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Abstract In this paper we explore the question: “Is it 
possible to speed up the learning process of an 
autonomous agent by performing experiments in a 
more complex environment (i.e., an environment with 
a greater number of different objects)?” To this end, we 
use a simple robotic domain, where the robot has to 
learn a qualitative model predicting the change in the 
robot’s distance to an object. To quantify the 
environment’s complexity, we defined cardinal 
complexity as the number of objects in the robot’s 
world, and behavioural complexity as the number of 
objects’ distinct behaviours. We propose Error reduction 
merging (ERM), a new learning method that 
automatically discovers similarities in the structure of 
the agent’s environment. ERM identifies different 
types of objects solely from the data measured and 
merges the observations of objects that behave in the 
same or similar way in order to speed up the agent’s 
learning. We performed a series of experiments in 
worlds of increasing complexity. The results in our 
simple domain indicate that ERM was capable of 
discovering structural similarities in the data which 
indeed made the learning faster, clearly superior to 
conventional learning. This observed trend occurred 
with various machine learning algorithms used inside 
the ERM method. 

Keywords Autonomous Learning Agents, Learning Speed, 
Domain Complexity, Learning by Experimentation, 
Machine Learning 

 
1. Introduction 

This paper is concerned with learning by experimentation, 
where an agent (e.g., a robot) learns relations among 
observed variables by performing experiments in its 
environment. That is, the agent performs actions and uses 
sensors to observe how the actions affect the 
environment. This helps it discover the laws of the 
environment and the objects therein.  
 
For example, a robot could try to model how its distance 
to an object changes after it executes one of its actions. By 
executing actions, the robot would collect examples and 
gradually learn a model for predicting the change in its 
distance to an object after performing an action. The 
learned model would subsequently be used by the robot 
to perform other tasks such as creating a plan to achieve a 
certain goal, avoiding obstacles while moving around, 
etc. The learning may, however, take a significant amount 
of time to collect a sufficient amount of learning data. The 
question we explore in this paper is: “Is it possible to 
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speed up the learning process by performing experiments 
in a more complex environment (i.e., an environment 
with a greater number of different objects), where the 
robot’s sensors perform the measurements on multiple 
objects simultaneously?” and furthermore, “Is it possible 
to exploit this as a form of parallel data collection?” An 
example illustrating a simple vs. a more complex 
environment is shown in Fig. 1. In this way the robot 
could collect more data in a shorter time frame compared 
to collecting data in a simple world with only one object. 
However, would the greater amount of data outweigh the 
greater complexity of learning in a more complex 
environment?  
 

 
(a) A very simple environment: the robot and one box 

 
(b) A more complex environment: the robot and several objects 

of different types (four boxes and four other robots) 
Figure 1. An example illustrating a simple vs. a more complex 
environment. In which environment will the robot learn faster?  

To illustrate some possible advantages and pitfalls of 
learning in a more complex environment, consider a 
simple learning problem: learning to predict whether or 
not the robot will move closer to an object after 
performing one of its actions. In the sequel we are using 
the terminology from attribute–value machine learning. 
Attributes are variables with known values, and class is 
the variable whose value is to be predicted from the given 

values of the attributes. The robot simultaneously 
observes three objects: A, B and C, as shown in Fig. 2. For 
each object it observes two attributes: Distance (distance 
between the robot and the object) and Angle (absolute 
value of the angle between the robot’s orientation and the 
object). Attribute Action (with possible values “left”, 
“straight” and “right”) denotes the direction of the 
robot’s movement as follows: “straight” means move 
straight forward, “left” means move forward while 
turning left, and “right” means move forward while 
turning right. The class is MovedCloser (with possible 
values “yes” and “no”), which tells whether or not the 
robot moved closer to the object after performing a given 
action. The robot has no knowledge about the types of 
objects (i.e., it does not know that objects A and B are 
boxes and object C is a quickly moving robot). All it 
knows are observations about the objects represented by 
attributes Distance and Angle. To build a prediction 
model, in this example the robot uses a decision tree 
learning algorithm (e.g., C4.5 [1]) with pruning turned 
off. A good approximate model for predicting whether or 
not the robot will move closer to a non-moving object 
(i.e., object A or B) is the decision tree given in Fig. 3.  
 
Suppose the robot performed three actions: “left”, “left” 
and “right”, as shown in Fig. 2. While performing these 
actions, it collected nine learning examples, three for each 
object, as given in Table 1. At this point the robot stopped 
and built a decision tree for each object. Since the robot is 
not able to build a highly accurate model for a quickly 
moving object (i.e., object C), we will focus our attention 
on prediction models for objects A and B. They are shown 
in Fig. 4(a) and Fig. 4(b), respectively. The decision tree 
built on the examples corresponding to object A is similar 
to the good approximate model presented in Fig. 3. The 
only difference is its inaccurate Angle split point (59° 

instead of 90°). On the other hand, the decision tree built 
on the examples for object B is quite different from the 
good approximate model, since it only contains one leaf, 
which classifies all the examples as MovedCloser = “yes”.  
 
With the aspiration of building a more accurate model for 
object A or B, the robot may try to merge (i.e., 
concatenate) the data sets of individual objects. In this 
way it will obtain data sets with more learning examples, 
which may lead to building more accurate prediction 
models. If the robot naïvely merges all examples of all 
objects and builds a decision tree, it will get the tree 
shown in Fig. 4(c). This tree is very far from the desired 
prediction model shown in Fig. 3. It is actually a lot worse 
than the trees built on each individual learning set of 
objects A and B. However, if the robot only merges the 
data sets corresponding to objects A and B, it gets a very 
good prediction model shown in Fig. 4(d). This tree is 
identical to the good approximate model in Fig. 3, except 
for the negligible difference (1°) in the Angle split point. 
With this simple example we have shown how the robot 
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might build a more accurate model by merging data sets 
of objects of the same type. It should be noted, again, that 
the robot does not know the types of objects. So the 
question of what data to merge advantageously is a 
difficult challenge. In the above example, we have also 
demonstrated how naïve merging of all data can lead to 
undesirable results. 

 
Figure 2. Robot simultaneously observes three objects: object A 
(a box), object B (another box) and object C (a quickly moving 
robot). From the initial position (t = 0), the robot performs three 
actions: “left”, “left” and “right”, and stops at the final position  
(t = 3). Meanwhile, object C is also moving along its indicated 
trajectory. 

 
Figure 3. A good approximate model for predicting whether or 
not the robot will move closer to a non-moving object (i.e., object 
A or B) after performing one of its actions. Note that in this tree, 
the prediction does not depend on Action and Distance.  

  Distance  Angle  Action   MovedCloser  

object A  
0.37m 
0.17m 

10° 
108° 

left  
left 

yes 
no 

 0.46m 179° right no 

object B  
1.01m 
0.67m 

21° 
12° 

left  
left 

yes  
yes 

 0.42m 70° right yes 

object C  
0.52m 
0.81m 

20° 
120° 

left  
left 

no  
yes 

 0.53m 82° right no 

Table 1. Data table with nine learning examples, three for each 
object, that the robot collected while performing the three actions 
shown in Fig. 2.  

In this paper we present a new learning algorithm which 
exploits the greater complexity of an environment with 
more objects to speed up the learning of a model for a 
single object. The speed-up is achieved through 
intelligent merging of traces of observations for different 

objects that assumingly behave in the same way (an 
object’s trace contains the sensors’ measurements for this 
object). By increasing the number of learning examples, a 
machine learning algorithm can build a more accurate 
model. The merging of objects’ traces is accomplished by 
observing the average prediction errors of models built 
on separate and merged objects’ traces, and following a 
set of criteria that determine whether or not the merging 
of traces would be beneficial.  

