by meas of encoders installed on each wheel
of the chair. Finally, a micro-controller performs the low
level control of the motors of the robotic wheelchair.
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Figure 13. Monte Carlo Path Planning strategy without
prescribing final position. This figure shows only ten possible
paths obtained by the Monte Carlo experiment (solid black lines);
the magenta circles are the the final position with the desired
orientation. The solid grey lines are the walls of the environment
and the solid blue segments are the virtual features of the
circumscribing rectangle.
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Figure 14. Controller results for the path planning strategy
without prescribing final position. This figure shows the path
traveled by the wheelchair -magenta points— and the path with
the minimum cost —traveled by the wheelchair— determined by
the algorithm shown in Fig. 8 —blue points-—.

Figures 13 — 18 show the experimental results of the
planning strategies presented in this work. For all
experimentations, 2500 real time Monte Carlo realizations
were carried out. During experiments, the mobile robot
navigates within the environment while constructing the
map by means of the SLAM algorithm until the vehicle
has to manoeuver, in which case the planning algorithms
presented in this paper are executed. Figures 13 and 14
show the planning strategy case without prescribing a
final position (as it was previously shown in Fig. 7).
The robot’s initial posture is [10.7 8.0 /2] and has to
turn until it reaches the orientation value of —7/2. In
Figs. 15 and 16, the robot has to reach a neighborhood of
the point [10.25 9.75]. As it can be seen, the path planning
reaches such a neighborhood of the desired posture.
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Figure 15. Monte Carlo Path Planning strategy for a desired final
posture. This figure shows only ten possible paths obtained by the
Monte Carlo experiment (solid black lines); the magenta circles
are the the final posture of the robot in the neighborhood of the
desired pose —solid green circle—. The solid grey lines are the walls
of the environment and the solid blue segments are the virtual
features of the circumscribing rectangle.
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Figure 16. Controller results for the path planning strategy for a
desired final posture. This figure shows the path traveled by the
wheelchair -magenta points—and the path with the minimum cost
—traveled by the wheelchair— determined by the algorithm shown
in Fig. 10 —blue points-.

On the other hand, Figs. 17 and 18 show the path planning
procedure when the robotic wheelchair has to reach its
initial posture but with a different angle. Thus, in Fig. 17,
the vehicle has to reach an orientation of zero degrees (its
initial orientation is 7t/2) and in Fig. 18 the vehicle reaches
an orientation of —7/2.
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Figure 17. Maneuverability strategy results when the vehicle
has to reach a desired orientation close to its actual position.
In this example, the vehicle has an initial orientation of 71/2
and generates a path that will lead it to reach an orientation of
zero degrees near its current position. The solid red segments
correspond to walls of the environment and the solid blue
segments correspond to the virtual rectangle that circumscribes
the map built by the SLAM algorithm. The solid magenta line is
the path found as the optimum path. The planning algorithm used
is the one presented in Fig. 10.
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Figure 18. Second maneuverability strategy experiment when the
vehicle has to reach a desired orientation near the wheelchair’s
current position. In this experiment, the path planning method
generates a path to lead the vehicle to reach the orientation of
—m/2. As in Fig. 17, the solid red segments are associated with
lines from the environment —such as walls or doors— and the
solid blue segments correspond to the virtual rectangle. The path
chosen as optimum is in solid magenta.

6. Conclusion

An assistive vehicle navigation system for confined
spaces was proposed. The SLAM algorithm provides
enough information for the path planning and for the
control strategy. The generated trajectories by the path
planning module are typical trajectories that a user with
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enough drive skills could perform in a similar situation.
One way to apply the system presented in this work
is in a semi autonomous mode: the user drives the
wheelchair until a difficult situation is presented caused
by a confined environment, then the user selects from a
visual interface, the position and/or the orientation within
the SLAM-constructed map that the vehicle should reach.
The visual interface is divided into two stages: one stage
associated with the vehicle’s final orientation selection and
the other one associated with the vehicle’s final position.
Both stages are independent, therefore the user is able to
choose a desired orientation and/or a desired position.

The path planning method based on variable Monte
Carlo arcs generation presented in this work is used
for the generation of a feasible path that leads the
robotic wheelchair to reach the desired orientation and/or
position. The path planning method uses the SLAM
information in order to obtain free-obstacle paths.

Different experimental results were presented herein
showing the advantages of our proposal. Although the
path generation procedure allows to find a solution for the
orientation problem, the positioning problem solution is
not ensured for all cases, due to the fact that some points
from the environment may not be navigable points.
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