

International Journal of Advanced Robotic Systems

Learning Faster by Discovering
and Exploiting Object Similarities

Regular Paper

Tadej Janež1,*, Jure Žabkar1, Martin Možina1 and Ivan Bratko1

1 Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
* Corresponding author E-mail: tadej.janez@fri.uni-lj.si

Received 10 May 2012; Accepted 25 Oct 2012

DOI: 10.5772/54659

© 2013 Janež et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract In this paper we explore the question: “Is it
possible to speed up the learning process of an
autonomous agent by performing experiments in a
more complex environment (i.e., an environment with
a greater number of different objects)?” To this end, we
use a simple robotic domain, where the robot has to
learn a qualitative model predicting the change in the
robot’s distance to an object. To quantify the
environment’s complexity, we defined cardinal
complexity as the number of objects in the robot’s
world, and behavioural complexity as the number of
objects’ distinct behaviours. We propose Error reduction
merging (ERM), a new learning method that
automatically discovers similarities in the structure of
the agent’s environment. ERM identifies different
types of objects solely from the data measured and
merges the observations of objects that behave in the
same or similar way in order to speed up the agent’s
learning. We performed a series of experiments in
worlds of increasing complexity. The results in our
simple domain indicate that ERM was capable of
discovering structural similarities in the data which
indeed made the learning faster, clearly superior to
conventional learning. This observed trend occurred
with various machine learning algorithms used inside
the ERM method.

Keywords Autonomous Learning Agents, Learning Speed,
Domain Complexity, Learning by Experimentation,
Machine Learning

1. Introduction

This paper is concerned with learning by experimentation,
where an agent (e.g., a robot) learns relations among
observed variables by performing experiments in its
environment. That is, the agent performs actions and uses
sensors to observe how the actions affect the
environment. This helps it discover the laws of the
environment and the objects therein.

For example, a robot could try to model how its distance
to an object changes after it executes one of its actions. By
executing actions, the robot would collect examples and
gradually learn a model for predicting the change in its
distance to an object after performing an action. The
learned model would subsequently be used by the robot
to perform other tasks such as creating a plan to achieve a
certain goal, avoiding obstacles while moving around,
etc. The learning may, however, take a significant amount
of time to collect a sufficient amount of learning data. The
question we explore in this paper is: “Is it possible to

1Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

ARTICLE

www.intechopen.com Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013

http://crossmark.crossref.org/dialog/?doi=10.5772%2F54659&domain=pdf&date_stamp=2013-01-01

speed up the learning process by performing experiments
in a more complex environment (i.e., an environment
with a greater number of different objects), where the
robot’s sensors perform the measurements on multiple
objects simultaneously?” and furthermore, “Is it possible
to exploit this as a form of parallel data collection?” An
example illustrating a simple vs. a more complex
environment is shown in Fig. 1. In this way the robot
could collect more data in a shorter time frame compared
to collecting data in a simple world with only one object.
However, would the greater amount of data outweigh the
greater complexity of learning in a more complex
environment?

(a) A very simple environment: the robot and one box

(b) A more complex environment: the robot and several objects

of different types (four boxes and four other robots)
Figure 1. An example illustrating a simple vs. a more complex
environment. In which environment will the robot learn faster?

To illustrate some possible advantages and pitfalls of
learning in a more complex environment, consider a
simple learning problem: learning to predict whether or
not the robot will move closer to an object after
performing one of its actions. In the sequel we are using
the terminology from attribute–value machine learning.
Attributes are variables with known values, and class is
the variable whose value is to be predicted from the given

values of the attributes. The robot simultaneously
observes three objects: A, B and C, as shown in Fig. 2. For
each object it observes two attributes: Distance (distance
between the robot and the object) and Angle (absolute
value of the angle between the robot’s orientation and the
object). Attribute Action (with possible values “left”,
“straight” and “right”) denotes the direction of the
robot’s movement as follows: “straight” means move
straight forward, “left” means move forward while
turning left, and “right” means move forward while
turning right. The class is MovedCloser (with possible
values “yes” and “no”), which tells whether or not the
robot moved closer to the object after performing a given
action. The robot has no knowledge about the types of
objects (i.e., it does not know that objects A and B are
boxes and object C is a quickly moving robot). All it
knows are observations about the objects represented by
attributes Distance and Angle. To build a prediction
model, in this example the robot uses a decision tree
learning algorithm (e.g., C4.5 [1]) with pruning turned
off. A good approximate model for predicting whether or
not the robot will move closer to a non-moving object
(i.e., object A or B) is the decision tree given in Fig. 3.

Suppose the robot performed three actions: “left”, “left”
and “right”, as shown in Fig. 2. While performing these
actions, it collected nine learning examples, three for each
object, as given in Table 1. At this point the robot stopped
and built a decision tree for each object. Since the robot is
not able to build a highly accurate model for a quickly
moving object (i.e., object C), we will focus our attention
on prediction models for objects A and B. They are shown
in Fig. 4(a) and Fig. 4(b), respectively. The decision tree
built on the examples corresponding to object A is similar
to the good approximate model presented in Fig. 3. The
only difference is its inaccurate Angle split point (59°

instead of 90°). On the other hand, the decision tree built
on the examples for object B is quite different from the
good approximate model, since it only contains one leaf,
which classifies all the examples as MovedCloser = “yes”.

With the aspiration of building a more accurate model for
object A or B, the robot may try to merge (i.e.,
concatenate) the data sets of individual objects. In this
way it will obtain data sets with more learning examples,
which may lead to building more accurate prediction
models. If the robot naïvely merges all examples of all
objects and builds a decision tree, it will get the tree
shown in Fig. 4(c). This tree is very far from the desired
prediction model shown in Fig. 3. It is actually a lot worse
than the trees built on each individual learning set of
objects A and B. However, if the robot only merges the
data sets corresponding to objects A and B, it gets a very
good prediction model shown in Fig. 4(d). This tree is
identical to the good approximate model in Fig. 3, except
for the negligible difference (1°) in the Angle split point.
With this simple example we have shown how the robot

2 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

might build a more accurate model by merging data sets
of objects of the same type. It should be noted, again, that
the robot does not know the types of objects. So the
question of what data to merge advantageously is a
difficult challenge. In the above example, we have also
demonstrated how naïve merging of all data can lead to
undesirable results.

Figure 2. Robot simultaneously observes three objects: object A
(a box), object B (another box) and object C (a quickly moving
robot). From the initial position (t = 0), the robot performs three
actions: “left”, “left” and “right”, and stops at the final position
(t = 3). Meanwhile, object C is also moving along its indicated
trajectory.

Figure 3. A good approximate model for predicting whether or
not the robot will move closer to a non-moving object (i.e., object
A or B) after performing one of its actions. Note that in this tree,
the prediction does not depend on Action and Distance.

 Distance Angle Action MovedCloser

object A
0.37m
0.17m

10°
108°

left
left

yes
no

 0.46m 179° right no

object B
1.01m
0.67m

21°
12°

left
left

yes
yes

 0.42m 70° right yes

object C
0.52m
0.81m

20°
120°

left
left

no
yes

 0.53m 82° right no

Table 1. Data table with nine learning examples, three for each
object, that the robot collected while performing the three actions
shown in Fig. 2.

In this paper we present a new learning algorithm which
exploits the greater complexity of an environment with
more objects to speed up the learning of a model for a
single object. The speed-up is achieved through
intelligent merging of traces of observations for different

objects that assumingly behave in the same way (an
object’s trace contains the sensors’ measurements for this
object). By increasing the number of learning examples, a
machine learning algorithm can build a more accurate
model. The merging of objects’ traces is accomplished by
observing the average prediction errors of models built
on separate and merged objects’ traces, and following a
set of criteria that determine whether or not the merging
of traces would be beneficial.

Figure 4. Decision trees built by the robot corresponding to
different learning data sets. The leaves indicate the value (either
“yes” or “no”) of class MovedCloser.