 
Figure 4. Decision trees built by the robot corresponding to 
different learning data sets. The leaves indicate the value (either 
“yes” or “no”) of class MovedCloser. 

The rest of the paper is organized as follows. First, in 
section 2, we briefly review the related work. In section 3 
we give a detailed description of our experimental 
domain and present the relation the robot tries to learn, 
namely how the robot’s distance to an object changes 
after it performs one of its actions. We also define the 
terms cardinal complexity, behavioural complexity and 
behaviour class, and present a series of scenarios which 
define increasingly more complex worlds, in which the 
robot tries to learn the aforementioned relation. Next, in 
section 4, we present Error reduction merging (ERM), our 
proposed learning algorithm. We start by presenting the 
main ideas and giving a general overview of the 
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algorithm, and in later subsections we describe the details 
of the algorithm along with its pseudo-code. Section 5 
describes the experimental setup we used to evaluate the 
performance of our proposed ERM learning method. The 
experimental results along with comments and discussion 
are presented in section 6. Lastly, in section 7, we present 
our conclusions and give some possibilities for future 
work in this area.  

2. Related work 

Our investigation of how the complexity of the 
environment (in terms of the number of objects and their 
distinct behaviours) may offer the possibility of speeding 
up an agent’s learning process is, to our knowledge, the 
first such study. The following subsections present some 
existing work, which is in certain aspects similar to ours. 
We give a brief description of the work and explain 
which of the ideas presented are related to our research.  

2.1 Transfer learning  

A very interesting research area that is related to our 
work is transfer learning [2]. In particular, our setting is 
most similar to inductive transfer learning, where labelled 
data is available for both the target and the source 
domain. In our setting, the target domain would 
correspond to the domain of the object for which the 
robot is learning a prediction model. The source domains 
would be the domains of all other objects. Inductive 
transfer learning methods try to identify which parts of 
the source data are “good” and which parts are “bad” for 
transferring to the target domain. This is similar to how 
our ERM learning method has to discern which objects to 
merge with the current target object to speed up the 
learning of the prediction model for the target object. 
Examples of such transfer learning techniques are 
TrAdaBoost [3] and M-Logit [4].  

2.2 Cooperative multi-agent learning  

Another research area that is also related to our exploration 
of achieving learning speed-ups by learning in a more 
complex environment is cooperative multi-agent learning 
[5]. Our problem setting, where an agent simultaneously 
observes multiple objects and exploits this as a kind of 
parallel data collection, is in a way analogous to the 
problem setting with multiple agents where each agent 
observes one object and the agents learn cooperatively by 
sharing the collected data between each other.  
 
A learning approach where two robots learn 
simultaneously and share their experiences is presented 
in [6]. The task of the robot is to learn reactive behaviours 
for avoiding obstacles. On each time step the robot 
transmits the following information to the other robot 
(and vice versa): the position of the object it reacted to, 
the action it chose and how good it was. Effectively, this 

means that the two robots act as one learning agent with 
twice as much learning data, which is in a way similar to 
our ERM learning method, which also increases the 
amount of learning data by using data from observations 
of other similar objects. They have shown that this 
sharing of experiences results in a faster and more 
repeatable learning of the robot’s behaviours. Their work 
assumes that the target models are the same for both 
robots. In our work, however, the learner has to find out 
whether such assumptions are justified.  
 
A study of how to automatically design multi-agent 
systems of cooperative agents, where each agent learns 
independently, was performed by [7]. They used an 
incremental learning scheme, where they progressively 
increased task complexity and multi-agent system 
complexity. The idea behind the approach is that agents 
are able to re-use a learned policy in a more complex 
environment, which leads to faster learning. 
Simultaneously with increasing the number of learning 
agents, they also added other objects to the environment, 
which also increased the complexity of learning. 
Although in our case we only observed one agent 
learning a single classifier, the idea of increasing the 
complexity of the environment by increasing the number 
of different objects is similar to ours.  

2.3 Speeding up reinforcement learning  

Many reinforcement learning (RL) [8] techniques, which 
try to decrease the amount of time steps before 
converging towards a good policy, have been proposed. 
We will describe a few examples which bear some 
similarities to our approach.  
 
A study of how RL can be used to “shape” a robot to 
perform animal-like behaviours (e.g., chasing prey, 
escaping from predators, etc.) was performed in [9]. The 
part of the paper that touches on the issue of learning 
speed is the design of an agent’s architecture. They 
demonstrated that by carefully designing an agent’s 
architecture by decomposing a complex behaviour 
pattern into simpler ones, the learning can be accelerated 
as a result of the narrowed search. This is in some way 
related to our object-oriented decomposition of the 
robot’s learning data, which ERM can exploit to find 
similarly behaving objects.  
 
An algorithm for efficient structured learning in 
factoredstate Markov Decision Processes (MDPs) was 
proposed in [10]. A factored-state MDP is one whose 
states are represented as a vector of distinct features, 
which is similar to our representation of the experimental 
domain. Their approach seeks to maximize experience, 
which would be, in our terms, analogous to maximizing 
the amount of learning examples. This is akin to what 
ERM strives for—maximizing the number of learning 
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examples with the aspiration of building more accurate 
prediction models.  
 
An interesting approach is the use of object-oriented 
representation for more efficient RL presented in [11]. 
Therein they proposed object-oriented MDPs, an 
extension to the standard MDP formalism which is based 
on attributes that can be directly perceived by the agent. 
This representation is similar to our object-oriented 
representation of the experimental domain. They have 
shown that this representation scales very well with 
respect to the size of the state space, which makes RL 
feasible in larger state spaces. Since our learning task is 
limited to building a model for each object independently 
of other objects, our learning method does not have to 
cope with such scaling problems.  

2.4 Learning by experimentation  

Our learning task is a case of learning by experimentation. 
The foundations of learning by experimentation lie in the 
field of computational scientific discovery [12]. Early work 
includes the BACON discovery system developed by 
Langley [13, 14, 15], which is capable of rediscovering a 
number physical laws from collected empirical data. An 
overview of the history of computational scientific 
discovery is given by Darden [16] and Langley [17].  
 
The experimental domain and the learning task that we used 
for our experiments follows a similar setting as [18]. They 
used an autonomous learning robot that built qualitative 
models for predicting how the robot’s distance and angle to 
an object change after it performs one of its actions.  

3. Experimental domain  

Our problem domain consists of an autonomous mobile 
robot, objects of different types and an overhead camera. 
The robot uses the overhead camera to observe its 
distance to each of the objects (denoted by dist) and the 
angle between its orientation and each of the objects 
(denoted by ang), as shown in Fig. 5. For calculating 
distances and angles, all the objects are approximated 
with points—their centres of gravity.  

 
Figure 5. Robot uses the overhead camera to observe its distance 
to each of the objects (dist) and the angle between its orientation 
and each of the objects (ang). 

 
Figure 6. Robot’s actions: move straight ahead, move left and 
move right. At each time step the robot executes one of these 
actions.  

At each time step the robot executes one of the following 
actions (denoted by action): move straight ahead, move 
left or move right, as shown in Fig. 6. The robot avoids 
actions that lead to collision.  
 
The robot has no built-in concept of a coordinate system. All 
it knows are its actions and observations about surrounding 
objects. An example of a data trace that the robot collects 
during its learning process is given in Table 2. The value of 
an attribute a  at time step t  will be denoted by .ta  
 

time 
step 

object 1 
  object k  

   
action 1dist  1ang  

  kdist  kang  
  

1 0.5m 30° 
  0.4m 10° 

  left 
2 0.7m 50° 

  0.1m −10° 
  right 

3 0.4m 80° 
  0.3m 20° 

  right 
       

     
  

Table 2. An example of a data trace that the robot collects during 
its learning process. 
 
