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EVEN-HOLE-FREE GRAPHS: A SURVEY

Kristina Vušković

The class of even-hole-free graphs is structurally quite similar to the class
of perfect graphs, which was the key initial motivation for their study. The
techniques developed in the study of even-hole-free graphs were generalized
to other complex hereditary graph classes, and in the case of perfect graphs
led to the famous resolution of the Strong Perfect Graph Conjecture and
their polynomial time recognition. The class of even-hole-free graphs is also
of independent interest due to its relationship to β-perfect graphs. In this
survey we describe all the different structural characterizations of even-hole-
free graphs, focusing on their algorithmic consequences.

1. INTRODUCTION

All graphs in this paper are finite, simple and undirected. We say that a
graph G contains a graph F if F is isomorphic to an induced subgraph of G. A
graph G is F -free if it does not contain F. Let F be a (possibly infinite) family of
graphs. A graph G is F-free if it is F -free for every F ∈ F .

A hole is a chordless cycle of length at least four. A hole is even (resp. odd)
if it contains an even (resp. odd) number of nodes. A hole of length n is also called
an n-hole. In this survey we focus on the class of even-hole-free graphs, i.e. graphs
that are F-free where F denotes the family of all even holes.

Many interesting classes of graphs can be characterized as being F-free for
some family F . The most famous such example is the class of perfect graphs. A
graph G is perfect if for every induced subgraph H of G, χ(H) = ω(H), where χ(H)
denotes the chromatic number of H, i.e. the minimum number of colors needed to
color the vertices of H so that no two adjacent vertices receive the same color,
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and ω(H) denotes the size of a largest clique, where a clique is a graph in which
every pair of vertices are adjacent. The famous Strong Perfect Graph Theorem
(conjectured by Berge [2], and proved by Chudnovsky, Robertson, Seymour
and Thomas [10]) states that a graph is perfect if and only if it does not contain
an odd hole nor an odd antihole (where an antihole is a complement of a hole). The
graphs that do not contain an odd hole nor an odd antihole are known as Berge
graphs.

The structure of even-hole-free graphs is in many ways quite similar to the
structure of Berge graphs. Note that by excluding the 4-hole, one also excludes
all antiholes of length at least 6, so the similarity between even-hole-free graphs
and Berge graphs is higher than simply with the class odd-hole-free graphs.

Another motivation for the study of even-hole-free graphs is their connection
to β-perfect graphs introduced by Markossian, Gasparian and Reed [34]. For
a graph G, let δ(G) be the minimum degree of a vertex in G. Consider the following
total order on V (G): order the vertices by repeatedly removing a vertex of mini-
mum degree in the subgraph of vertices not yet chosen and placing it after all the
remaining vertices but before all the vertices already removed. Coloring greedily on
this order gives the upper bound χ(G) ≤ β(G), where β(G) =max{δ(G′) + 1 : G′

is an induced subgraph of G}. A graph is β-perfect if for each induced subgraph H
of G, χ(H) = β(H). It is easy to see that β-perfect graphs belong to the class of
even-hole-free graphs, and that this containment is proper.

The first major structural study of even-hole-free graphs was done by Con-
forti, Cornuéjols, Kapoor and Vušković in [15] and [16]. They were focused
on showing that even-hole-free graphs can be recognized in polynomial time (a
problem that at that time was not even known to be in NP), and their primary
motivation was to develop techniques which can then be used in the study of per-
fect graphs. In [15] a decomposition theorem is obtained for even-hole-free graphs,
based on which the first known polynomial time recognition algorithm for even-
hole-free graphs is constructed in [16]. This research kick-started a number of
other studies of even-hole-free graphs which we survey in this paper.

The essence of even-hole-free graphs is actually captured by their generaliza-
tion to signed graphs, called the odd-signable graphs, which we introduce in Section
2. Decomposition theorems for even-hole-free graphs are described in Section 3,
recognition algorithms in Section 4, and combinatorial optimization algorithms in
Section 5.

2. ODD-SIGNABLE GRAPHS

In 1982 Truemper proved a theorem that characterizes graphs whose edges
can be labeled so that all chordless cycles have prescribed parities. Truemper’s
interest in this theorem at the time was to obtain a co-NP characterization of
balanceable matrices, that are a generalization of regular matrices. This theorem
also provided the first insight into the structure of even-hole-free and odd-hole-free
graphs.



Even-hole-free graphs: A survey 221

Theorem 2.1. (Truemper [47]) Let β be a {0, 1} vector whose entries are in one-
to-one correspondence with the chordless cycles of a graph G. Then there exists a
subset F of the edge set of G such that |F ∩C| ≡ βC mod 2 for all chordless cycles
C of G, if and only if for every induced subgraph G′ of G that is a Truemper
configuration (Figure 1), there exists a subset F ′ of the edge set of G′ such that
|F ′ ∩ C| ≡ βC mod 2, for all chordless cycles C of G′.

3PC(·, ·) 3PC(∆, ·) 3PC(∆,∆) wheel K4

Figure 1. Truemper configurations

Truemper configurations are depicted in Figure 1, where a solid line denotes
an edge and a dashed line denotes a chordless path containing one or more edges.
We now define these configurations.