The rest of the paper is organized as follows. First, in
section 2, we briefly review the related work. In section 3
we give a detailed description of our experimental
domain and present the relation the robot tries to learn,
namely how the robot’s distance to an object changes
after it performs one of its actions. We also define the
terms cardinal complexity, behavioural complexity and
behaviour class, and present a series of scenarios which
define increasingly more complex worlds, in which the
robot tries to learn the aforementioned relation. Next, in
section 4, we present Error reduction merging (ERM), our
proposed learning algorithm. We start by presenting the
main ideas and giving a general overview of the

3Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

algorithm, and in later subsections we describe the details
of the algorithm along with its pseudo-code. Section 5
describes the experimental setup we used to evaluate the
performance of our proposed ERM learning method. The
experimental results along with comments and discussion
are presented in section 6. Lastly, in section 7, we present
our conclusions and give some possibilities for future
work in this area.

2. Related work

Our investigation of how the complexity of the
environment (in terms of the number of objects and their
distinct behaviours) may offer the possibility of speeding
up an agent’s learning process is, to our knowledge, the
first such study. The following subsections present some
existing work, which is in certain aspects similar to ours.
We give a brief description of the work and explain
which of the ideas presented are related to our research.

2.1 Transfer learning

A very interesting research area that is related to our
work is transfer learning [2]. In particular, our setting is
most similar to inductive transfer learning, where labelled
data is available for both the target and the source
domain. In our setting, the target domain would
correspond to the domain of the object for which the
robot is learning a prediction model. The source domains
would be the domains of all other objects. Inductive
transfer learning methods try to identify which parts of
the source data are “good” and which parts are “bad” for
transferring to the target domain. This is similar to how
our ERM learning method has to discern which objects to
merge with the current target object to speed up the
learning of the prediction model for the target object.
Examples of such transfer learning techniques are
TrAdaBoost [3] and M-Logit [4].

2.2 Cooperative multi-agent learning

Another research area that is also related to our exploration
of achieving learning speed-ups by learning in a more
complex environment is cooperative multi-agent learning
[5]. Our problem setting, where an agent simultaneously
observes multiple objects and exploits this as a kind of
parallel data collection, is in a way analogous to the
problem setting with multiple agents where each agent
observes one object and the agents learn cooperatively by
sharing the collected data between each other.

A learning approach where two robots learn
simultaneously and share their experiences is presented
in [6]. The task of the robot is to learn reactive behaviours
for avoiding obstacles. On each time step the robot
transmits the following information to the other robot
(and vice versa): the position of the object it reacted to,
the action it chose and how good it was. Effectively, this

means that the two robots act as one learning agent with
twice as much learning data, which is in a way similar to
our ERM learning method, which also increases the
amount of learning data by using data from observations
of other similar objects. They have shown that this
sharing of experiences results in a faster and more
repeatable learning of the robot’s behaviours. Their work
assumes that the target models are the same for both
robots. In our work, however, the learner has to find out
whether such assumptions are justified.

A study of how to automatically design multi-agent
systems of cooperative agents, where each agent learns
independently, was performed by [7]. They used an
incremental learning scheme, where they progressively
increased task complexity and multi-agent system
complexity. The idea behind the approach is that agents
are able to re-use a learned policy in a more complex
environment, which leads to faster learning.
Simultaneously with increasing the number of learning
agents, they also added other objects to the environment,
which also increased the complexity of learning.
Although in our case we only observed one agent
learning a single classifier, the idea of increasing the
complexity of the environment by increasing the number
of different objects is similar to ours.

2.3 Speeding up reinforcement learning

Many reinforcement learning (RL) [8] techniques, which
try to decrease the amount of time steps before
converging towards a good policy, have been proposed.
We will describe a few examples which bear some
similarities to our approach.

A study of how RL can be used to “shape” a robot to
perform animal-like behaviours (e.g., chasing prey,
escaping from predators, etc.) was performed in [9]. The
part of the paper that touches on the issue of learning
speed is the design of an agent’s architecture. They
demonstrated that by carefully designing an agent’s
architecture by decomposing a complex behaviour
pattern into simpler ones, the learning can be accelerated
as a result of the narrowed search. This is in some way
related to our object-oriented decomposition of the
robot’s learning data, which ERM can exploit to find
similarly behaving objects.

An algorithm for efficient structured learning in
factoredstate Markov Decision Processes (MDPs) was
proposed in [10]. A factored-state MDP is one whose
states are represented as a vector of distinct features,
which is similar to our representation of the experimental
domain. Their approach seeks to maximize experience,
which would be, in our terms, analogous to maximizing
the amount of learning examples. This is akin to what
ERM strives for—maximizing the number of learning

4 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

examples with the aspiration of building more accurate
prediction models.

An interesting approach is the use of object-oriented
representation for more efficient RL presented in [11].
Therein they proposed object-oriented MDPs, an
extension to the standard MDP formalism which is based
on attributes that can be directly perceived by the agent.
This representation is similar to our object-oriented
representation of the experimental domain. They have
shown that this representation scales very well with
respect to the size of the state space, which makes RL
feasible in larger state spaces. Since our learning task is
limited to building a model for each object independently
of other objects, our learning method does not have to
cope with such scaling problems.

2.4 Learning by experimentation

Our learning task is a case of learning by experimentation.
The foundations of learning by experimentation lie in the
field of computational scientific discovery [12]. Early work
includes the BACON discovery system developed by
Langley [13, 14, 15], which is capable of rediscovering a
number physical laws from collected empirical data. An
overview of the history of computational scientific
discovery is given by Darden [16] and Langley [17].

The experimental domain and the learning task that we used
for our experiments follows a similar setting as [18]. They
used an autonomous learning robot that built qualitative
models for predicting how the robot’s distance and angle to
an object change after it performs one of its actions.

3. Experimental domain

Our problem domain consists of an autonomous mobile
robot, objects of different types and an overhead camera.
The robot uses the overhead camera to observe its
distance to each of the objects (denoted by dist) and the
angle between its orientation and each of the objects
(denoted by ang), as shown in Fig. 5. For calculating
distances and angles, all the objects are approximated
with points—their centres of gravity.

Figure 5. Robot uses the overhead camera to observe its distance
to each of the objects (dist) and the angle between its orientation
and each of the objects (ang).

Figure 6. Robot’s actions: move straight ahead, move left and
move right. At each time step the robot executes one of these
actions.

At each time step the robot executes one of the following
actions (denoted by action): move straight ahead, move
left or move right, as shown in Fig. 6. The robot avoids
actions that lead to collision.

The robot has no built-in concept of a coordinate system. All
it knows are its actions and observations about surrounding
objects. An example of a data trace that the robot collects
during its learning process is given in Table 2. The value of
an attribute a at time step t will be denoted by .ta

time
step

object 1
 object k


action 1dist 1ang

 kdist kang


1 0.5m 30°
 0.4m 10°

 left
2 0.7m 50°

 0.1m −10°
 right

3 0.4m 80°
 0.3m 20°

 right
  

 


Table 2. An example of a data trace that the robot collects during
its learning process.

The robot is aware of the fact that it observes the same set
of attributes for each object and which measurements
belong to which object. For example, the robot knows that
attributes kdist and ldist both measure the same thing
(robot’s distance to an object), the first with respect to
object k and the second with respect to object l .

3.1 Learning the change in object distance

The robot’s goal is to build a model for predicting the
change in its distance to an object after executing one of
its actions. Rather than predicting the exact value of the
change, we want the robot to build a qualitative model
for predicting the qualitative change in its distance to an
object. This can either be increased (+) or decreased (−)
(theoretically, there is also a third possibility: no change
(o), however, it occurs so rarely that we merged it with +).

More precisely, for object ,k the robot will build a model

kM for predicting the change in distance between the
robot and the object in the next time step 1(sgn())+∆ t

kdist
after executing an action ()taction

in the current state

(,)t t
k kdist ang :

robot’s orientation

ang dist

5Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

() ()1sgn , , ,∆ =t+ t t t
k k k kdist M dist ang action

where ∆ = −1 1t+ t+ t
k k kdist dist dist .

To simplify the learning of model kM , the robot will
assume the model is a function of attributes pertaining to
the particular object (i.e.,

 kdist and)kang and robot’s
action (action) only.