The robot is aware of the fact that it observes the same set 
of attributes for each object and which measurements 
belong to which object. For example, the robot knows that 
attributes kdist  and ldist  both measure the same thing 
(robot’s distance to an object), the first with respect to 
object k  and the second with respect to object l . 

3.1 Learning the change in object distance  

The robot’s goal is to build a model for predicting the 
change in its distance to an object after executing one of 
its actions. Rather than predicting the exact value of the 
change, we want the robot to build a qualitative model 
for predicting the qualitative change in its distance to an 
object. This can either be increased (+) or decreased (−) 
(theoretically, there is also a third possibility: no change 
(o), however, it occurs so rarely that we merged it with +).  
 
More precisely, for object ,k  the robot will build a model 

kM  for predicting the change in distance between the 
robot and the object in the next time step 1(sgn( ))+∆ t

kdist
after executing an action ( )taction

 
in the current state

( ,  )t t
k kdist ang :  

robot’s orientation 

ang dist 
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( ) ( )1sgn ,  ,  ,∆ =t+ t t t
k k k kdist M dist ang action  

where ∆ = −1 1t+ t+ t
k k kdist dist dist . 

 
To simplify the learning of model kM , the robot will 
assume the model is a function of attributes pertaining to 
the particular object (i.e.,

 kdist  and )kang  and robot’s 
action (action) only.  
 
A simple approximate model of the qualitative change in 
the robot’s distance to an object k can be summarized 
using the following three rules:  

( )

( )

( )

− °

∆ = +

− ° ≤ ≤ °

∆ = −

°

∆ = +

1

1

1

(1) IF  < 90  THEN

       sgn   ,

(2)  IF  90 90  THEN

       sgn   ,

(3)  IF >90  THEN

        sgn   .

t+
k

t+
k

t+
k

ang

dist

ang

dist

ang

dist

 

A graphical illustration of these rules is given in Fig. 7. In 
section 5, we present the accuracy of these rules on an 
independent testing set along with a discussion of the 
misclassified examples.  
 

 
Figure 7. A graphical illustration of the rules for the qualitative 
change in robot’s distance to an object. The figure pictures a case 
when the robot starts at 0= °ang and moves either left or right. 

In this paper, we are interested in minimizing the number 
of examples needed for learning (i.e., how many 
examples are needed to achieve a certain prediction 
accuracy). This is a common criterion in machine 
learning. In our experimental domain with a robot 
collecting learning data, this corresponds to the time 
needed for successful learning (i.e., how many actions are 
needed to achieve a certain prediction accuracy). Since 
minimizing the total experimentation time by a robot is 
often a reasonable and appropriate optimization criterion, 
we also chose it for our experiments.  
 
 

We are aware of the fact that this is a very simple robotic 
domain. Nonetheless, we think it is rich enough for 
performing a set of interesting experiments. At the same 
time, we feel that precisely its simplicity offers us a clear 
way of evaluating our ideas and answering the questions 
we set at the beginning of this paper. 

3.2 Scenarios with worlds of increasing cardinal and behavio-
ural complexity  

The robot’s learning process will take place in different 
worlds of increasing cardinal and behavioural complexity. We 
define the cardinal complexity as the number of objects in the 
robot’s world. The greater the number of objects in the 
robot’s world is, the greater is its cardinal complexity. 
Similarly, we define the behavioural complexity as the 
number of objects’ behaviour classes. A behaviour class is a set 
of objects that behave in the same way with respect to the 
particular relation the robot is modelling (i.e., change in 
object’s distance). The more behaviour classes there are in 
the robot’s world, the greater is its behavioural complexity.  
 
We will use objects from two behaviour classes: static 
(non-moving) objects and moving objects. The robot will 
only be able to model the change in its distance to an 
object from the first class, since, in this case, the change 
depends on the previous state of the object ( ,  )t tdist ang

 and the robot’s last action ( ).taction
 

Objects from the 
second class will move randomly, thereby preventing the 
robot building a highly accurate model for predicting the 
change in its distance to such objects. We chose boxes as 
representatives of the static class and mobile robots as 
representatives of the moving class.  
 
To obtain worlds of increasing cardinal and behavioural 
complexity, we constructed the following scenarios:  
 
• 1 box (1B) ,  
• 2 boxes (2B) ,  
• 4 boxes (4B) ,  
• 4 boxes and 4 mobile robots (4B4R) ,  
• 4 boxes and 8 mobile robots (4B8R).  

 
Every scenario also includes an autonomous mobile robot 
which observes the world and learns. Initially, the 
autonomous mobile robot, boxes and other mobile robots 
are randomly placed in a rectangular playground 
enclosed with a wall on each side. Three examples of such 
scenarios are pictured in Fig. 8. 
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(a) Scenario 1B: an autonomous mobile robot and 1 box 

 
(b) Scenario 4B: an autonomous mobile robot and 4 boxes 

 
(c) Scenario 4B8R: an autonomous mobile robot,  

4 boxes and 8 other mobile robots 

Figure 8. Three examples of scenarios showing worlds of 
increasing cardinal and behavioural complexity.  

The robot’s goal is the same in all scenarios: learn a model 
for predicting the ( )∆ 1sgn t+dist

 
for each object in a given 

scenario. By using different scenarios, we will try to 
answer some interesting questions: “Is it possible to 

speed up the learning of the model for one box when we 
have information about another box?” “What about when 
we have information about three more boxes?” “How 
does the presence of objects from a different behaviour 
class affect the speed of learning?” “Will the proposed 
method be able to recognize which objects belong to the 
same behaviour class?” “How does the method cope 
when we further increase the number of objects 
belonging to the different behaviour class?”  

4. Error reduction merging (ERM)  

4.1 Merging objects’ data  

When the robot is concurrently learning a model for 
predicting the change in its distance to an object k, it 
collects a trace of examples of the form
( ),  ,  ,t t t

k kdist ang action one example at each time step .t To 
convert this trace to a learning set, it computes the 

( )1sgn ∆ t+
kdist

 
for each pair of consecutive examples in 

the trace.  
 
Moreover, it collects such traces and converts them to 
learning sets for all the objects it observes through the 
overhead camera. If it knew which objects belong to the 
same behaviour class with respect to the change in 
object’s distance (as described in section 3.2), it could 
extend the learning set of this particular object k  with the 
learning sets of all other objects from the same behaviour 
class. This way, it would considerably multiply the 
number of learning examples used to build this model. 
Since other objects are located in distinct parts of the 
robot’s playground, we expect their learning sets to at 
least partially differ from the learning set of the chosen 
object. Furthermore, if objects are indeed from the same 
behaviour class, then their learning sets will complement 
the learning set of the chosen object in examples covering 
distinct parts of the attribute space. Also, their learning 
sets will not conflict with the learning set of the chosen 
object in examples covering the same parts of the 
attribute space. Hence, we can expect the accuracy of the 
induced model to increase.  
 
However, since the robot does not have information 
about which objects belong to the same behaviour class, it 
can only hypothesize about that at each time step. Its 
hypotheses are based on models built on the current 
learning sets of the objects.  
 