The first three configurations in Figure 1 are referred to as 3-path configu-
rations (3PC’s). They are structures induced by three paths P1, P2 and P3, in
such a way that the nodes of Pi ∪ Pj , i 6= j, induce a hole. More specifically, a
3PC(x, y) is a structure induced by three paths that connect two nonadjacent nodes
x and y; a 3PC(x1x2x3, y), where x1x2x3 is a triangle, is a structure induced by
three paths having endnodes x1, x2 and x3 respectively and a common endnode y;
a 3PC(x1x2x3, y1y2y3), where x1x2x3 and y1y2y3 are two node-disjoint triangles,
is a structure induced by three paths P1, P2 and P3 such that, for i = 1, 2, 3,
path Pi has endnodes xi and yi. We say that a graph G contains a 3PC(·, ·)
if it contains a 3PC(x, y) for some x, y ∈ V (G), a 3PC(∆, ·) if it contains a
3PC(x1x2x3, y) for some x1, x2, x3, y ∈ V (G), and it contains a 3PC(∆,∆) if
it contains a 3PC(x1x2x3, y1y2y3) for some x1, x2, x3, y1, y2, y3 ∈ V (G). Note that
the condition that nodes of Pi∪Pj , i 6= j, must induce a hole, implies that all paths
of a 3PC(·, ·) have length greater than one, and at most one path of a 3PC(∆, ·)
has length one. 3PC(·, ·)’s are also known as thetas (as in [8]), 3PC(∆,∆)’s are
also known as prisms (as in [8]), and 3PC(∆, ·)’s are also known as pyramids (as
in [7]).

A wheel consists of a hole and a node called the center that has at least three
neighbors on the hole. Finally, a K4 is a clique on four vertices. We note that in
[47] K4’s are also referred to as wheels, but in this paper we choose to separate
these two structures.

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable
if there exists a signing that makes every triangle odd weight and every hole odd
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weight. This class is clearly a generalization of even-hole-free graphs. In analogous
way odd-hole-free graphs can be generalized. A graph is even-signable if there exists
a signing that makes every triangle odd weight and every hole even weight. Odd-
signable and even-signable graphs were first introduced in [14], where the following
two characterizations of these classes are obtained. These characterizations in fact
follow easily from Theorem 2.1.

We say that a wheel (H,x) is even if x has an even number of neighbors on
H, and it is odd if the center x and the hole H induce an odd number of triangles.
Note that a wheel may be both even and odd.

Theorem 2.2. [14] A graph is odd-signable if and only if it does not contain an
even wheel, a 3PC(·, ·) nor a 3PC(∆,∆).

Theorem 2.3. [14] A graph is even-signable if and only if it does not contain an
odd wheel nor a 3PC(∆, ·).

All decomposition theorems for even-hole-free graphs described in the next
section are in fact proved for 4-hole-free odd-signable graphs, and the above char-
acterization of odd-signable graphs is repeatedly used in the proofs. Similarly when
one works with odd-hole-free graphs one relies on odd wheels and 3PC(∆, ·)’s as
excluded structures.

3. DECOMPOSITION THEOREMS

In a connected graph G, a subset S of nodes and edges is a cutset if its removal
disconnects G. If S consists only of nodes then it is referred to as a node cutset, and
if it consists only of edges then it is referred to as an edge cutset. A decomposition
theorem for a class of graphs C states that every graph in C either has a particular
type of a cutset or belongs to a basic (i.e. undecomposable) subclass of C. The
following cutsets are used in decomposition of even-hole-free graphs.

For A ⊆ V (G), G[A] denotes the subgraph of G induced by A, N(A) denotes
the neighborhood of A (i.e. the nodes of V (G) \ A that have a neighbor in A),
and N [A] = N(A) ∪ A. A node cutset S ⊆ V (G) is a k-star cutset of G if S is
comprised of a clique C of size k and nodes with at least one neighbor in C, i.e.
C ⊆ S ⊆ N [C]. We refer to C as the center of S. A 1-star is also referred to as a
star, a 2-star as a double star, and 3-star as a triple star. If S = N [C], then S is
called a full k-star.

The following edge cutset was first introduced by Cornuéjols and Cun-
ningham [21]. A graph G has a 2-join V1|V2, with special sets (A1, A2, B1, B2), if
the nodes of G can be partitioned into sets V1 and V2 so that the following hold.

(i) For i = 1, 2, Ai ∪Bi ⊆ Vi, and Ai and Bi are nonempty and disjoint.

(ii) Every node of A1 is adjacent to every node of A2, every node of B1 is adjacent
to every node of B2, and these are the only adjacencies between V1 and V2.
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(iii) For i = 1, 2, the graph induced by Vi, G[Vi], contains a path with one endnode
in Ai and the other in Bi. Furthermore, G[Vi] is not a chordless path.

We note that slightly different definitions of 2-joins are used in different pa-
pers.

Let Σ be a 3PC(∆, ·). If one of the paths of Σ is of length 1, then Σ is also
a wheel that is called a bug. If all of the paths of Σ are of length greater than 1,
then Σ is called a long 3PC(∆, ·). Note that long 3PC(∆, ·)’s are even-hole-free but
have no k-star cutset nor a 2-join. So in a decomposition theorem for even-hole-free
graphs that uses k-star cutsets and 2-joins, long 3PC(∆, ·)’s form a basic class. We
now introduce another basic class.

Let L be the line graph of a tree. Note that every edge of L belongs to exactly
one maximal clique, and every node of L belongs to at most two maximal cliques.
The nodes of L that belong to exactly one maximal clique are called leaf nodes. A
clique of L is big if it is of size at least 3. In the graph obtained from L by removing
all edges in big cliques, the connected components are chordless paths (possibly of
length 0). Such a path P is an internal segment if it has its endnodes in distinct
big cliques (when P is of length 0, it is called an internal segment when the node
of P belongs to two big cliques). The other paths P are called leaf segments. Note
that one of the endnodes of a leaf segment is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent
nodes x and y, called the special nodes. The graph L induced by R \ {x, y} is the
line graph of a tree and contains at least two big cliques. In R, each leaf node of
L is adjacent to exactly one of the two special nodes, and no other node of L is
adjacent to special nodes. The last condition for R is that no two leaf segments
of L with leaf nodes adjacent to the same special node have their other endnode
in the same big clique. The internal segments of R are the internal segments of L,
and the leaf segments of R are the leaf segments of L together with the node in
{x, y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes
x and y. R∗ is an extended nontrivial basic graph of G if R∗ consists of R and
all nodes u ∈ V (G) \ V (R) such that for some big clique K of R and for some
z ∈ {x, y}, N(u) ∩ V (R) = V (K) ∪ {z}. We also say that R∗ is an extension of R.
See Figure 2.

x

y

Figure 2. An extended nontrivial basic graph.
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The following was the first decomposition theorem obtained for even-hole-free
graphs.