A simple approximate model of the qualitative change in
the robot’s distance to an object k can be summarized
using the following three rules:

()

()

()

− °

∆ = +

− ° ≤ ≤ °

∆ = −

°

∆ = +

1

1

1

(1) IF < 90 THEN

 sgn ,

(2) IF 90 90 THEN

 sgn ,

(3) IF >90 THEN

 sgn .

t+
k

t+
k

t+
k

ang

dist

ang

dist

ang

dist

A graphical illustration of these rules is given in Fig. 7. In
section 5, we present the accuracy of these rules on an
independent testing set along with a discussion of the
misclassified examples.

Figure 7. A graphical illustration of the rules for the qualitative
change in robot’s distance to an object. The figure pictures a case
when the robot starts at 0= °ang and moves either left or right.

In this paper, we are interested in minimizing the number
of examples needed for learning (i.e., how many
examples are needed to achieve a certain prediction
accuracy). This is a common criterion in machine
learning. In our experimental domain with a robot
collecting learning data, this corresponds to the time
needed for successful learning (i.e., how many actions are
needed to achieve a certain prediction accuracy). Since
minimizing the total experimentation time by a robot is
often a reasonable and appropriate optimization criterion,
we also chose it for our experiments.

We are aware of the fact that this is a very simple robotic
domain. Nonetheless, we think it is rich enough for
performing a set of interesting experiments. At the same
time, we feel that precisely its simplicity offers us a clear
way of evaluating our ideas and answering the questions
we set at the beginning of this paper.

3.2 Scenarios with worlds of increasing cardinal and behavio-
ural complexity

The robot’s learning process will take place in different
worlds of increasing cardinal and behavioural complexity. We
define the cardinal complexity as the number of objects in the
robot’s world. The greater the number of objects in the
robot’s world is, the greater is its cardinal complexity.
Similarly, we define the behavioural complexity as the
number of objects’ behaviour classes. A behaviour class is a set
of objects that behave in the same way with respect to the
particular relation the robot is modelling (i.e., change in
object’s distance). The more behaviour classes there are in
the robot’s world, the greater is its behavioural complexity.

We will use objects from two behaviour classes: static
(non-moving) objects and moving objects. The robot will
only be able to model the change in its distance to an
object from the first class, since, in this case, the change
depends on the previous state of the object (,)t tdist ang

 and the robot’s last action ().taction

Objects from the
second class will move randomly, thereby preventing the
robot building a highly accurate model for predicting the
change in its distance to such objects. We chose boxes as
representatives of the static class and mobile robots as
representatives of the moving class.

To obtain worlds of increasing cardinal and behavioural
complexity, we constructed the following scenarios:

• 1 box (1B) ,
• 2 boxes (2B) ,
• 4 boxes (4B) ,
• 4 boxes and 4 mobile robots (4B4R) ,
• 4 boxes and 8 mobile robots (4B8R).

Every scenario also includes an autonomous mobile robot
which observes the world and learns. Initially, the
autonomous mobile robot, boxes and other mobile robots
are randomly placed in a rectangular playground
enclosed with a wall on each side. Three examples of such
scenarios are pictured in Fig. 8.

6 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

(a) Scenario 1B: an autonomous mobile robot and 1 box

(b) Scenario 4B: an autonomous mobile robot and 4 boxes

(c) Scenario 4B8R: an autonomous mobile robot,

4 boxes and 8 other mobile robots

Figure 8. Three examples of scenarios showing worlds of
increasing cardinal and behavioural complexity.

The robot’s goal is the same in all scenarios: learn a model
for predicting the ()∆ 1sgn t+dist

for each object in a given

scenario. By using different scenarios, we will try to
answer some interesting questions: “Is it possible to

speed up the learning of the model for one box when we
have information about another box?” “What about when
we have information about three more boxes?” “How
does the presence of objects from a different behaviour
class affect the speed of learning?” “Will the proposed
method be able to recognize which objects belong to the
same behaviour class?” “How does the method cope
when we further increase the number of objects
belonging to the different behaviour class?”

4. Error reduction merging (ERM)

4.1 Merging objects’ data

When the robot is concurrently learning a model for
predicting the change in its distance to an object k, it
collects a trace of examples of the form
(), , ,t t t

k kdist ang action one example at each time step .t To
convert this trace to a learning set, it computes the

()1sgn ∆ t+
kdist

for each pair of consecutive examples in

the trace.

Moreover, it collects such traces and converts them to
learning sets for all the objects it observes through the
overhead camera. If it knew which objects belong to the
same behaviour class with respect to the change in
object’s distance (as described in section 3.2), it could
extend the learning set of this particular object k with the
learning sets of all other objects from the same behaviour
class. This way, it would considerably multiply the
number of learning examples used to build this model.
Since other objects are located in distinct parts of the
robot’s playground, we expect their learning sets to at
least partially differ from the learning set of the chosen
object. Furthermore, if objects are indeed from the same
behaviour class, then their learning sets will complement
the learning set of the chosen object in examples covering
distinct parts of the attribute space. Also, their learning
sets will not conflict with the learning set of the chosen
object in examples covering the same parts of the
attribute space. Hence, we can expect the accuracy of the
induced model to increase.

However, since the robot does not have information
about which objects belong to the same behaviour class, it
can only hypothesize about that at each time step. Its
hypotheses are based on models built on the current
learning sets of the objects.

Let

iol
and

jol

represent the learning sets of objects io

and ,jo respectively. Merging learning sets
iol

and
jol

 means the following: first, the corresponding attributes of
both objects are unified (e.g., idist and jdist

are treated as

the same attribute), and then the corresponding data
series are concatenated. Let +

i jo ol l

denote the merger of

learning sets
iol

and .
jol

7Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

When determining whether merging objects objects io
and jo (i.e., their learning sets) would be beneficial, the
algorithm builds three models with the same base learner,
one on

,

iol
one on

jol

and one on ,+

i jo ol l and compares
them on selected combinations of the learning data sets
(, ,).

i j i jo o o ol l l l+

Let (), r so oE

 denote the average prediction error of a
model built on the learning set of object ro and tested on
the learning set of object .so (), r so oE here means a
particular error estimate, a kind of generalized leave-one-
out cross-validation method which will be explained in
detail in section 4.2. We can now define the error reduction
(ER) of merging objects io and jo

as follows:

() ()

()ER
+

= − + +
+

E E
E,

, ,
 , .

i j

i j

i j

i i j jo o
o o i j i j

o o

l o o l o o
o o o o

l l

(1)

A positive ER indicates that the weighted average of
average prediction errors of models built and tested on
each object’s learning set is greater than the average
prediction error of a model built and tested on the merger
of objects’ learning sets. This implies that by merging
objects io and jo

the average prediction error on their

respective learning sets would be reduced. This will
become our main criterion for deciding whether or not
the learning algorithm should merge two objects.

After the robot has performed a certain number of
actions, it stops and runs the merging algorithm on the
newly augmented objects’ traces. First it converts the
traces to learning sets (as described before) and then it
starts to evaluate which objects to merge at the current
iteration. It merges objects agglomeratively, similarly to
hierarchical clustering [19], starting with the two objects
that are the best candidates for merging and continuing
until either there is only one (merged) object left or the
remaining object pairs do not pass the criteria for
merging.

A pair of objects (), i jo o

is a candidate for merging if it

passes the following criteria:

(1) both learning sets,
iol

and ,
jol

contain a minimal

number of examples (controlled by parameter),n
(2) the ER of merging objects io and

 jo

is greater or

equal to zero.

The first criterion is a rudimentary threshold that
eliminates all candidate pairs whose learning sets are too
small. When the learning set of an object is very small, it
makes little sense to try to ascertain whether or not this
object belongs to the same behaviour class as some other
object.

The second criterion compares the average prediction
errors of all three models (built on ,

i jo ol l

and +)

i jo ol l on
their own data sets. As dictated by Eq. (1), the average
prediction error of a model built and tested on the merged
data set has to be lower or equal to the weighted average of
the average prediction errors of the individual models on
their respective learning sets. This criterion will ensure that
by merging objects io and jo

the average prediction error

on their respective learning sets will not increase.