Let 

iol  
and 

jol
 
represent the learning sets of objects io  

and ,jo respectively. Merging learning sets 
iol  

and 
jol

 means the following: first, the corresponding attributes of 
both objects are unified (e.g., idist  and jdist

 
are treated as 

the same attribute), and then the corresponding data 
series are concatenated. Let  +

i jo ol l
 
denote the merger of 

learning sets 
iol  

and .
jol  
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When determining whether merging objects objects io  
and jo  (i.e., their learning sets) would be beneficial, the 
algorithm builds three models with the same base learner, 
one on

 
,

iol  
one on 

jol
 
and one on ,+

i jo ol l and compares 
them on selected combinations of the learning data sets
( ,  ,  ).

i j i jo o o ol l l l+   
 
Let ( ),  r so oE

 denote the average prediction error of a 
model built on the learning set of object ro  and tested on 
the learning set of object .so  ( ),  r so oE  here means a 
particular error estimate, a kind of generalized leave-one-
out cross-validation method which will be explained in 
detail in section 4.2. We can now define the error reduction 
(ER) of merging objects io  and jo

 
as follows:  

 
( ) ( )

( )ER
+

= − + +
+

E E
E,

,    ,  
  ,  .

  
i j

i j

i j

i i j jo o
o o i j i j

o o

l o o l o o
o o o o

l l

(1) 

A positive ER indicates that the weighted average of 
average prediction errors of models built and tested on 
each object’s learning set is greater than the average 
prediction error of a model built and tested on the merger 
of objects’ learning sets. This implies that by merging 
objects io  and jo

 
the average prediction error on their 

respective learning sets would be reduced. This will 
become our main criterion for deciding whether or not 
the learning algorithm should merge two objects.  
 
After the robot has performed a certain number of 
actions, it stops and runs the merging algorithm on the 
newly augmented objects’ traces. First it converts the 
traces to learning sets (as described before) and then it 
starts to evaluate which objects to merge at the current 
iteration. It merges objects agglomeratively, similarly to 
hierarchical clustering [19], starting with the two objects 
that are the best candidates for merging and continuing 
until either there is only one (merged) object left or the 
remaining object pairs do not pass the criteria for 
merging.  
 
A pair of objects ( ),  i jo o

 
is a candidate for merging if it 

passes the following criteria:  
 

(1)  both learning sets, 
iol  

and ,
jol

 
contain a minimal 

number of examples (controlled by parameter ),n   
(2)  the ER of merging objects io  and

 jo
 
is greater or 

equal to zero.  
 
The first criterion is a rudimentary threshold that 
eliminates all candidate pairs whose learning sets are too 
small. When the learning set of an object is very small, it 
makes little sense to try to ascertain whether or not this 
object belongs to the same behaviour class as some other 
object.  

The second criterion compares the average prediction 
errors of all three models (built on  ,  

i jo ol l
 
and + )

i jo ol l  on 
their own data sets. As dictated by Eq. (1), the average 
prediction error of a model built and tested on the merged 
data set has to be lower or equal to the weighted average of 
the average prediction errors of the individual models on 
their respective learning sets. This criterion will ensure that 
by merging objects io  and jo

 
the average prediction error 

on their respective learning sets will not increase.  
 
However, solely observing the size of ER is not the best 
way to choose the next pair of objects to be merged, as 
can be illustrated with a simple example. Suppose that 
learning instances are points lying on a one-dimensional 
line, and the class function is a simple binary 
thresholding function f  parameterised by  : 

( )     if   > ,  and
otherwise.

+= −

x
f x

  

 
Figure 9. A simple example illustrating the shortcoming of solely 
observing ER. Learning instances are points lying on a one-
dimensional line, and their class values are either + if  > x   or 
– (otherwise). The upper and lower parts represent the learning 
sets of objects io  and ,jo

 
respectively, each one containing five 

learning examples. By using a machine learning algorithm on all 
combinations of these learning sets ,  

i jo ol l and + ),
i jo ol l  we 

obtained three models giving different approximations of  
 : ,  

i jo o  and +i jo o . 

Furthermore, suppose we have a candidate pair of objects
( ),  i jo o

 
with learning sets as pictured in Fig. 9. By using 

a machine learning algorithm on all combinations of these 
learning sets ,  

i jo ol l and + ),
i jo ol l  we obtained three 

models giving different approximations of
 
 : ,  

i jo o 
 
and

+i jo o (also pictured in Fig. 9). The average prediction 
errors of these models on their learning sets are all equal 
to zero. Hence, ER is zero. Our merging criterion (2) is 
therefore satisfied, but the gain from merging is zero. In 
comparison with other candidate pairs of objects, the pair
( ),  ,i jo o

 
according to ER, does not look very attractive. 

However, observing the learning examples of io  and
 

,jo
 it would be natural to merge these two objects together, 

as their learning sets complement one another very well. 
When merged, these examples determine   very 
accurately. This example shows that ER may 
underestimate the benefit of merging a pair of objects. 
Therefore ER is not a good criterion for ranking candidate 
pairs of objects to be merged.  
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A solution to this issue is to check whether the following 
inequalities hold: 

 ( ) ( )≤E E,   , ,i j i j i i jo o o o o o o + + +                  (2) 

 ( ) ( )≤E E,   , .i j i j j i jo o o o o o o + + +                  (3) 

If the learning sets of objects io  and
 jo

 
complement one 

another well in examples covering distinct parts of the 
attribute space, these inequalities will hold. In addition, 
criterion (2) i.e.,  ER ≥ 0)  ensures that the learning sets of 
these two objects do not conflict with each other in 
examples covering the same part of the attribute space.  
 
Returning to the previous example, the remaining 
average prediction errors are the following:  

( )
( )

,    3 / 10,

,     2 / 10.

=

=

i i j

j i j

o o o

o o o

+  

+ 

E

E
 

Clearly, both inequalities from Eq. (2) and (3) hold, which 
is in accordance with the intuition that it would be 
beneficial to merge objects io  and

 
.jo   

 
To rank the candidate pairs of objects, we observe to what 
extent the pairs’ learning sets cover the same part of the 
attribute space, and to what extent the pairs’ learning sets 
cover distinct parts of the attribute space. We want to 
merge the pair of objects that cover as much of the 
attribute space as possible in order to build a good model 
for the whole attribute space.  
 
Ranking of candidate pairs of objects is achieved by 
performing a series of t-tests comparing the average 
prediction error of each object’s model with the average 
prediction error of the merged object’s model. For each 
candidate pair of objects ( ),  i jo o

 
two one-sided t-tests 

testing the following null hypotheses:  

( ) ( )
i0 : ,   , ,≤H i i j i j i jo o o o o o o+  + + E E

            
(4) 

 ( ) ( )
j0 : ,   , ,≤H j i j i j i jo o o o o o o+  + + E E             (5)  

are performed. A higher p-value signifies a weaker 
rejection of a null hypothesis. We want to reject both null 
hypotheses, 

i0H
 

and 
j0 ,H  with as much statistical 

significance as possible, so we choose the best candidate 
pair of objects ( ),  ∗ ∗

i jo o
 
to be the one with the minimal 

maximal p-value:  

( )
( )

{{

}}
i

j

0
, 

0

,  arg min max p-valueof testing  ,

            p-valueof testing  .

∗ ∗ = H

H

i j

i j
o o

o o

 

After merging objects ∗
io  and ∗

jo
 
into ,mo  all possible 

pairs of objects containing mo  are generated and tested 
against the criteria (1) and (2). In addition, the algorithm 
checks if they satisfy the inequalities from Eq. (2) and (3). 
The pairs of objects that pass the criteria and satisfy the 
inequalities are added to the set of candidate pairs and 
the ranking process is repeated. This is continued until 
there are no more candidate pairs left (details of the 
merging procedure are explained in section 4.3).  
 
When the merging at current iteration is finished, the 
models for the remaining (merged) objects are built and 
tested on the independent testing set (as will be described 
in section 5). Afterwards, the objects are split again and 
the robot continues executing new actions and 
augmenting the objects’ traces. After a certain number of 
actions (controlled by the parameter u  described in 
section 4.4), it stops and runs the same merging algorithm 
from the beginning.  