Theorem 3.1. (Conforti, Cornuéjols, Kapoor, Vušković [15]) A connected
4-hole-free odd-signable graph is either a clique, a hole, a long 3PC(∆, ·) or a
nontrivial basic graph, or it has a 2-join or k-star cutset, for k ≤ 3.

This theorem was strong enough to be used in construction of the first known
polynomial time recognition algorithm for even-hole-free graphs [16], as we shall see
in Section 3, but even at that time it was suspected that a stronger decomposition
theorem was possible. After that work was completed the efforts were concentrated
on trying to apply the same techniques to the study of perfect graphs. This ap-
proach turned out to be fruitful. Conforti, Cornuéjols and Vušković in [17]
proved the Strong Perfect Graph Conjecture for 4-hole-free graphs, by decomposing
4-hole-free Berge graphs using star cutsets and 2-joins into bipartite graphs and
line graphs of bipartite gaphs. Finally, using the same approach, the famous Strong
Perfect Graph Conjecture was proved by Chudnovsky, Robertson, Seymour
and Thomas in [10], by decomposing Berge graphs using skew cutsets, 2-joins
and their complements. A node cutset S is a skew cutset (or skew partition) if there
exists a partition (S1, S2) of S such that every node of S1 is adjacent to every node
of S2. Star cutsets and skew cutsets were first introduced by Chvátal [12]. Note
that skew cutsets are a generalization of star cutsets, and a special case of double
star cutsets.

In a graph that does not contain a 4-hole, a skew cutset reduces to a star
cutset, and a 2-join in the complement implies a star cutset. The decomposition
of Berge graphs with skew cutsets, 2-joins and their complements provided a
motivation to believe that it is also possible to decompose even-hole-free graphs
with just the star cutsets and 2-joins. This strengthening of the decomposition
theorem was obtained by da Silva and Vušković in [42].

Let us say that an even-hole-free graph is basic if it is one of the following
graphs:

• a clique,

• a hole,

• a long 3PC(∆, ·), or

• an extended nontrivial basic graph.

Theorem 3.2. (da Silva, Vušković [42]) A connected 4-hole-free odd-signable
graph is either basic or it has a 2-join or a star cutset.

Here is a simple restatement of Theorem 3.2, that is sufficient for algorithms
described in the following sections. A graph is a clique tree if each of its maximal
2-connected components is a clique. A graph is an extended clique tree if it can be
obtained from a clique tree by adding at most two vertices.
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Corollary 3.3. A connected even-hole-free graph is either an extended clique tree,
or it has a 2-join or a star cutset.

The key difference in the proof of Theorem 3.1 and the proof of Theorem 3.2
is that in the proof of Theorem 3.1 bugs are decomposed with double star cutsets.
Since only star cutsets are used in Theorem 3.2, it is not possible to decompose all
bugs in the graph, and hence the class of basic (undecomposable) graphs needed
to be enlarged to include the extended nontrivial basic graphs.

The following intermediate result, that is used as one of the steps in the proof
of Theorem 3.2, is of an independent interest, as we shall see in Section 5.3. It is
used to prove that (diamond, even hole)-free graphs are β-perfect (where a diamond
is the graph obtained from a clique on 4 nodes by removing an edge). A bisimplicial
cutset is a node cutset that either induces a clique or two cliques with exactly one
common node. Note that a bisimplicial cutset is a very special type of a star cutset.

Theorem 3.4. (Kloks, Müller, Vušković [30]) A connected (diamond, 4-
hole)-free odd-signable graph is either basic, or it has a bisimplicial cutset or a
2-join.

4. RECOGNITION ALGORITHMS

In this section we describe polynomial-time recognition algorithms for even-
hole-free graphs [16, 9, 42]. Perfect graphs can also be recognized in polynomial
time [7], but it is still not known whether odd-hole-free graphs can.

A recognition algorithm for even-hole-free graphs can be used to find an even
hole in a graph G, if one exists, in the following way. Let v1, . . . , vn denote the
nodes of G and let H = G. In Iteration i, test whether H \ {vi} contains an even
hole. If the answer is yes, set H = H \ {vi} and otherwise keep H unchanged.
Perform n iterations. At termination, the graph H is the desired even hole.

With two calls to the recognition algorithm we can also check whether for a
given graph G and a node v of G, all the even holes of G contain v. On the other
hand, it is NP-complete to decide for a given graph G and a node v of G, whether
there exists an even (resp. odd) hole that contains v [3].

We now describe the ideas behind a decomposition based recognition algo-
rithm. To use a decomposition theorem to recognize a class of graphs C, basic
graphs need to be simple in the sense that they can easily be recognized, and the
cutsets need to have the following property. The removal of a cutset S from a graph
G disconnects G into two or more connected components. From these components
blocks of decomposition are constructed by adding some more nodes and edges. A
decomposition is C-preserving if it satisfies the following: G belongs to C if and
only if all the blocks of decomposition belong to C. A recognition algorithm takes
a graph G as input and decomposes it using C-preserving decompositions into a
polynomial number of basic blocks, which are then checked, in polynomial time,
whether they belong to C.
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This is an ideal scenario, which works for example for obtaining a recognition
algorithm for regular matroids [40]. On the other hand, it does not work for
obtaining a recognition algorithm for even-hole-free graphs. The problem is that
for star cutsets one does not know how to construct the blocks of decomposition
that would, at the same time, be class-preserving as well as guarantee polynomiality
of the decomposition tree. For 2-joins this is possible, by constructing blocks of
decomposition G1 and G2 of a graph G with respect to a 2-join X1|X2 with special
sets (A1, A2, B1, B2) in the following way: G1 is obtained from G by replacing X2

by a marker path P2 that is a chordless path from a vertex a2 complete to A1

to a vertex b2 complete to B1, and whose interior vertices are all of degree two
in G1. Block G2 is obtained similarly by replacing X1 by a marker path P1. For
i = 1, 2 let Qi be any chordless path from Ai to Bi whose intermediate vertices
are in Xi \ (Ai ∪ Bi), and let the length of marker path Pi be of the same parity
as Qi. It can then be shown that G is even-hole-free if and only if G1 and G2

are even-hole-free. Furthermore, it can be shown that a graph can be completely
decomposed with 2-joins (into blocks that do not have any 2-joins) using linearly
many decompositions.