However, solely observing the size of ER is not the best
way to choose the next pair of objects to be merged, as
can be illustrated with a simple example. Suppose that
learning instances are points lying on a one-dimensional
line, and the class function is a simple binary
thresholding function f parameterised by  :

() if > , and
otherwise.

+= −

x
f x



Figure 9. A simple example illustrating the shortcoming of solely
observing ER. Learning instances are points lying on a one-
dimensional line, and their class values are either + if > x  or
– (otherwise). The upper and lower parts represent the learning
sets of objects io and ,jo

respectively, each one containing five

learning examples. By using a machine learning algorithm on all
combinations of these learning sets ,

i jo ol l and +),
i jo ol l we

obtained three models giving different approximations of
 : ,

i jo o  and +i jo o .

Furthermore, suppose we have a candidate pair of objects
(), i jo o

with learning sets as pictured in Fig. 9. By using

a machine learning algorithm on all combinations of these
learning sets ,

i jo ol l and +),
i jo ol l we obtained three

models giving different approximations of

 : ,

i jo o 

and

+i jo o (also pictured in Fig. 9). The average prediction
errors of these models on their learning sets are all equal
to zero. Hence, ER is zero. Our merging criterion (2) is
therefore satisfied, but the gain from merging is zero. In
comparison with other candidate pairs of objects, the pair
(), ,i jo o

according to ER, does not look very attractive.

However, observing the learning examples of io and

,jo
 it would be natural to merge these two objects together,

as their learning sets complement one another very well.
When merged, these examples determine  very
accurately. This example shows that ER may
underestimate the benefit of merging a pair of objects.
Therefore ER is not a good criterion for ranking candidate
pairs of objects to be merged.

8 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

A solution to this issue is to check whether the following
inequalities hold:

 () ()≤E E, , ,i j i j i i jo o o o o o o + + + (2)

 () ()≤E E, , .i j i j j i jo o o o o o o + + + (3)

If the learning sets of objects io and
 jo

complement one

another well in examples covering distinct parts of the
attribute space, these inequalities will hold. In addition,
criterion (2) i.e., ER ≥ 0) ensures that the learning sets of
these two objects do not conflict with each other in
examples covering the same part of the attribute space.

Returning to the previous example, the remaining
average prediction errors are the following:

()
()

, 3 / 10,

, 2 / 10.

=

=

i i j

j i j

o o o

o o o

+

+

E

E

Clearly, both inequalities from Eq. (2) and (3) hold, which
is in accordance with the intuition that it would be
beneficial to merge objects io and

.jo

To rank the candidate pairs of objects, we observe to what
extent the pairs’ learning sets cover the same part of the
attribute space, and to what extent the pairs’ learning sets
cover distinct parts of the attribute space. We want to
merge the pair of objects that cover as much of the
attribute space as possible in order to build a good model
for the whole attribute space.

Ranking of candidate pairs of objects is achieved by
performing a series of t-tests comparing the average
prediction error of each object’s model with the average
prediction error of the merged object’s model. For each
candidate pair of objects (), i jo o

two one-sided t-tests

testing the following null hypotheses:

() ()
i0 : , , ,≤H i i j i j i jo o o o o o o+ + + E E

(4)

 () ()
j0 : , , ,≤H j i j i j i jo o o o o o o+ + + E E (5)

are performed. A higher p-value signifies a weaker
rejection of a null hypothesis. We want to reject both null
hypotheses,

i0H

and
j0 ,H with as much statistical

significance as possible, so we choose the best candidate
pair of objects (), ∗ ∗

i jo o

to be the one with the minimal

maximal p-value:

()
()

{{

}}
i

j

0
,

0

, arg min max p-valueof testing ,

 p-valueof testing .

∗ ∗ = H

H

i j

i j
o o

o o

After merging objects ∗
io and ∗

jo

into ,mo all possible

pairs of objects containing mo are generated and tested
against the criteria (1) and (2). In addition, the algorithm
checks if they satisfy the inequalities from Eq. (2) and (3).
The pairs of objects that pass the criteria and satisfy the
inequalities are added to the set of candidate pairs and
the ranking process is repeated. This is continued until
there are no more candidate pairs left (details of the
merging procedure are explained in section 4.3).

When the merging at current iteration is finished, the
models for the remaining (merged) objects are built and
tested on the independent testing set (as will be described
in section 5). Afterwards, the objects are split again and
the robot continues executing new actions and
augmenting the objects’ traces. After a certain number of
actions (controlled by the parameter u described in
section 4.4), it stops and runs the same merging algorithm
from the beginning.

()

() ()
() ()
()

←

←

←

+ ←

E

E

E

STIMATE-ERRORS-AND-SIGNIFICANCES

ENERALIZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

ENERAL

, ,

1 , learning sets corresponding to ,

2 , , ,

3 , , ,

4 ,

E

G

G

 G

i j

i i

j j

i j

o o i j

i i o o

j j o o

i i j

o o

l l o o

o o l l

o o l l

o o o

A

A

A

()
() ()
() ()
()

+

+ ← +

+ + ← + +

+ + ←

E

E

P

IZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

ENERALIZED-LEAVE-ONE-OUT

, ,

5 , , ,

6 , , ,

7 , ; perform a pair-wise one-side

 G

G

i i j

j i j

i j i j

o o o

j i j o o o

i j i j o o o o

i i j i j

l l l

o o o l l l

o o o o l l l l

o o o o o

A

A

A

() ()

()
()

t

t

+ ≤ + +

+ + ←

+ ≤ +

E E

P

E E

i

j

0

0

d -test

testing the null hypothesis :

and store the obtained p-value

8 ; perform a pair-wise one-sided -test

testing the null hypothesis :

i i j i j i j

j i j i j

j i j i

o o o o o o o

o o o o o

o o o o

, ,

,

,

H

H ()

()

()

{ }()
() ()

()

∗

∈

+

∈

←

← −

∑

return E P

for do

return



ENERALIZED-LEAVE-ONE-OUT

and store the obtained p-value

9 ,

1

2 \

3 1

1
4

G

j i j

M M

x test M

o o o

learn, test

x test

M learn x

e x P y x

e x
test

A

A

,

,

Figure 10. The STIMATE-ERRORS-AND-SIGNIFICANCESE procedure
estimates the average prediction errors of different models on
selected combinations of the learning sets and computes the p-
values of two one sided t-tests testing the null hypotheses from
Eq. (4) and (5). The ENERALIZED-LEAVE-ONE-OUTG procedure is a
generalized leave-one-out cross-validation method that estimates
the average prediction error of models built on the learn set and
tested on examples from the test set. It should be noted that the
purpose of the above procedure is to define what the result of
generalized leave-one-out is, and not that it should actually be
implemented in this inefficient way.

9Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

The following three subsections give a detailed
description of the presented learning algorithm. Each
subsection also contains the pseudo-code of a part of the
algorithm. In section 4.2, we present the ESTIMATE-ERRORS-

AND-SIGNIFICANCES procedure, which uses the
GENERALIZED-LEAVE-ONE-OUT procedure to estimate the
average prediction errors of different models on selected
combinations of the learning sets. In addition, ESTIMATE-

ERRORS-AND-SIGNIFICANCES performs two pair-wise one-
sided t-tests testing the null hypotheses

 i0H

and
 j0H

presented earlier. Next, in section 4.3, we present the
ERM method which forms the central part of the robot’s
learning algorithm. Finally, in section 4.4, we describe the
LEARNING-LOOP procedure which is the high-level
learning algorithm running on our autonomous robot.

4.2 Estimating the average prediction errors and significances
using a generalized leave-one-out method

Let us define the prediction error of a model M for an
example x as:

() () 1 ,∗= −


M Me x P y x

where ()


MP y x

is the model’s predicted probability of

example x having class value ,y and ∗y denotes the
example’s true class value.