( )

( ) ( )
( ) ( )
( )

←

←

←

+ ←

E

E

E

STIMATE-ERRORS-AND-SIGNIFICANCES

ENERALIZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

ENERAL

,  ,  

1 ,  learning sets corresponding to ,  

2 ,  ,  ,  

3 ,  ,  ,  

4 ,  

E

G

G

 G

i j

i i

j j

i j

o o i j

i i o o

j j o o

i i j

o o

l l o o

o o l l

o o l l

o o o

A

A

A  

( )
( ) ( )
( ) ( )
( )

+

+ ← +

+ + ← + +

+ + ←

E

E

P

IZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

,  ,   

5 ,  ,  ,   

6 ,  ,   ,    

7 ,   ; perform a pair-wise one-side

 G

G

 

i i j

j i j

i j i j

o o o

j i j o o o

i j i j o o o o

i i j i j

l l l

o o o l l l

o o o o l l l l

o o o o o

A

A

A

 

 

( ) ( )

( )
( )

t

t

+ ≤ + +

+ + ←

+ ≤ +

E E

P

E E

i

j

0

0

d -test

testing the null hypothesis :   

and store the obtained p-value

8  ;  perform a pair-wise one-sided -test

testing the null hypothesis :  

  

  

i i j i j i j

j i j i j

j i j i

o o o o o o o

o o o o o

o o o o

, ,

,

,

H

H ( )

( )

( )

{ }( )
( ) ( )

( )

∗

∈

+

∈

←

← −

∑

return E P

for do

return



ENERALIZED-LEAVE-ONE-OUT

 

and store the obtained p-value

9  ,  

  

1   

2  \ 

3 1   

1
4  

G
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M M
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o o o

learn, test
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A
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Figure 10. The STIMATE-ERRORS-AND-SIGNIFICANCESE  procedure 
estimates the average prediction errors of different models on 
selected combinations of the learning sets and computes the p-
values of two one sided t-tests testing the null hypotheses from 
Eq. (4) and (5). The ENERALIZED-LEAVE-ONE-OUTG  procedure is a 
generalized leave-one-out cross-validation method that estimates 
the average prediction error of models built on the learn set and 
tested on examples from the test set. It should be noted that the 
purpose of the above procedure is to define what the result of 
generalized leave-one-out is, and not that it should actually be 
implemented in this inefficient way.  
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The following three subsections give a detailed 
description of the presented learning algorithm. Each 
subsection also contains the pseudo-code of a part of the 
algorithm. In section 4.2, we present the ESTIMATE-ERRORS-

AND-SIGNIFICANCES procedure, which uses the 
GENERALIZED-LEAVE-ONE-OUT procedure to estimate the 
average prediction errors of different models on selected 
combinations of the learning sets. In addition, ESTIMATE-

ERRORS-AND-SIGNIFICANCES performs two pair-wise one-
sided t-tests testing the null hypotheses

 i0H
 

and
 j0H

presented earlier. Next, in section 4.3, we present the 
ERM method which forms the central part of the robot’s 
learning algorithm. Finally, in section 4.4, we describe the 
LEARNING-LOOP procedure which is the high-level 
learning algorithm running on our autonomous robot.  

4.2 Estimating the average prediction errors and significances 
using a generalized leave-one-out method  

Let us define the prediction error of a model M  for an 
example x  as:  

( ) ( )  1    ,∗= −


M Me x P y x  

where ( )  


MP y x
 
is the model’s predicted probability of 

example x  having class value ,y  and ∗y  denotes the 
example’s true class value.  
 
To estimate the average prediction errors of different 
models (obtained by training the same base learner on 
different learning sets) on selected combinations of the 
learning sets, we used the ESTIMATE-ERRORS-AND-

SIGNIFICANCES procedure as given in Fig. 10. In addition, 
this procedure also performs two pair-wise one-sided t-
tests testing the null hypotheses

 i0H
 
and

 j0H
 
described 

in section 4.1. We use ( )t, ; P r so o o
 
to denote the p-value 

of a pair-wise one-sided t-test testing the null hypothesis: 
( ) ( )≤,   , .E Er t s to o o o   

 
The input to the ESTIMATE-ERRORS-AND-SIGNIFICANCES 
procedure are a machine learning algorithm A  that is used 
to build the models, and objects io  and jo

 
that are candidates 

for merging at the current iteration. Algorithm A  is 
assumed to produce models that, for a given example, 
return probability distribution over all class values.  
 
The output of the ESTIMATE-ERRORS-AND-SIGNIFICANCES 
procedure is a pair ( ),  ,E P

 
where E  is the set of 

computed average prediction errors ( )E ·,  · ,  and P  is a 
set of p-values of the computed t-test statistics ( )P ·,  · ;  · .   
 
The main part of the ESTIMATE-ERRORS-AND-SIGNIFICANCES 
procedure (lines 2–6) are calls to the GENERALIZED-LEAVE-

ONE-OUT procedure that computes the average prediction 
errors of selected combinations of the learning sets. In the 
last part (lines 7–8), ESTIMATE-ERRORS-AND-SIGNIFICANCES 

performs two pair-wise one-sided t-tests testing the null 
hypotheses

 i0H
 
and

 j0H
 
as defined in Eq. (4) and (5).  

 
The average prediction error of a model built on a given 
learning set and tested on examples from a given testing 
set is computed with the GENERALIZED-LEAVE-ONE-OUT 

procedure which performs a kind of generalized leave-
one-out cross-validation to avoid biased prediction error 
estimates. The pseudo-code of the GENERALIZED-LEAVE-

ONE-OUT procedure is also given in Fig. 10.  
 
The input to the GENERALIZED-LEAVE-ONE-OUT procedure 
are a machine learning algorithm A  that is used to build the 
models and two data sets: learn, which contains the learning 
examples, and test, which contains the testing examples.  
 
The output of the GENERALIZED-LEAVE-ONE-OUT procedure 
is the average prediction error of models built on the learn 
set and tested on examples from the test set.  
 
The procedure iterates through the for loop and estimates 
the prediction error of each example x  from the test set. It 
creates a model M  built on the whole learn set, excluding 
the current testing example x  if it is also contained in the 
learn set (line 2). Then it computes the prediction error of 
M  for the current testing example (line 3).  
 
The difference with the standard leave-one-out [19] is that 
GENERALIZED-LEAVE-ONE-OUT takes two data sets as input. 
The first one is the learning set which is used to build the 
model and the second one is the testing set which is used 
to test the model. On each iteration the algorithm checks 
if the currently tested example is in the learning set. If yes 
then this example is not used for learning in this iteration. 
This gives us better error estimates since the tested 
example is never included in the learning set that was 
used to build the model. We can also observe two special 
cases of using the GENERALIZED-LEAVE-ONE-OUT procedure: 
if the learning and testing set are the same, it performs 
the standard leave-one-out. If the learning and testing set 
have no examples in common, it performs the standard 
testing procedure with two disjoint data sets, one for 
learning and the other for testing.  

4.3 Merging objects using the ERM method  

The central part of the robot’s learning algorithm is the 
ERM learning method presented in Fig. 11.  
 
The input to the ERM method are the set of current objects 

,O  the set of current objects’ learning sets ,L  parameter n  
controlling the minimal number of examples in a learning 
set, and a machine learning algorithm A  that is used to 
build the models inside the calls to the ESTIMATE-ERRORS-

AND-SIGNIFICANCES procedure.  
 
The output of the ERM method is a triplet ( ),  ,  ,O L M
where O  represents the new set of objects, L  represents 
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the new set of objects’ learning sets (after merging) and M  
represents the set of models built on the new objects’ 
learning sets.  