Let S be a node cutset of a graph G, and let C1, . . . , Ck be the connected
components of G\S. A standard way to construct blocks of decomposition w.r.t. a
node cutset would be to define blocks to be graphs G1, . . . , Gk, where Gi = G[Ci∪S]
for i = 1, . . . , k. Such definition of blocks is not preserving for the class of even-hole-
free graphs. For example when the graph G on the left in Figure 3 is decomposed
with star cutset S = N [x], then both of the blocks of decomposition, G1 and G2,

are like the graph on the right. Observe that G does contain an even hole, but
blocks G1 and G2 do not.

x

Figure 3. A graph and its block of decomposition w.r.t. star cutset S = N [x].

This problem was first encountered when trying to construct a polynomial
time recognition algorithm for balanced matrices (that correspond to bipartite
graphs in which all holes are of length 0 mod 4). At that time a technique called
cleaning was developed by Conforti and Rao [19] that enabled them to recognize,
in polynomial time, linear balanced matrices. This technique was further developed
and used in obtaining decomposition based polynomial time recognition algorithms
for balanced matrices [18], balanced 0,±1 matrices [13], and a new level of cleaning
needed to be invented for recognition of even-hole-free graphs [16], which was also
used in the cleaning for recognition of perfect graphs [7].
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We describe the cleaning procedure in the context of its use for recognizing
even-hole-free graphs. Given an input graph G, the cleaning procedure produces,
in polynomial time, a clean graph G′, such that G is even-hole-free if and only
if G′ is even-hole-free, and if G contains an even hole then G′ contains a clean
even hole (i.e. an even hole for which there are no nodes outside the hole that
have problematic neighbors on the hole, which can be used as clique centers of star
cutsets to break the hole). Once we have a clean graph, decomposition can be
applied safely, since it will now be class-preserving.

As expected, cleaning was also the key to obtaining a polynomial time recog-
nition algorithm for Berge graphs [7]. What was surprising, as Chudnovsky and
Seymour observed, was that once the cleaning is performed, one does not need
the decomposition based recognition algorithm, one can simply look for the “bad
structure” (in this case an odd hole) directly. So in [7] two recognition algorithms
for Berge graphs are given: an O(n9) Chudnovsky/Seymour style algorithm
that uses the direct method, and an O(n18) decomposition based recognition al-
gorithm. Then Zambelli [49] showed that by using the cleaning with the direct
method, the complexity of the recognition algorithm for balanced 0,±1 matrices
dramatically drops, in comparison with their original recognition [13] based on the
decomposition method.

The original recognition algorithm for even-hole-free graphs from [16]
uses Theorem 3.1 and is of complexity of about O(n40). In [9] Chudnovsky,
Kawarabayashi and Seymour obtain an O(n31) recognition algorithm for even-
hole-free graphs, using cleaning with the direct method. In the same paper they
sketch another more complicated algorithm that, they claim, runs in time O(n15).
This algorithm first needs to test for 3PC(·, ·)’s (thetas) and 3PC(∆,∆)’s (prisms)
in that time. It turns out that testing for thetas can be done in time O(n11) [11].
Detecting a prism is NP-complete in general [31]. In [9] it is claimed (without a
proof) that under the assumption that the graph does not contain a theta one can
use cleaning to test for prisms in time O(n15). This turns out to be false so far.
Detecting a theta or a prism using the method outlined in [9] ends up being of
complexity O(n35) [8].

It was then shown in [42] that using Theorem 3.2 one can construct a de-
composition based recognition algorithms for even-hole-free graphs that runs in
time O(n19). Interestingly, this is the first example in which a decomposition based
method performs faster than the direct method (when both methods yield algo-
rithms). We note that there are examples of recognition problems for which algo-
rithms exist using only one of the methods, for example recognizing 3PC(∆, ·)-free
graphs is only known by the direct method [7] and recognizing graphs with no cycle
with a unique chord is only known by the decomposition method [45].

The algorithm in [42] actually uses Corollary 3.3, so testing whether a basic
block is even-hole-free reduces to testing whether an extended clique tree is even-
hole-free, which can be done efficiently as follows. Clearly, clique trees contain no
holes. Moreover, in a clique tree there is at most one induced path between any
pair of vertices. So, if G \ {x} is a clique tree, to determine if G is even-hole-free
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we need only test, for every pair y and z of neighbors of x, whether there is an
induced path from y to z in G\{x} which contains no other neighbor of x and is of
even length. Since there is at most one path to test, this can be done efficiently. A
similar algorithm allows us to test if an extended clique tree contains an even hole.

5. COMBINATORIAL OPTIMIZATION

Finding a maximum clique, a maximum independent set and an optimal
coloring are problems that are NP-complete in general, but are all known to be
polynomial for perfect graphs [27, 28]. This result of Grötschel, Lovász and
Schrijver uses the ellipsoid method and consequently is impractical. The question
remains whether these optimization problems can be solved for perfect graphs by
polynomial time purely combinatorial algorithms, avoiding the numerical instability
of the ellipsoid method. Once again studying these problems on the class of even-
hole-free graphs might shed some light on how one would go about solving them
for perfect graphs.