To estimate the average prediction errors of different
models (obtained by training the same base learner on
different learning sets) on selected combinations of the
learning sets, we used the ESTIMATE-ERRORS-AND-

SIGNIFICANCES procedure as given in Fig. 10. In addition,
this procedure also performs two pair-wise one-sided t-
tests testing the null hypotheses

 i0H

and

 j0H

described

in section 4.1. We use ()t, ; P r so o o

to denote the p-value

of a pair-wise one-sided t-test testing the null hypothesis:
() ()≤, , .E Er t s to o o o

The input to the ESTIMATE-ERRORS-AND-SIGNIFICANCES
procedure are a machine learning algorithm A that is used
to build the models, and objects io and jo

that are candidates

for merging at the current iteration. Algorithm A is
assumed to produce models that, for a given example,
return probability distribution over all class values.

The output of the ESTIMATE-ERRORS-AND-SIGNIFICANCES
procedure is a pair (), ,E P

where E is the set of

computed average prediction errors ()E ·, · , and P is a
set of p-values of the computed t-test statistics ()P ·, · ; · .

The main part of the ESTIMATE-ERRORS-AND-SIGNIFICANCES
procedure (lines 2–6) are calls to the GENERALIZED-LEAVE-

ONE-OUT procedure that computes the average prediction
errors of selected combinations of the learning sets. In the
last part (lines 7–8), ESTIMATE-ERRORS-AND-SIGNIFICANCES

performs two pair-wise one-sided t-tests testing the null
hypotheses

 i0H

and

 j0H

as defined in Eq. (4) and (5).

The average prediction error of a model built on a given
learning set and tested on examples from a given testing
set is computed with the GENERALIZED-LEAVE-ONE-OUT

procedure which performs a kind of generalized leave-
one-out cross-validation to avoid biased prediction error
estimates. The pseudo-code of the GENERALIZED-LEAVE-

ONE-OUT procedure is also given in Fig. 10.

The input to the GENERALIZED-LEAVE-ONE-OUT procedure
are a machine learning algorithm A that is used to build the
models and two data sets: learn, which contains the learning
examples, and test, which contains the testing examples.

The output of the GENERALIZED-LEAVE-ONE-OUT procedure
is the average prediction error of models built on the learn
set and tested on examples from the test set.

The procedure iterates through the for loop and estimates
the prediction error of each example x from the test set. It
creates a model M built on the whole learn set, excluding
the current testing example x if it is also contained in the
learn set (line 2). Then it computes the prediction error of
M for the current testing example (line 3).

The difference with the standard leave-one-out [19] is that
GENERALIZED-LEAVE-ONE-OUT takes two data sets as input.
The first one is the learning set which is used to build the
model and the second one is the testing set which is used
to test the model. On each iteration the algorithm checks
if the currently tested example is in the learning set. If yes
then this example is not used for learning in this iteration.
This gives us better error estimates since the tested
example is never included in the learning set that was
used to build the model. We can also observe two special
cases of using the GENERALIZED-LEAVE-ONE-OUT procedure:
if the learning and testing set are the same, it performs
the standard leave-one-out. If the learning and testing set
have no examples in common, it performs the standard
testing procedure with two disjoint data sets, one for
learning and the other for testing.

4.3 Merging objects using the ERM method

The central part of the robot’s learning algorithm is the
ERM learning method presented in Fig. 11.

The input to the ERM method are the set of current objects

,O the set of current objects’ learning sets ,L parameter n
controlling the minimal number of examples in a learning
set, and a machine learning algorithm A that is used to
build the models inside the calls to the ESTIMATE-ERRORS-

AND-SIGNIFICANCES procedure.

The output of the ERM method is a triplet (), , ,O L M
where O represents the new set of objects, L represents

10 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

the new set of objects’ learning sets (after merging) and M
represents the set of models built on the new objects’
learning sets.

()
{ }

()

ERM
←

∈

←

≥ ≥

for do

if and then

STIMATE-ERRORS-AND-SIGNIFIC

, , ,

1 // set of object pairs that are candidates
for merging

2 each pair

3 learning sets corresponding to

4

5 run E

C

i j

ji

i j

o o i j

oo

n

o o

l l o o

l n l n

O L A

O,

, ,

()

()()
()

{ () ()}

ER error reduction

ER

←

≥ + + ≤

+ +

←

E P

if and E

E E then

ANCES

,

,

,

and add appropriate entries to and
6 compute of merging

objects and as defined in Eq. 1

7 0

min , , ,

8 C C

i j

i j

i j

o o

i j

o o i j i j

i i j j i j

o o

o o

o o o o

o o o o o o

A ,

,

(){ }

()
(){{
()}}

∈

∪

← + +

+ +

←

←

while do

P

P

,

9 > 0

10 , arg min max ,

11 learning sets corresponding to ,

12 a new object

C

C

i j

i j

i j

i j i i j i j
o o

j i j i j

o o i j

m

o o

o o o o o o o

o o o o o

l l o o

o

,

;

;

* *

* * * *

,

,

,

{ } { }

{ } { }

{ }

←

← ∪

← ∪

←

∈

←

for do

 obtained by merging and

13

14 \ ,

15 \

16 without candidate pairs that contain either

 or

17 \
18 learning set correspondi

C C

m i j

i j m

i

i j

o o o

i j m

o o o

i j

i m

o

o o

l l + l

o o o

l l l

o o

o o
l

O O

L L

O

* *

* *

* *

* *

* *

,

()

ER error reduction

≥

←

if then

E P

STIMATE-ERRORS-AND-SIGNIFICANCES

ng to

19

20 run E ,
 and add appropriate entries to and
21 compute of merging

objects and a

i

i m

i

o

i m

o o

i m

o

l n

o o

o o

A

,

,

()()
()

() (){ }
(){ }

{ }

ER ≥ + + ≤

+ +

← ∪

←

∈
←

if and E

E E then

for do

s defined in Eq. 1

22 0

 min ,

23

24 // set of current objects' models
25
26 learning set corresponding to

27

C C

i m

i

o o i m i m

i i m m i m

i m

i

o i

o o o o

o o o o o o

o o

o
l o

M

O

, ,

, ,

,

()
{ }

()

←

← ∪

return

28

29 , ,

i i

i

o o

o

M l

M

A

M M

O L M

Figure 11. The pseudo-code of the Error reduction merging (ERM)
method, which forms the central part of the robot’s learning
algorithm.

First (line 1), the method initializes set C that will hold
object pairs that are candidates for merging. The
following for loop (lines 2–8) iterates through all object
pairs (), ∈i jo o O

and adds them to the set C if they pass

the following criteria:

(1) both learning sets,
iol

and

,
jol

contain at least n

examples,
(2) the ER of merging objects io and

 jo

is greater or

equal to zero,
(3) the average prediction error ()+ +E , i j i jo o o o

 satisfies the inequalities from Eq. (2) and (3), that is:

 () { () ()}+ + ≤ + +E E E, min , , , .i j i j i i j j i jo o o o o o o o o o

Explanation of these criteria was given in section 4.1.

After filling the set C with candidate pairs that pass
these criteria, the method iterates through the while loop
(lines 9–23), as long as there are still candidates pairs left
to be merged. The chosen pair (), i jo o* * on each iteration is
the one with minimal maximal p-value of the t-test
statistics obtained by testing the null hypotheses

 i0H

and

j0H

as defined in Eq. (4) and (5) (line 10).

After creating a new object and merging the learning sets
of the chosen objects (lines 12–13), the method updates
O by removing the chosen pair of objects and adding the
newly created object (line 14) and L by removing the
learning sets of the chosen pair of objects and adding the
learning set of the new object (line 15). In addition, all
candidate pairs that contained either io*

 or jo*

are

removed from C (line 16).

The nested for loop (lines 17–23) works the same way as
the first for loop (lines 2–8), except that it now fills C with
candidate pairs that contain the newly created object .mo

Finally, the method initializes set M that will hold the
models built on the new objects’ learning sets (line 24).
The following for loop (lines 25–28) iterates through all
(merged) objects from the final set O. It builds a model
on each object’s learning set and adds it to the set M.

4.4 Learning algorithm running on the robot

The high-level learning algorithm running on our
autonomous robot takes the form of a simple learning
loop, as presented in Fig. 12.