( )
{ }

( )

ERM
←

∈

←

≥ ≥

for do

if and then

STIMATE-ERRORS-AND-SIGNIFIC

,  ,  ,  

1 // set of object pairs that are candidates
for merging

2  each pair   

3  learning sets corresponding to  

4      

5 run E

C

i j

ji

i j

o o i j

oo

n

o o

l l o o

l n l n

O L A

O,

, ,

( )

( )( )
( )

{ ( ) ( )}

ER error reduction

ER

←

≥ + + ≤

+ +

←

E P

if and E
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and add appropriate entries to  and 
6 compute  of merging
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Figure 11. The pseudo-code of the Error reduction merging (ERM) 
method, which forms the central part of the robot’s learning 
algorithm.  

First (line 1), the method initializes set C  that will hold 
object pairs that are candidates for merging. The 
following for loop (lines 2–8) iterates through all object 
pairs ( ),  ∈i jo o O

 
and adds them to the set C  if they pass 

the following criteria:  
 

(1)  both learning sets, 
iol  

and
 

,
jol

 
contain at least n

examples,  
(2)  the ER of merging objects io  and

 jo
 
is greater or 

equal to zero, 
(3)  the average prediction error ( )+ +E ,  i j i jo o o o

 satisfies the inequalities from Eq. (2) and (3), that is: 

        ( ) { ( ) ( )}+ + ≤ + +E E E,  min ,  ,  ,  .i j i j i i j j i jo o o o o o o o o o   

Explanation of these criteria was given in section 4.1.  
 
After filling the set C  with candidate pairs that pass 
these criteria, the method iterates through the while loop 
(lines 9–23), as long as there are still candidates pairs left 
to be merged. The chosen pair ( ),  i jo o* * on each iteration is 
the one with minimal maximal p-value of the t-test 
statistics obtained by testing the null hypotheses

 i0H
 
and

 
j0H
 
as defined in Eq. (4) and (5) (line 10).  

 
After creating a new object and merging the learning sets 
of the chosen objects (lines 12–13), the method updates 
O by removing the chosen pair of objects and adding the 
newly created object (line 14) and L  by removing the 
learning sets of the chosen pair of objects and adding the 
learning set of the new object (line 15). In addition, all 
candidate pairs that contained either io*

 or jo*

 
are 

removed from C  (line 16).  
 
The nested for loop (lines 17–23) works the same way as 
the first for loop (lines 2–8), except that it now fills C  with 
candidate pairs that contain the newly created object .mo   
 
Finally, the method initializes set M  that will hold the 
models built on the new objects’ learning sets (line 24). 
The following for loop (lines 25–28) iterates through all 
(merged) objects from the final set O.  It builds a model 
on each object’s learning set and adds it to the set M.  

4.4 Learning algorithm running on the robot  

The high-level learning algorithm running on our 
autonomous robot takes the form of a simple learning 
loop, as presented in Fig. 12.  
 
The parameters given to the LEARNING-LOOP procedure 
are the interval (i.e., the number of time steps) between 
two successive calls to the ERM method denoted by ,u  
the minimal number of examples in a learning set 
denoted by ,n  and a machine learning algorithm A  that 
is used to build the models inside the calls to the ERM 
method.  
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After initializing sets , , O T L  (lines 1–3) and iteration 
counter t  (line 4), the LEARNING-LOOP starts executing its 
main loop. At each time step t,  the robot receives 
information about its distance to each of the objects 
({

1 2  
,  ,..., t t t

o o odist dist dist
 O

}) and the angle between its 

orientation and each of the objects 
({

1 2  
,  ,..., t t t

o o oang ang ang
 O

})
 

and updates objects’ current 

traces and learning sets (lines 7–8).  

( )
{ }
{ }
{ }

←

←

←

←

←

EARNING-LOOP ,  ,  
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4  0 // iteration counter
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6          update  by creating

L

while do

u n

t  
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O O

{ }←
1 2  

 new objects if 
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                and 
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a
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≡if

1 2  
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9            0  (m
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←

←
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t of actions 
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14       1t t

 

Figure 12. High-level learning algorithm running on our 
autonomous robot.  

When ≡ 0 (mod  ),t u  the algorithm first backs up the 
current sets O  and L  (line 10) and then proceeds with 
the call to the ERM method (line 11). After obtaining the 
ERM’s results, it restores sets O  and L  to their values 
from before the merging (line 12). This will cause the 
merging to start from the beginning on the next call to the 
ERM method.  
 
At the end of the loop, the algorithm chooses one of the 
possible actions (as described in section 3) and executes it 
(line 13).  

5. Experimental setup  

We implemented our experiments in the Webots robot 
simulator [20]. The autonomous learning robot and other 
mobile robots were implemented as simple differential 
wheeled robots. At every time step, each robot randomly 

chose one of the possible actions (as described in section 
3) and executed it. Technically, collision avoidance was 
implemented as follows: all of the robots had a front 
bumper which served as a touch sensor. Whenever a 
robot’s touch sensor detected a collision, the robot 
stopped executing its current action and performed a 
simple avoidance manoeuvre: it moved back and turned 
a bit to the left. Then it continued executing its actions. 
Every action the robot commenced executing counted as 
one iteration of the learning algorithm.  
 
In order to represent objects from a different behaviour 
class with respect to the relation the robot is learning, the 
other mobile robots had to move substantially faster than 
the autonomous learning robot. If they had moved as fast 
as the learning robot, they would have been 
indistinguishable from the static boxes, since the robot is 
only modelling the qualitative change (i.e., the sign of the 
change) in its distance to an object.  
 
The vision system with the overhead camera was 
simulated with a special Webots controller named 
supervisor, which had access to all the information about 
the learning robot and other objects currently simulated. 
At every time step, the supervisor read the positions and 
orientations of the learning robot, and other objects. It 
then computed the learning robot’s distance to each of the 
objects (dist), and the angle between its orientation and 
each of the objects (ang). Finally, this information was 
packed in a message and sent to the learning robot. Note 
that the learning robot never had information about the 
objects’ coordinates, but only about each object’s dist and 
ang values as computed by the supervisor.  
 
The rectangular playground in which the learning robot 
and other objects were enclosed was of size 2.0 m × 2.0 m. 
The boxes were implemented as cubes with sides of length 
0.1 m. All the robots were of the same shape and size, and 
their size was approximately the same as the size of a box.  
 
We used three distinct base machine learning methods 
inside our ERM and other learning methods (described 
later in this section), namely naïve Bayes classifier (NBC) 
[19], C4.5 decision tree learner [1] and support vector 
machines (SVM) [21]. The particular implementation of 
these methods was the one provided in the Orange 
machine learning and data mining suite [22].  
 
The NBC used locally weighted regression (LOESS) [23] 
with parameter window_proportion = 0.1 (proportion of 
examples used for local learning in LOESS) for the 
estimation of (conditional) probabilities of continuous 
attributes. Other parameters were left at their default 
values.  
 
For the C4.5 learning algorithm we used the default 
parameter settings.  
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The parameters of the SVM were: svm_type = C-SVC 
(type of the SVM formulation), C = 100 (regularization 
parameter), kernel_type = polynomial (type of the kernel 
function), degree = 3 (degree of the polynomial kernel), 
coef_0 = 1 (value of the constant term of the polynomial 
kernel). Other parameters were left at their default 
values.  
 
For practical reasons, we chose to only use NBC 
throughout the first two sets of experiments. At the end 
we give a comparison of all three base machine learning 
methods on our most complex scenario (as defined in 
section 3.2).  
 
To assess the performance of our ERM learning method, 
we took the set of models ,M  tested each model on an 
independent testing set (described later) and recorded 
its classification accuracy (CA). Since the robot was not 
able to build a highly accurate model for predicting the 
change in its distance to objects from the moving 
behaviour class (i.e., mobile robots), we were only 
interested in classification accuracies of models for the 
objects from the static behaviour class (i.e., boxes). We 
took the average CA of all models containing 
predictions for boxes as the final CA (e.g., when the 
ERM method erroneously merged a box with mobile 
robots, we also took that model into account since the 
robot would use this model when asked to predict the 
change in its distance to this box). This testing was done 
after every call to the ERM method (line 11 of the 
LEARNING-LOOP presented in Fig. 12).  
 