The complexities of finding a maximum independent set and an optimal col-
oring are not known for even-hole-free graphs nor for the odd-hole-free graphs.
Finding a maximum clique for odd-hole-free graphs is NP-complete (follows from
2-subdivision [37]), but can be efficiently solved for even-hole-free graphs, as we
shall see in Section 5.1. In Section 5.2 we discuss the boundedness of the chromatic
number for even-hole-free graphs. β-perfect graphs are a subclass of even-hole-free
graphs for which there exists an efficient coloring algorithm. In Section 5.3 we show
how this approach can be used to efficiently color the class of (even-hole, diamond)-
free graphs. In Section 5.4 we show how one can obtain combinatorial optimization
algorithms for even-hole-free graphs that do not contain star cutsets.

5.1. The clique number

One can find a maximum clique of an even-hole-free graph in polynomial
time, since as observed by Farber [23] 4-hole-free graphs have O(n2) maximal
cliques and hence one can list them all in polynomial time. For a graph G let k
denote the number of maximal cliques in G, n the number of nodes in G and m
the number of edges of G. In [48] an O(nmk) algorithm for generating all maximal
cliques of a graph is given, and in [5] this complexity is improved to O(m1.5k). The
complexity is further improved for dense graphs by the O(M(n)k) algorithm in
[33], where M(n) denotes the time needed to multiply two n× n matrices. Matrix
multiplication can be done in O(n2.376) time [20]. So one can generate all the
maximal cliques of a 4-hole-free graph in time O(m1.5n2) or O(n4.376).

The following structural characterization of odd-signable graphs that do not
contain a 4-hole leads to a faster algorithm for computing a maximum clique in an
even-hole-free graph. For x ∈ V (G), the graph G[N(x)] is called the neighborhood
of x. A graph is triangulated if it does not contain a hole.

Theorem 5.1. (da Silva, Vušković [41]) Every 4-hole-free odd-signable graph
has a node whose neighborhood is triangulated.
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Exactly the same characterization of 4-hole-free Berge graphs (i.e. graphs
that do not contain a 4-hole nor an odd hole) is obtained by Parfenoff, Roussel
and Rusu in [36]. Note that 4-hole-free graphs in general need not have this
property, see Figure 7.

Figure 4. A 4-hole-free graph

that has no vertex whose

neighborhood is triangulated.

We now show that Theorem 5.1 implies that there are at most n+2mmaximal
cliques in a 4-hole-free odd-signable graph, and it yields an algorithm that generates
all the maximal cliques of a 4-hole-free odd-signable graph in time O(n2m). In
particular, in a weighted graph, a maximum weight clique can be found in time
O(n2m).

Let C be any class of graphs closed under taking induced subgraphs, such
that for every G in C, G has a node whose neighborhood is triangulated. Consider
the following algorithm for generating all maximal cliques of graphs in C.

Find a node x1 of G whose neighborhood is triangulated (if no such node
exists, G is not in C, or in particular, G is not 4-hole-free odd-signable graph by
Theorem 5.1). Let G1 = G[N [x1]] and G

1 = G \ {x1}. Every maximal clique of
G belongs to G1 or G

1. Recursively construct triangulated graphs G1, . . . , Gn as
follows. For i ≥ 2, find a node xi of G

i−1 whose neighborhood is triangulated and
let Gi = G[NGi−1 [xi]] and G

i = Gi−1 \ {xi} = G \ {x1, . . . , xi}.

Clearly every maximal clique of G belongs to exactly one of the graphs
G1, . . . , Gn. A triangulated graph on n vertices has at most n maximal cliques
[24]. So for i = 1, . . . , n, graph Gi has at most 1 + d(xi) maximal cliques (where
d(x) denotes the degree of vertex x). It follows that the number of maximal cliques

of G is at most
n

∑

i=1

(1 + d(xi)) = n+ 2m.

Checking whether a graph is triangulated can be done in time O(n + m)
(using lexicographic breadth-first search [39]). So finding a vertex with triangu-

lated neighborhood can be done in time O(
∑

x∈V (G)

(d(x) + m)) = O(nm). Hence

constructing the graphs G1, . . . , Gn takes time O(n
2m).

Generating all maximal cliques in a triangulated graph can be done in time
O(n +m) (see, for example, [26]). Hence the overall complexity of generating all
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maximal cliques in a 4-hole-free odd-signable graph is dominated by the construc-
tion of the sequence G1, . . . , Gn, i.e. it is O(n

2m).

Note that this algorithm is robust in Spinrad’s sense [43]: given any graph
G, the algorithm either verifies that G is not in C (or in particular that G is not a
4-hole-free odd-signable graph) or it generates all the maximal cliques of G. Note
that, when G is not in C, the algorithm might still generate all the maximal cliques
of G.

The proof of Theorem 5.1 is obtained by using the following general technique
developed in [32] (and used there to obtain a combinatorial optimization algorithm
for a subclass of Berge graphs that generalizes both 4-hole-free Berge graphs
and claw-free Berge graphs). A class F of graphs satisfies property (*) w.r.t. a
graph G if the following holds: for every node x of G such that G \N [x] 6= ∅, and
for every connected component C of G \ N [x], if F ∈ F is contained in G[N(x)],
then there exists a node of F that has no neighbor in C.

Theorem 5.2. (Maffray, Trotignon, Vušković [32]) Let F be a class of
graphs such that for every F ∈ F , no node of F is adjacent to all the other nodes
of F. If F satisfies property (*) w.r.t. a graph G, then G has a node whose neigh-
borhood is F-free.

In [41] it is shown that property (*) holds for 4-hole-free odd-signable graphs
when F is the set of all holes, and then the proof of Theorem 5.1 follows from
Theorem 5.2. We observe that the fact that property (*) holds also implies the
following decomposition result, which is used as one of the steps in the proof of
Theorem 3.2. A wheel (H,x) is a universal wheel if x is adjacent to all nodes of H.

Theorem 5.3. (da Silva, Vušković [41]) Let G be a 4-hole-free odd-signable
graph. If G contains a universal wheel, then G has a star cutset.