The parameters given to the LEARNING-LOOP procedure
are the interval (i.e., the number of time steps) between
two successive calls to the ERM method denoted by ,u
the minimal number of examples in a learning set
denoted by ,n and a machine learning algorithm A that
is used to build the models inside the calls to the ERM
method.

11Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

After initializing sets , , O T L (lines 1–3) and iteration
counter t (line 4), the LEARNING-LOOP starts executing its
main loop. At each time step t, the robot receives
information about its distance to each of the objects
({

1 2
, ,..., t t t

o o odist dist dist
 O

}) and the angle between its

orientation and each of the objects
({

1 2
, ,..., t t t

o o oang ang ang
 O

})

and updates objects’ current

traces and learning sets (lines 7–8).

()
{ }
{ }
{ }

←

←

←

←

←

EARNING-LOOP , ,

1 // set of current objects

2 // set of current objects' traces

3 // set of current objects' learning sets
4 0 // iteration counter
5 true
6 update by creating

L

while do

u n

t

A

O

T

L

O O

{ }←
1 2

 new objects if
 the message received by the overhead camera
 indicates the presence of new objects

7 update with , ,...,

 and

 O

t t t
o o odist dist dist

a

T T

{ }
←

≡if

1 2
, ,..., as received by

 the overhead camera
8 update with examples computed from

 the updated
9 0 (m

 O

t t t
o o ong ang ang

t

L L
T

()
←

←

←

thenod)
10 ', ' make copies of sets ,
11 , , , , ,
12 , restore original values of ,

from ', '
13 pick an action from the se

u

ERM n
O L O L
O L M O L A

O L O L
O L

← +

t of actions
 (as defined in section 3) and execute it
14 1t t

Figure 12. High-level learning algorithm running on our
autonomous robot.

When ≡ 0 (mod),t u the algorithm first backs up the
current sets O and L (line 10) and then proceeds with
the call to the ERM method (line 11). After obtaining the
ERM’s results, it restores sets O and L to their values
from before the merging (line 12). This will cause the
merging to start from the beginning on the next call to the
ERM method.

At the end of the loop, the algorithm chooses one of the
possible actions (as described in section 3) and executes it
(line 13).

5. Experimental setup

We implemented our experiments in the Webots robot
simulator [20]. The autonomous learning robot and other
mobile robots were implemented as simple differential
wheeled robots. At every time step, each robot randomly

chose one of the possible actions (as described in section
3) and executed it. Technically, collision avoidance was
implemented as follows: all of the robots had a front
bumper which served as a touch sensor. Whenever a
robot’s touch sensor detected a collision, the robot
stopped executing its current action and performed a
simple avoidance manoeuvre: it moved back and turned
a bit to the left. Then it continued executing its actions.
Every action the robot commenced executing counted as
one iteration of the learning algorithm.

In order to represent objects from a different behaviour
class with respect to the relation the robot is learning, the
other mobile robots had to move substantially faster than
the autonomous learning robot. If they had moved as fast
as the learning robot, they would have been
indistinguishable from the static boxes, since the robot is
only modelling the qualitative change (i.e., the sign of the
change) in its distance to an object.

The vision system with the overhead camera was
simulated with a special Webots controller named
supervisor, which had access to all the information about
the learning robot and other objects currently simulated.
At every time step, the supervisor read the positions and
orientations of the learning robot, and other objects. It
then computed the learning robot’s distance to each of the
objects (dist), and the angle between its orientation and
each of the objects (ang). Finally, this information was
packed in a message and sent to the learning robot. Note
that the learning robot never had information about the
objects’ coordinates, but only about each object’s dist and
ang values as computed by the supervisor.

The rectangular playground in which the learning robot
and other objects were enclosed was of size 2.0 m × 2.0 m.
The boxes were implemented as cubes with sides of length
0.1 m. All the robots were of the same shape and size, and
their size was approximately the same as the size of a box.

We used three distinct base machine learning methods
inside our ERM and other learning methods (described
later in this section), namely naïve Bayes classifier (NBC)
[19], C4.5 decision tree learner [1] and support vector
machines (SVM) [21]. The particular implementation of
these methods was the one provided in the Orange
machine learning and data mining suite [22].

The NBC used locally weighted regression (LOESS) [23]
with parameter window_proportion = 0.1 (proportion of
examples used for local learning in LOESS) for the
estimation of (conditional) probabilities of continuous
attributes. Other parameters were left at their default
values.

For the C4.5 learning algorithm we used the default
parameter settings.

12 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

The parameters of the SVM were: svm_type = C-SVC
(type of the SVM formulation), C = 100 (regularization
parameter), kernel_type = polynomial (type of the kernel
function), degree = 3 (degree of the polynomial kernel),
coef_0 = 1 (value of the constant term of the polynomial
kernel). Other parameters were left at their default
values.

For practical reasons, we chose to only use NBC
throughout the first two sets of experiments. At the end
we give a comparison of all three base machine learning
methods on our most complex scenario (as defined in
section 3.2).

To assess the performance of our ERM learning method,
we took the set of models ,M tested each model on an
independent testing set (described later) and recorded
its classification accuracy (CA). Since the robot was not
able to build a highly accurate model for predicting the
change in its distance to objects from the moving
behaviour class (i.e., mobile robots), we were only
interested in classification accuracies of models for the
objects from the static behaviour class (i.e., boxes). We
took the average CA of all models containing
predictions for boxes as the final CA (e.g., when the
ERM method erroneously merged a box with mobile
robots, we also took that model into account since the
robot would use this model when asked to predict the
change in its distance to this box). This testing was done
after every call to the ERM method (line 11 of the
LEARNING-LOOP presented in Fig. 12).

In our experiments, we chose to run ERM each time after
the next five actions were completed (i.e., we set
parameter u to five). A comment is in order regarding
the rate of model updates during a learning run. In this
paper, we are interested in studying the dependence
between the number of actions and the corresponding
prediction accuracy achieved by ERM vs. other merging
strategies (described later). In a practical application of
ERM, the user may choose to update the prediction
model obtained by ERM at different rates. In particular,
for best accuracy at any time during learning, ERM
would be executed after each action. In the case of a
relatively fast acquisition of new data, the process of
model updating could possibly lag behind the data
acquisition process. In this case, it would be reasonable to
restart the model update immediately after the previous
model update was completed. Another idea would be to
find a metric that would indicate whether a model update
is warranted. The observed critical value of this metric
would warrant a next model update.

The parameter ,n controlling the minimal number of
examples in a learning set before it is considered for
merging, was set to five.

To evaluate the learned models, we generated a separate
testing set. This set was obtained by densely sampling the
attribute space with one object and observing the real
change in the robot’s distance to the object after executing
an action. We created a grid sample with 10 initial x
coordinates of the robot, 10 initial y coordinates of the
robot, 12 initial robot’s orientations and three actions that
the robot performed from the initial position. The object
that the robot observed was a box placed in the centre of
the playground. This way we obtained 3600 examples
against which we tested our models to measure their CA.

Note that our simple approximate model of the qualitative
change in the robot’s distance to an object (presented in
section 3.1) is only 91.75% accurate on this testing set. By
observing the misclassified examples, we discovered some
common patterns. All misclassified examples have ang on
interval ()° °70 , 100 or ()− ° − °100 , 70 . There are two

major types of misclassified examples:

1. Examples that have ()∈ ° °70 , 90ang and action = left

and examples that have ()∈ − ° − °90 , 70ang
 and action

= right. In both cases, executing an action results in an
increase of the robot’s distance to an object ()+ ,
contrary to what rule (2) would have predicted ()− .
They represent 51% of misclassified examples.

2. Examples that have ()∈ ° °90 , 100ang and action = right
and examples that have ()∈ − ° − °100 , 90ang

 and
action = left. In both cases, executing an action results in
a decrease of the robot’s distance to an object ()− ,
contrary to what rules (1) and (3) would have predicted
()+ . They represent 19% of misclassified examples.

Other misclassified examples do not exhibit a common
pattern.

For quantifying the relative performance of our ERM
learning method, we compared it with the following
three merging strategies:

• NoMerging: No objects are merged with this strategy.

The learning algorithm only uses the data of each
object to build its particular model. This “merging”
strategy will serve us as a baseline when evaluating
the learning performance of our ERM method.