In our experiments, we chose to run ERM each time after 
the next five actions were completed (i.e., we set 
parameter u  to five). A comment is in order regarding 
the rate of model updates during a learning run. In this 
paper, we are interested in studying the dependence 
between the number of actions and the corresponding 
prediction accuracy achieved by ERM vs. other merging 
strategies (described later). In a practical application of 
ERM, the user may choose to update the prediction 
model obtained by ERM at different rates. In particular, 
for best accuracy at any time during learning, ERM 
would be executed after each action. In the case of a 
relatively fast acquisition of new data, the process of 
model updating could possibly lag behind the data 
acquisition process. In this case, it would be reasonable to 
restart the model update immediately after the previous 
model update was completed. Another idea would be to 
find a metric that would indicate whether a model update 
is warranted. The observed critical value of this metric 
would warrant a next model update.  
 
The parameter ,n  controlling the minimal number of 
examples in a learning set before it is considered for 
merging, was set to five.  

To evaluate the learned models, we generated a separate 
testing set. This set was obtained by densely sampling the 
attribute space with one object and observing the real 
change in the robot’s distance to the object after executing 
an action. We created a grid sample with 10 initial x 
coordinates of the robot, 10 initial y coordinates of the 
robot, 12 initial robot’s orientations and three actions that 
the robot performed from the initial position. The object 
that the robot observed was a box placed in the centre of 
the playground. This way we obtained 3600 examples 
against which we tested our models to measure their CA.  
 
Note that our simple approximate model of the qualitative 
change in the robot’s distance to an object (presented in 
section 3.1) is only 91.75% accurate on this testing set. By 
observing the misclassified examples, we discovered some 
common patterns. All misclassified examples have ang on 
interval ( )° °70 ,  100  or ( )− ° − °100 ,  70 .  There are two 

major types of misclassified examples:  
 
1. Examples that have ( )∈ ° °70 ,  90ang  and action = left 

and examples that have ( )∈ − ° − °90 ,  70ang
 and action 

= right. In both cases, executing an action results in an 
increase of the robot’s distance to an object ( )+ , 
contrary to what rule (2) would have predicted ( )− . 
They represent 51% of misclassified examples.  

2. Examples that have ( )∈ ° °90 ,  100ang  and action = right 
and examples that have ( )∈ − ° − °100 ,  90ang

 and 
action = left. In both cases, executing an action results in 
a decrease of the robot’s distance to an object ( )− , 
contrary to what rules (1) and (3) would have predicted 
( )+ . They represent 19% of misclassified examples.  

 
Other misclassified examples do not exhibit a common 
pattern.  
 
For quantifying the relative performance of our ERM 
learning method, we compared it with the following 
three merging strategies:  
 
• NoMerging: No objects are merged with this strategy. 

The learning algorithm only uses the data of each 
object to build its particular model. This “merging” 
strategy will serve us as a baseline when evaluating 
the learning performance of our ERM method.  

• Oracle: With this strategy, we assume we have an 
oracle that tells the learning algorithm, which objects 
belong to the same behaviour class, so it can merge 
them on the first learning iteration. This merging 
strategy will serve us as the upper bound for the 
learning performance of our ERM method.  

• MergeAll: This merging strategy merges all objects at 
the first learning iteration, regardless of whether or 
not they belong to the same behaviour class. As such 
it will serve us as another baseline when evaluating 
the learning performance of our ERM method.  

13Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko: 
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com



We constructed a learning curve for each merging 
strategy depicting how the strategy’s CA increases with 
the number of iterations. To obtain a learning curve, we 
repeated the same experiment 100 times, each time with 
different randomly chosen initial positions and 
orientations of the learning robot and the other objects. 
Each learning curve represents the mean of 100 
repetitions of the experiment. Errors bars show 95% 
confidence intervals for the means.  

6. Experimental results  

The following results try to answer the questions raised at 
the end of section 3.2. They are divided into three parts, 
each dealing with a certain aspect of the experimental 
domain. The first part covers the increase in the world’s 
cardinal complexity due to an increasing number of boxes 
present in the world. The next part investigates the 
scenarios with a constant number of boxes and an 
increasing number of objects from a different behaviour 
class, thereby increasing both the world’s behavioural 
and cardinal complexity. The last part compares the 
performance of the merging strategies with distinct base 
machine learning methods in the most complex scenario.  

6.1 Scenarios with an increasing number of boxes  

The first question we wanted to answer was: “Is it 
possible to speed up the learning of the model for one box 
when we have information about another box?” To this 
end we compared the learning strategies in a scenario 
with one box (1B) and a scenario with two boxes (2B). 
The results are given in Fig. 13(a) and Fig. 13(b), 
respectively. There is only one learning curve in Fig. 
13(a), because all merging strategies work the same way 
when they only have one object. Additionally, in 
scenarios with all objects from the same behaviour class 
(e.g., 2B), the MergeAll merging strategy performs the 
same as Oracle (and is therefore omitted in Fig. 13(b)).  
 
The answer to our question is yes. Both strategies, Oracle 
and ERM, performed significantly better than the 
NoMerging strategy when the number of actions was 
greater than five. The gap remained until the end of the 
curve, but it dissolved as the number of actions 
approached 100. This clearly indicates that using 
information about another box when learning the model 
for one box significantly speeds up the learning process.  
 
There was also a significant difference between the Oracle 
and our ERM strategy at the beginning, but the latter 
caught up after 20 actions. This means that initially, when 
the number of examples for each object is very small, our 
ERM method behaves conservatively as it does not have 
enough information to merge the objects.  
 

As expected, the learning curve for NoMerging strategy in 
scenario 2B corresponds to the learning curve in scenario 1B.  
 

 
 
 

 
 
 

 
 
 

Figure 13. Comparison of the performance of the merging 
strategies in scenarios with boxes only (i.e., all objects belong to 
the same behaviour class).  

 

Number of actions 
(a) Scenario 1B 

Number of actions 
(b) Scenario 2B 

Number of actions 
(c) Scenario 4B 
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If we add two more boxes, as in scenario 4B, the 
difference between Oracle, ERM and NoMerging 
strategies becomes even more evident. As shown in Fig. 
13(c), our ERM strategy significantly outperforms the 
NoMerging strategy through the whole learning process. 
The theoretical bound for the performance is given by 
Oracle’s learning curve. Initially, the margin between its 
and ERM’s learning curve is quite big, however, it 
gradually gets narrower as the number of actions 
increases.  

6.2 Scenarios with four boxes and an increasing  
number of other mobile robots  

The next question we set ourselves was: “How does the 
presence of four objects from a different behaviour class 
affect the speed of learning?” Therefore, we compared 
the learning curves for scenario with four boxes (4B) 
with the ones for scenario with four boxes and four 
other mobile robots (4B4R). The results are shown in 
Fig. 14(a) and Fig. 14(b), respectively. Our ERM method 
performs very well in the 4B4R scenario and its 
performance is nearly as good as in the 4B scenario. Its 
learning curve is not as steep as before during the first 
20 actions, but it still closes the margin to Oracle strategy 
as quickly as before. This means that our ERM method 
is successful in recognizing which objects belong to the 
static behaviour class and merging them to speed up the 
learning of their models.  
 