In a graph G, for any node x, let C1, . . . , Ck be the connected components of
G \ N [x], with |C1| ≥ . . . ≥ |Ck|, and let the numerical vector (|C1|, . . . , |Ck|) be
associated with x. The nodes ofG can thus be ordered according to the lexicographic
ordering of the numerical vectors associated with them. Say that a node x is lex-
maximal if the associated numerical vector is lexicographically maximal over all
nodes of G. Theorem 5.2 actually shows that for a lex-maximal node x, N(x) is
F-free. This implies the following.

Theorem 5.4. (da Silva, Vušković [41]) Let G be a 4-hole-free odd-signable
graph, and let x be a lex-maximal node of G. Then the neighborhood of x is trian-
gulated.

Possibly a more efficient algorithm for listing all maximal cliques can be
constructed by searching for a lex-maximal node.

5.2. The boundedness of the chromatic number

The clique number of a graph ω(G) is a lower bound for the chromatic number
χ(G). This bound can be tight, as in the case of perfect graphs, but it can also
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be arbitrarily bad. Gyárfás introduced a family of χ-bounded graphs [29] as
a natural extension of the family of perfect graphs: a family of graphs G is χ-
bounded with χ-binding function f if, for every induced subgraph G′ of G ∈ G,
χ(G′) ≤ f(ω(G′)). Note that perfect graphs are a χ-bounded family of graphs with
the χ-binding function f(x) = x.

A natural question to ask is: what choices of forbidden induced subgraphs
guarantee that a family of graphs is χ-bounded? Much research has been done
in this area, for a survey see [38]. We note that most of that research has been
done on classes of graphs obtained by forbidding a finite number of graphs. Since
there are graphs with arbitrarily large chromatic number and girth [22], in order
for a family of graphs defined by forbidding a finite number of graphs (as induced
subgraphs) to be χ-bounded, at least one of these forbidden graphs needs to be
acyclic. In [1] it is shown that even-hole-free graphs (a class defined by forbidding
a family of graphs none of which is acyclic) are χ-bounded. This result follows
easily from the following characterization of even-hole-free graphs. A bisimplicial
vertex is a vertex whose set of neighbors induces a graph that is a union of two
cliques.

Theorem 5.5. (Addario-Berry, Chudnovsky, Havet, Reed, Seymour [1])
Every even-hole-free graph has a bisimplicial vertex.

Corollary 5.6. [1] If G is even-hole-free then χ(G) ≤ 2ω(G)− 1.

Proof. By theorem 5.5 let v be a bisimplicial vertex of G. Inductively color G\{v}
with 2ω(G)− 1 colors. Since v is bisimplicial, its degree is at most 2ω(G)− 2, and
hence G can be colored with 2ω(G)− 1 colors.

It is interesting to observe that Theorem 5.5 is also obtained using decom-
position, although in [1] not all even-hole-free graphs are decomposed, but enough
structures are decomposed using special double star cutsets to obtain the desired
result.

The following star cutset decomposition is proved in [1]. A twin wheel is a
wheel with exactly two short sectors and one long sector. A proper wheel is a wheel
that is neither a bug nor a twin wheel.

Theorem 5.7. (Addario-Berry, Chudnovsky, Havet, Reed, Seymour [1])
Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel that is not
a universal wheel, then G has a star cutset.

We note that in [1] the statement of the above theorem is for even-hole-free
graphs, but since in the proof of that theorem only the exclusion of 4-holes, even
wheels, 3PC(·, ·)’s and 3PC(∆,∆)’s is used, the above statement is actually proved.

Theorem 5.7 and Theorem 5.3 imply the following, which is used as one of
the steps in the proof of Theorem 3.2.

Theorem 5.8. Let G be a 4-hole-free odd-signable graph. If G contains a proper
wheel, then G has a star cutset.
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5.3. Coloring (even-hole, diamond)-free graphs

Recall that the complexity of finding an optimal coloring of an even-hole-free
graph is not known. β-perfect graphs, introduced in [34], are a subclass of even-
hole-free graphs that can be efficiently colored, by coloring greedily on a particular
easily constructable ordering of vertices, see Section 1. Unfortunately it is not
known whether β-perfect graphs can be recognized in polynomial time. We now
present some results on subclasses of β-perfect graphs that can be recognized in
polynomial time.

Recall that a diamond is a cycle of length 4 that has exactly one chord. A
cap is a cycle of length greater than four that has exactly one chord, and this chord
forms a triangle with two edges of the cycle. In [34]Markossian, Gasparian and
Reed shown that (even-hole, diamond, cap)-free graphs are β-perfect, and in [25]
de Figueiredo and Vušković show that (even-hole, diamond, cap-on-6-vertices)-
free graphs are β-perfect. These results were extended by Kloks, Müller and
Vušković who show in [30] that (even-hole, diamond)-free graphs are β-perfect.
This result follows from the following characterization of (even-hole, diamond)-free
graphs. A vertex is simplicial if its neighborhood set induces a clique, and it is a
simplicial extreme if it is either simplicial or of degree 2.

Theorem 5.9. (Kloks, Müller, Vušković [30]) Every (even-hole, diamond)-
free graph has a simplicial extreme.

Theorem 5.9 and the following property of minimal β-imperfect graphs, imply
that (even-hole, diamond)-free graphs are β-perfect.

Lemma 5.10. (Markossian, Gasparian, Reed [34]) A minimal β-imperfect
graph that is not an even hole, contains no simplicial extreme.

Corollary 5.11. [30] Every (even-hole, diamond)-free graph is β-perfect.

Note that the fact that (even-hole, diamond)-free graphs have simplicial ex-
tremes implies that for such a graph G, χ(G) ≤ ω(G) + 1 (observe that if v is
a simplicial extreme of G, then its degree is at most ω(G), and hence G can be
colored with at most ω(G) + 1 colors).