• Oracle: With this strategy, we assume we have an
oracle that tells the learning algorithm, which objects
belong to the same behaviour class, so it can merge
them on the first learning iteration. This merging
strategy will serve us as the upper bound for the
learning performance of our ERM method.

• MergeAll: This merging strategy merges all objects at
the first learning iteration, regardless of whether or
not they belong to the same behaviour class. As such
it will serve us as another baseline when evaluating
the learning performance of our ERM method.

13Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

We constructed a learning curve for each merging
strategy depicting how the strategy’s CA increases with
the number of iterations. To obtain a learning curve, we
repeated the same experiment 100 times, each time with
different randomly chosen initial positions and
orientations of the learning robot and the other objects.
Each learning curve represents the mean of 100
repetitions of the experiment. Errors bars show 95%
confidence intervals for the means.

6. Experimental results

The following results try to answer the questions raised at
the end of section 3.2. They are divided into three parts,
each dealing with a certain aspect of the experimental
domain. The first part covers the increase in the world’s
cardinal complexity due to an increasing number of boxes
present in the world. The next part investigates the
scenarios with a constant number of boxes and an
increasing number of objects from a different behaviour
class, thereby increasing both the world’s behavioural
and cardinal complexity. The last part compares the
performance of the merging strategies with distinct base
machine learning methods in the most complex scenario.

6.1 Scenarios with an increasing number of boxes

The first question we wanted to answer was: “Is it
possible to speed up the learning of the model for one box
when we have information about another box?” To this
end we compared the learning strategies in a scenario
with one box (1B) and a scenario with two boxes (2B).
The results are given in Fig. 13(a) and Fig. 13(b),
respectively. There is only one learning curve in Fig.
13(a), because all merging strategies work the same way
when they only have one object. Additionally, in
scenarios with all objects from the same behaviour class
(e.g., 2B), the MergeAll merging strategy performs the
same as Oracle (and is therefore omitted in Fig. 13(b)).

The answer to our question is yes. Both strategies, Oracle
and ERM, performed significantly better than the
NoMerging strategy when the number of actions was
greater than five. The gap remained until the end of the
curve, but it dissolved as the number of actions
approached 100. This clearly indicates that using
information about another box when learning the model
for one box significantly speeds up the learning process.

There was also a significant difference between the Oracle
and our ERM strategy at the beginning, but the latter
caught up after 20 actions. This means that initially, when
the number of examples for each object is very small, our
ERM method behaves conservatively as it does not have
enough information to merge the objects.

As expected, the learning curve for NoMerging strategy in
scenario 2B corresponds to the learning curve in scenario 1B.

Figure 13. Comparison of the performance of the merging
strategies in scenarios with boxes only (i.e., all objects belong to
the same behaviour class).

Number of actions
(a) Scenario 1B

Number of actions
(b) Scenario 2B

Number of actions
(c) Scenario 4B

14 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

If we add two more boxes, as in scenario 4B, the
difference between Oracle, ERM and NoMerging
strategies becomes even more evident. As shown in Fig.
13(c), our ERM strategy significantly outperforms the
NoMerging strategy through the whole learning process.
The theoretical bound for the performance is given by
Oracle’s learning curve. Initially, the margin between its
and ERM’s learning curve is quite big, however, it
gradually gets narrower as the number of actions
increases.

6.2 Scenarios with four boxes and an increasing
number of other mobile robots

The next question we set ourselves was: “How does the
presence of four objects from a different behaviour class
affect the speed of learning?” Therefore, we compared
the learning curves for scenario with four boxes (4B)
with the ones for scenario with four boxes and four
other mobile robots (4B4R). The results are shown in
Fig. 14(a) and Fig. 14(b), respectively. Our ERM method
performs very well in the 4B4R scenario and its
performance is nearly as good as in the 4B scenario. Its
learning curve is not as steep as before during the first
20 actions, but it still closes the margin to Oracle strategy
as quickly as before. This means that our ERM method
is successful in recognizing which objects belong to the
static behaviour class and merging them to speed up the
learning of their models.

It is interesting to observe the learning curve of the
MergeAll strategy in Fig. 14(b). Initially, it performed as
well as Oracle (which represents the upper bound for the
performance) and it stayed significantly better than our
ERM strategy until 15 completed actions. From 25
actions on, the ERM surpassed it again and stayed
ahead until the end. Compared to the NoMerging
strategy, MergeAll performed significantly better for the
first 45 actions and it only performed significantly
worse from 90 actions on. This result suggests that in
cases when the data sets for objects are scarce, it may be
beneficial to merge them, regardless of whether or not
they actually belong to the same behaviour class.

Even more demanding was the scenario with four boxes
and eight other mobile robots (4B8R), for which the
results are shown in Fig. 14(c). Again, our ERM method
performed very well, achieving significantly better
results than the NoMerging strategy. The margin
between its learning curve and the upper bound
provided by Oracle was only slightly wider than in
scenario 4B4R. This demonstrates that our ERM method
is able to recognize which objects are boxes (i.e., objects
from the static behaviour class), despite doubling the
number of other mobile robots (i.e., objects from the
moving behaviour class) to eight.

The most notable is the difference in performance of the
MergeAll strategy between scenarios 4B4R and 4B8R. It

Number of actions

(a) Scenario 4B

Number of actions
(b) Scenario 4B4R

Number of actions
(c) Scenario 4B8R

Figure 14. Comparison of the performance of the merging
strategies in scenarios with four boxes and an increasing number
of other mobile robots (0, 4 and 8). Subfigure (a) is the same as
Fig. 13(c) and is repeated here for completeness and easier
comparison with the other two subfigures.

15Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

performed significantly worse in the latter. This shows
that merging four boxes together with eight other mobile
robots significantly deteriorates the learning
performance. However, this impact is not the same
throughout the learning curve. Interestingly, MergeAll
still outperformed both our ERM and NoMerging
strategies at the beginning (until 20 actions). This again
suggests that in cases when the data sets for objects are
scarce, it may be beneficial to merge them, regardless of
whether or not they actually belong to the same
behaviour class. Furthermore, it hints at a possible new
merging algorithm that would initially merge all objects
and then gradually eliminate objects that no longer
conform to the merged object, as more data for each
object becomes available.

6.3 Comparison of distinct base machine learning
methods in the 4B8R scenario

The last set of experiments compared how the merging
strategies perform with distinct base machine learning
methods, namely NBC, C4.5 and SVM. We used our most
complex scenario (as defined in section 3.2) with four
boxes and eight other mobile robots (4R8B) to analyse
their performance. The results are shown in Fig. 15.

Generally, the results evidence that our ERM method
performs well with all of the base learning methods. With
C4.5 it needs more actions to close the gap to the upper
bound given by Oracle, meanwhile with SVM it narrows
the margin approximately as fast as with NBC.

There is a noticeable fall in the performance of the
MergeAll strategy with C4.5, as shown in Fig. 15(b). It
only dominates our ERM method for the first five actions
and it performs significantly worse from action 15
onward. This may indicate that the C4.5 learning
algorithm is more susceptible to the additional conflicting
data of objects belonging to the moving behaviour class.
However, compared to the NoMerging strategy, the
MergeAll performs very similar as with NBC, staying
significantly better for the first 30 actions.

Another interesting observation is the very poor
performance of the NoMerging strategy with SVM, as
shown in Fig. 15(c). In this case, NoMerging strategy
performs significantly worse than all other strategies,
only catching up with the MergeAll strategy after 90
actions. Furthermore, it does not even come close to both
our ERM and the Oracle strategies, the difference in CA
measuring more than 0.1 after 100 actions. A plausible
explanation for this deviation is the fact that the SVM
learning algorithm with our chosen parameters (as
described in section 5) needs more examples to train a
classifier performing as well as classifiers built by NBC or
C4.5. This is further supported by the flatter slopes of
learning curves of the other strategies, especially Oracle

and ERM, using SVM compared to the ones obtained
with NBC or C4.5.