It is interesting to observe the learning curve of the 
MergeAll strategy in Fig. 14(b). Initially, it performed as 
well as Oracle (which represents the upper bound for the 
performance) and it stayed significantly better than our 
ERM strategy until 15 completed actions. From 25 
actions on, the ERM surpassed it again and stayed 
ahead until the end. Compared to the NoMerging 
strategy, MergeAll performed significantly better for the 
first 45 actions and it only performed significantly 
worse from 90 actions on. This result suggests that in 
cases when the data sets for objects are scarce, it may be 
beneficial to merge them, regardless of whether or not 
they actually belong to the same behaviour class.  
 
Even more demanding was the scenario with four boxes 
and eight other mobile robots (4B8R), for which the 
results are shown in Fig. 14(c). Again, our ERM method 
performed very well, achieving significantly better 
results than the NoMerging strategy. The margin 
between its learning curve and the upper bound 
provided by Oracle was only slightly wider than in 
scenario 4B4R. This demonstrates that our ERM method 
is able to recognize which objects are boxes (i.e., objects 
from the static behaviour class), despite doubling the 
number of other mobile robots (i.e., objects from the 
moving behaviour class) to eight.  
 

The most notable is the difference in performance of the 
MergeAll strategy between scenarios 4B4R and 4B8R. It  
 

 
Number of actions 

(a) Scenario 4B 

 
Number of actions 
(b) Scenario 4B4R 

 
Number of actions 
(c) Scenario 4B8R 

Figure 14. Comparison of the performance of the merging 
strategies in scenarios with four boxes and an increasing number 
of other mobile robots (0, 4 and 8). Subfigure (a) is the same as 
Fig. 13(c) and is repeated here for completeness and easier 
comparison with the other two subfigures.  
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performed significantly worse in the latter. This shows 
that merging four boxes together with eight other mobile 
robots significantly deteriorates the learning 
performance. However, this impact is not the same 
throughout the learning curve. Interestingly, MergeAll 
still outperformed both our ERM and NoMerging 
strategies at the beginning (until 20 actions). This again 
suggests that in cases when the data sets for objects are 
scarce, it may be beneficial to merge them, regardless of 
whether or not they actually belong to the same 
behaviour class. Furthermore, it hints at a possible new 
merging algorithm that would initially merge all objects 
and then gradually eliminate objects that no longer 
conform to the merged object, as more data for each 
object becomes available.  

6.3 Comparison of distinct base machine learning  
methods in the 4B8R scenario  

The last set of experiments compared how the merging 
strategies perform with distinct base machine learning 
methods, namely NBC, C4.5 and SVM. We used our most 
complex scenario (as defined in section 3.2) with four 
boxes and eight other mobile robots (4R8B) to analyse 
their performance. The results are shown in Fig. 15.  
 
Generally, the results evidence that our ERM method 
performs well with all of the base learning methods. With 
C4.5 it needs more actions to close the gap to the upper 
bound given by Oracle, meanwhile with SVM it narrows 
the margin approximately as fast as with NBC.  
 
There is a noticeable fall in the performance of the 
MergeAll strategy with C4.5, as shown in Fig. 15(b). It 
only dominates our ERM method for the first five actions 
and it performs significantly worse from action 15 
onward. This may indicate that the C4.5 learning 
algorithm is more susceptible to the additional conflicting 
data of objects belonging to the moving behaviour class. 
However, compared to the NoMerging strategy, the 
MergeAll performs very similar as with NBC, staying 
significantly better for the first 30 actions.  
 
Another interesting observation is the very poor 
performance of the NoMerging strategy with SVM, as 
shown in Fig. 15(c). In this case, NoMerging strategy 
performs significantly worse than all other strategies, 
only catching up with the MergeAll strategy after 90 
actions. Furthermore, it does not even come close to both 
our ERM and the Oracle strategies, the difference in CA 
measuring more than 0.1 after 100 actions. A plausible 
explanation for this deviation is the fact that the SVM 
learning algorithm with our chosen parameters (as 
described in section 5) needs more examples to train a 
classifier performing as well as classifiers built by NBC or 
C4.5. This is further supported by the flatter slopes of 
learning curves of the other strategies, especially Oracle 

and ERM, using SVM compared to the ones obtained 
with NBC or C4.5. 
 

 
Number of actions 

(a) Results with the NBC learning algorithm 
 

 
Number of actions 

(b) Results with the C4.5 tree induction algorithm 
 

 
Number of actions 

(c) Results with the SVM learning algorithm 

Figure 15. Comparison of the performance of the merging 
strategies with distinct underlying learning algorithms (NBC, 
C4.5, SVM) in the 4B8R scenario. Subfigure (a) is the same as Fig. 
14(c) and is repeated here for completeness and easier 
comparison with the other two subfigures.  
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Nonetheless, we have not tried to obtain the optimal 
learning curves for a particular base machine learning 
algorithm. Rather, we wanted to observe how the 
relationships between the merging strategies change 
when we use a set of distinct base machine learning 
algorithms. Excluding some minor deviations, the 
relationships remained the same and thus demonstrate 
that the merging strategies, in particular our ERM 
method, are independent of the base machine learning 
method.  

7. Conclusion  

In this paper we explored the idea of increasing the 
learning speed of an autonomous learning agent (e.g., a 
robot) by learning in a more complex environment. The 
greater complexity of the environment at any time point 
offers more observations and the agent can therefore 
collect more data for learning. This can be beneficial if the 
domain representing the environment has some structure 
that allows the merging of data. On the other hand, a 
more complex domain with more unrelated attributes 
may just be more confusing for the learner.  
 
We have proposed a new learning method named ERM 
that automatically discovers similarities in the structure 
of the domain. It does so by taking the learning sets of 
objects and training a set of models on selected 
combinations of these learning sets. By observing the 
average prediction errors of these models and following a 
set of criteria for merging, it then merges the objects that 
are likely to belong to the same behaviour class. For 
appropriate estimation of prediction errors on different 
data sets, we introduced a generalized leave-one-out 
cross-validation method.  
 
Another important feature of the ERM method is that it 
identifies different types of objects solely from the data 
measured, when several types of objects are present in a 
world.  
 
In the experiments with the ERM method in a simple 
robotic domain we detected the following phenomena:  
 
1. ERM was capable of discovering structural 

similarities in the domain, which indeed made the 
learning faster.  

2. ERM with increased learning times tends to catch up 
with learning, in which the similarities are already 
given ( i.e., the Oracle merging strategy).  

3. ERM was clearly superior to conventional, 
unstructured learning (i.e., the NoMerging strategy).  

4. These observed trends occurred with different base 
machine learning algorithms used inside the ERM 
method.  

 

One limitation of the presented work is that we have only 
performed the experiments in one relatively simple 
domain. We plan to address this in our future work and 
perform a range of experiments on various different 
domains and by learning various different relations.  
 
Another limitation of the ERM method is that the agent 
must know the object–attribute relations (i.e., which 
measurements belong to which object). By having that 
information, it can separate one big trace of observations 
into smaller traces, one for each object it observes. Also, 
the pair-wise correspondence between attributes of 
candidate objects for merging must be known.  
 
One interesting observation from our experiments is the 
surprisingly good performance of the MergeAll strategy at 
the beginning of the learning process, outperforming our 
ERM method. This suggests a new learning approach 
which would initially merge all objects together and then 
gradually split them apart, as more data for each object 
becomes available.  
 
In our paper, we chose to minimize the experimentation 
time (i.e., the number of actions) needed to achieve a 
certain prediction accuracy. However, depending on the 
specific robot setting, other criteria may be more 
appropriate. Different actions by the robot may take 
different amounts of time, or there may be other kinds of 
cost associated with each action. In such cases, it would 
be interesting to try to extend our ERM method to 
consider more general cost functions. This would also 
involve the question of optimal choice of actions which is 
the topic investigated by the areas of active learning and 
reinforcement learning.  
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