The proof of Theorem 5.9 is obtained as a consequence of Theorem 3.4.
Theorem 5.9 was actually conjectured to be true by de Figueiredo and Vušković
[25]. In [25] they prove that every (even-hole, diamond, cap-on-6-vertices)-free
graph is β-perfect by showing the following property of this class of graphs.

Theorem 5.12. (de Figueiredo, Vušković [25]) If G is an (even-hole, dia-
mond, cap-on-6-vertices)-free graph, then one of the following holds.

(1) G is triangulated.

(2) For every edge xy, G has a simplicial extreme in G \N [{x, y}].

A similar property was used in [1] to prove that every even-hole-free graph
has a bisimplicial vertex.
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Theorem 5.13. (Addario-Berry, Chudnovsky, Havet, Reed, Seymour [1])
If G is even-hole-free then the following hold.

(1) If K is a clique of G of size at most 2 such that N [K] 6= V (G), then G has a
bisimplicial vertex in G \N [K].

(2) If H is a hole of G such that N [H] 6= V (G), then G has a bisimplicial vertex
in G \N [H].

Such characterizations allowed for certain types of double star cutsets to be
used in the inductive proofs of Theorem 5.12 and Theorem 5.13. For assume that
Theorem 5.12 (resp. Theorem 5.13) holds for all graphs with fewer vertices than G,
and suppose that for an edge xy, N [{x, y}] is a double star cutset of G. Then we
can conclude that for every connected component C of G \N [{x, y}], there exists
a simplicial extreme (resp. bisimplicial vertex) of G in C.

For the class of (even-hole, diamond)-free graphs it is not even the case that
for every vertex there is a simplicial extreme outside the neighborhood of that
vertex. The graph in Figure 5 is (even-hole, diamond)-free, and its only simplicial
extremes are in the neighborhood of vertex x. Note that this graph contains a cap
on 6 vertices. Also, all the vertices of this graph, except x, are bisimplicial vertices,
so for any edge there is a bisimplicial vertex outside of the neighborhood of that
edge.

x

Figure 5. An (even-hole,

diamond)-free graph whose only

simplicial extremes are in the

neighborhood of x.

Figure 6. An (even-hole, diamond)-free

graph G, bold edges denote a hole H

such that no vertex of G−N [H] is a

simplicial extreme of G.

(2) of Theorem 5.13 is used to help prove (1). Figure 6 shows that anal-
ogous property does not hold for (even-hole, diamond)-free graphs and simplicial
extremes: bold edges denote a hole H such that no vertex of G\N [H] is a simplicial
extreme of G.

Theorem 5.9 is proved by showing the following property of (even-hole,
diamond)-free graphs.

Theorem 5.14. (Kloks, Müller, Vušković [30]) If G is an (even-hole,
diamond)-free graph, then one of the following holds.



234 Kristina Vušković

(1) G is a clique.

(2) G contains two nonadjacent simplicial extremes.

This property does not allow for the use of double star cutset decompositions
in the proof, not even star cutset decompositions. But bisimplicial cutsets from
Theorem 3.4 do suffice.

We close this section by observing that there are (even-hole, cap)-free graphs
that are not β-perfect, see Figure 7. Total characterization of β-perfect graphs
remains open.

Figure 7. An (even-hole, cap)-free graph that is not β-perfect.

5.4. Combinatorial optimization with 2-joins

Decomposition can also be used to construct optimization algorithms. The
general paradigm would be as follows: given a decomposition tree T for a graph
G ∈ C obtained by using decompositions from some decomposition theorem for
class C, with the property that for every leaf L of T one can solve an optimization
problem (such as coloring or finding the size of the largest clique or a stable set),
can we construct an algorithm to solve the corresponding problem on G? This
general paradigm sometimes works nicely (as in the case of triangulated graphs
and clique cutsets), but most of the time it is difficult to apply to classes whose
decomposition theorems require “strong cutsets”, such as star cutsets.

All of the decomposition theorems mentioned in this survey use star cutsets
(or their generalizations) and 2-joins. The problem with the star cutset is that it
can be very big (as big as all of the vertex set except two vertices), and in the cutset
itself the edges are unconstrained, so there is not much structure one can work with.
2-Joins on the other hand have quite a bit of structure within the cutset. There
is an interesting relationship between star cutset decomposition and 2-join decom-
position, in classes of even-hole-free and Berge graphs, that was observed when
constructing decomposition based recognition algorithms in [16] and [7]. One can
build a decomposition tree by first doing star cutset decompositions and then 2-join
decompositions, with leaves being undecomposable blocks. Analogous separation
of skew cutsets and 2-joins exists in Berge graphs [44].

In [46]Trotignon andVušković (taking the bottom-up approach) consider
the class of even-hole-free graphs that do not contain star cutsets. By Theorem
3.2, this class is decomposable into basic graphs just by 2-joins. In the same paper
another class decomposable by 2-joins is considered, namely Berge graphs with
no skew cutset nor homogeneous pair (which follows from [10], [6] and [44]). This
allowed them to focus on developing techniques for combinatorial optimization with
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2-joins. In [46] combinatorial polynomial time algorithms are given for finding the
size of a largest independent set in even-hole-free graphs with no star cutset; as
well as finding the size of a largest independent set, the size of a largest clique and
an optimal coloring for Berge graphs with no skew cutset nor homogeneous pair.
In [4] it is shown that the required 2-joins can be found in time O(n2m) time, and
hence the above mentioned coloring algorithm can be implemented to run in O(n7)
time and all the other ones in O(n6) time. Coloring of Berge graphs actually
follows from being able to compute the size of a largest independent set and largest
clique ([27, 28]), so these two problems are the focus of the work in [46].