Number of actions

(a) Results with the NBC learning algorithm

Number of actions

(b) Results with the C4.5 tree induction algorithm

Number of actions

(c) Results with the SVM learning algorithm

Figure 15. Comparison of the performance of the merging
strategies with distinct underlying learning algorithms (NBC,
C4.5, SVM) in the 4B8R scenario. Subfigure (a) is the same as Fig.
14(c) and is repeated here for completeness and easier
comparison with the other two subfigures.

16 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

Nonetheless, we have not tried to obtain the optimal
learning curves for a particular base machine learning
algorithm. Rather, we wanted to observe how the
relationships between the merging strategies change
when we use a set of distinct base machine learning
algorithms. Excluding some minor deviations, the
relationships remained the same and thus demonstrate
that the merging strategies, in particular our ERM
method, are independent of the base machine learning
method.

7. Conclusion

In this paper we explored the idea of increasing the
learning speed of an autonomous learning agent (e.g., a
robot) by learning in a more complex environment. The
greater complexity of the environment at any time point
offers more observations and the agent can therefore
collect more data for learning. This can be beneficial if the
domain representing the environment has some structure
that allows the merging of data. On the other hand, a
more complex domain with more unrelated attributes
may just be more confusing for the learner.

We have proposed a new learning method named ERM
that automatically discovers similarities in the structure
of the domain. It does so by taking the learning sets of
objects and training a set of models on selected
combinations of these learning sets. By observing the
average prediction errors of these models and following a
set of criteria for merging, it then merges the objects that
are likely to belong to the same behaviour class. For
appropriate estimation of prediction errors on different
data sets, we introduced a generalized leave-one-out
cross-validation method.

Another important feature of the ERM method is that it
identifies different types of objects solely from the data
measured, when several types of objects are present in a
world.

In the experiments with the ERM method in a simple
robotic domain we detected the following phenomena:

1. ERM was capable of discovering structural

similarities in the domain, which indeed made the
learning faster.

2. ERM with increased learning times tends to catch up
with learning, in which the similarities are already
given (i.e., the Oracle merging strategy).

3. ERM was clearly superior to conventional,
unstructured learning (i.e., the NoMerging strategy).

4. These observed trends occurred with different base
machine learning algorithms used inside the ERM
method.

One limitation of the presented work is that we have only
performed the experiments in one relatively simple
domain. We plan to address this in our future work and
perform a range of experiments on various different
domains and by learning various different relations.

Another limitation of the ERM method is that the agent
must know the object–attribute relations (i.e., which
measurements belong to which object). By having that
information, it can separate one big trace of observations
into smaller traces, one for each object it observes. Also,
the pair-wise correspondence between attributes of
candidate objects for merging must be known.

One interesting observation from our experiments is the
surprisingly good performance of the MergeAll strategy at
the beginning of the learning process, outperforming our
ERM method. This suggests a new learning approach
which would initially merge all objects together and then
gradually split them apart, as more data for each object
becomes available.

In our paper, we chose to minimize the experimentation
time (i.e., the number of actions) needed to achieve a
certain prediction accuracy. However, depending on the
specific robot setting, other criteria may be more
appropriate. Different actions by the robot may take
different amounts of time, or there may be other kinds of
cost associated with each action. In such cases, it would
be interesting to try to extend our ERM method to
consider more general cost functions. This would also
involve the question of optimal choice of actions which is
the topic investigated by the areas of active learning and
reinforcement learning.

8. Acknowledgements

We would like to thank the Laboratory of Robotics of
Faculty of Electrical Engineering at University of
Ljubljana for lending us the robots used in Fig. 1.

9. References

[1] J. R. Quinlan, C4.5: Programs for Machine Learning,
The Morgan Kaufmann series in machine learning,
Morgan Kaufmann, 1993.

[2] S. Pan, Q. Yang, A Survey on Transfer Learning, IEEE
Transactions on Knowledge and Data Engineering 22
(2010) 1345–1359.

[3] W. Dai, Q. Yang, G. Xue, Y. Yu, Boosting for Transfer
Learning, in: Proceedings of the twenty-fourth
International Conference on Machine learning
(ICML), ACM Press, pp. 193–200.

[4] X. Liao, Y. Xue, L. Carin, Logistic Regression with an
Auxiliary Data Source, in: Proceedings of the twenty-
second International Conference on Machine
learning (ICML), ACM Press, pp. 505–512.

17Tadej Janež, Jure Žabkar, Martin Možina and Ivan Bratko:
Learning Faster by Discovering and Exploiting Object Similarities

www.intechopen.com

[5] L. Panait, S. Luke, Cooperative Multi-Agent Learning:
The State of the Art, Autonomous Agents and Multi-
Agent Systems 11 (2005) 387–434.

[6] I. Kelly, D. Keating, Faster learning of control
parameters through sharing experiences of
autonomous mobile robots, International Journal of
Systems Science 29 (1998) 783–793.

[7] O. Buffet, A. Dutech, F. Charpillet, Shaping multi-
agent systems with gradient reinforcement learning,
Autonomous Agents and Multi-Agent Systems 15
(2007) 197–220.

[8] R. Sutton, A. Barto, Reinforcement learning: an
introduction, Adaptive computation and machine
learning, MIT Press, 1998.

[9] M. Dorigo, M. Colombetti, Robot Shaping:
Developing Autonomous Agents through Learning,
Artificial Intelligence 71 (1994) 321 – 370.

[10] A. Strehl, C. Diuk, M. Littman, Efficient Structure
Learning in Factoredstate MDPs, in: Proceedings of
the twenty-second AAAI Conference on Artificial
Intelligence, AAAI Press, pp. 645–650.

[11] C. Diuk, A. Cohen, M. Littman, An Object-Oriented
Representation for Efficient Reinforcement Learning,
in: Proceedings of the twenty-fifth International
Conference on Machine Learning (ICML), ACM
Press, pp. 240–247.

[12] J. Shrager, P. Langley, Computational models of
scientific discovery and theory formation, The
Morgan Kaufmann series in machine learning,
Morgan Kaufmann Publishers, 1990.

[13] P. Langley, BACON.1: A general discovery system, in:
Proceedings of the second National Conference of the
Canadian Society for Computational Studies in
Intelligence, pp. 173–180.

[14] P. Langley, Rediscovering physics with BACON.3, in:
Proceedings of the sixth International Joint
Conference on Artificial Intelligence (IJCAI), pp. 505–
507.

[15] P. Langley, G. Bradshaw, H. Simon, BACON.5: The
discovery of conservation laws, in: Proceedings of the
seventh International Joint Conference on Artificial
Intelligence (IJCAI), pp. 121–126.

[16] L. Darden, Recent Work in Computational Scientific
Discovery, in: Proceedings of the nineteenth annual
conference of the Cognitive Science Society (CSS), pp.
161–166.

[17] P. Langley, The computational support of scientific
discovery, International Journal of Human-Computer
Studies 53 (2000) 393–410.

[18] J. Žabkar, I. Bratko, A. C. Mohan, Learning
Qualitative Models by an Autonomous Robot, in:
Proceedings of the twenty-second International
Workshop on Qualitative Reasoning (QR), pp. 150–
155.

[19] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and
Prediction, Springer series in statistics, Springer,
2009.

[20] O. Michel, Webots: Professional Mobile Robot
Simulation, Journal of Advanced Robotics Systems 1
(2004) 39–42.

[21] C. Cortes, V. Vapnik, Support-Vector Networks,
Machine Learning 20 (1995) 273 – 297.

[22] J. Demšar, B. Zupan, G. Leban, T. Curk, Orange:
From Experimental Machine Learning to Interactive
Data Mining, in: J.-F. Boulicaut, F. Esposito, F.
Giannotti, D. Pedreschi (Eds.), Knowledge Discovery
in Databases: PKDD 2004, volume 3202 of Lecture
Notes in Computer Science, Springer Berlin /
Heidelberg, 2004, pp. 537 – 539.

[23] W. S. Cleveland, S. Devlin, Locally Weighted
Regression: An Approach to Regression Analysis by
Local Fitting, Journal of the American Statistical
Association 83 (1988) 596–610.

18 Int J Adv Robotic Sy, 2013, Vol. 10, 176:2013 www.intechopen.com