Using 2-joins in combinatorial optimization algorithms requires building
blocks of decomposition and asking at least two questions for at least one block,
while for recognition algorithms one question suffices. Applying this process re-
cursively can lead to an exponential blow-up even when the decomposition tree is
linear in size of the input graph. In [46] this problem is bypassed by using extreme
2-joins, i.e. 2-joins whose one block of decomposition is basic. Graphs in general do
not have extreme 2-joins, this is a special property of 2-joins in graphs with no star
cutset. The graph G in Figure 8 has exactly two 2-joins, one is represented with
bold lines, and the other is equivalent to it. Both of the blocks of decomposition
are isomorphic to graph H (where dotted lines represent paths of arbitrary length,
possibly of length 0), and H has a 2-join whose edges are represented with bold
lines. So G does not have an extreme 2-join.

G H

Figure 8. A graph G with no extreme 2-join

We first give a method from [46] that can be used to solve the maximum
weighted clique problem for any class of graphs that can be decomposed with
extreme 2-joins into basic graphs for which the problem can be solved efficiently.
(To be able to apply arguments inductively one actually needs to switch to the
weighted version of the problem). Let G be a weighted graph with a weight function
w : N+ −→ V (G).When H is an induced subgraph of G or a subset of V (G), w(H)
denotes the sum of the weights of vertices in H. Here, ω(G) denotes the weight of
a maximum weighted clique of G.

Let X1|X2 be a 2-join with special sets (A1, A2, B1, B2), and let G1 and G2
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be the blocks of decomposition w.r.t. this 2-join constructed as in Section 3. Let us
also assume that the lengths of marker paths are at least 3 (this is important in [46]
because there it is not just important that the parity of holes is preserved in the
blocks, but also the property of not having a star cutset). Let P1 = a1, x1, . . . , xk, b1
be the marker path of G2, where a1 is adjacent to all of A2 and b1 is adjacent to
all of B2. The weights of vertices of G2 are modified as follows:

• for every u ∈ X2, wG2
(u) = wG(u);

• wG2
(a1) = ω(G[A1]);

• wG2
(b1) = ω(G[B1]);

• wG2
(x1) = ω(G[X1])− ω(G[A1]);

• wG2
(xi) = 0, for i = 2, . . . , k.

With such modification of weights it can be shown that ω(G) = ω(G2) [46].
Now ifX1|X2 is an extreme 2-join, we may assume that block G1 is undecomposable
and hence basic in the sense that the maximum weighted clique problem can be
solved on that block efficiently. In particular, all of the weights needed to be
computed for modifying the weights of G2 as above can be computed efficiently.
We note that this method of computing a maximum stable set in the case of even-
hole-free graphs (with no star cutset) is not so interesting since the algorithm
described in Section 5.1 is more efficient.

Using 2-joins to compute a maximum stable set is more difficult since stable
sets can completely overlap both sides of the 2-join. In [46] a simple class of graphs
C decomposable along extreme 2-joins into bipartite graphs and line graphs of cycles
with one chord is given for which computing a maximum stable set is NP-hard. Here
is how C is constructed. A gem-wheel is a graph made of an induced cycle of length
at least 5 together with a vertex adjacent to exactly four consecutive vertices of the
cycle. Note that a gem-wheel is a line-graph of a cycle with one chord. A flat path
of a graph G is a path of length at least 2, whose interior vertices all have degree
2 in G, and whose ends have no common neighbors outside the path. Extending a
flat path P = p1, . . . , pk of a graph means deleting the interior vertices of P and
adding three vertices x, y, z and the following edges: p1x, xy, ypk, zp1, zx, zy, zpk.
Extending a graph G means extending all paths ofM, whereM is a set of flat paths
of length at least 3 of G. Class C is the class of all graphs obtained by extending
2-connected bipartite graphs. From the definition, it is clear that all graphs of C
are decomposable along extreme 2-joins. One leaf of the decomposition tree is the
underlying bipartite graph, and all the others leaves are gem-wheels. The following
is shown by Naves [35], and the proof of it can be found in [46].

Theorem 5.15. (Naves [35,46]) The problem whose instance is a graph G from
C and an integer k, and whose question is “Does G contain a stable set of size at
least k” is NP-complete.
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Let CPARITY be the class of graphs in which all holes have the same parity.
In [46] it is shown how to use 2-joins to compute a maximum stable set in CPARITY .

Let G be a graph with a weight function w on the vertices and X1|X2 a 2-join
of G with special sets (A1, A2, B1, B2). For i = 1, 2, Ci = Xi \ (Ai ∪ Bi). For any
graph H, α(H) denotes the weight of a maximum weighted stable set of H. Let
a = α(G[A1 ∪ C1]), b = α(G[B1 ∪ C1]), c = α(G[C1]) and d = α(G[X1]).

Blocks of decomposition w.r.t. a 2-join that would be useful for computing a
largest stable set can be done as follows.

A flat claw of a weighted graph G is any set {q1, q2, q3, q4} of vertices such
that:

• the only edges between the qi’s are q1q2, q2q3 and q4q2;

• q1 and q3 have no common neighbor in V (G) \ {q2};

• q4 has degree 1 in G and q2 has degree 3 in G.

Define the even block G2 with respect to a 2-join X1|X2 in the following way. Keep
X2 and replace X1 by a flat claw on q1, . . . , q4 where q1 is complete to A2 and q3 is
complete to B2. Give the following weights: w(q1) = d−b, w(q2) = c, w(q3) = d−a,
w(q4) = a+ b− d. It can be shown that all weights are in fact non-negative.

A flat vault of graph G is any set {r1, r2, r3, r4, r5, r6} of vertices such that:

• the only edges between the ri’s are such that r3, r4, r5, r6, r3 is a 4-hole;

• N(r1) = N(r5) \ {r4, r6};

• N(r2) = N(r6) \ {r3, r5};

• r1 and r2 have no common neighbors;

• r3 and r4 have degree 2 in G.

Define the odd block G2 with respect to a 2-joinX1|X2 in the following way. Replace
X1 by a flat vault on r1, . . . , r6. Moreover r1, r5 are complete to A2 and r2, r6
are complete to B2. Give the following weights: w(r1) = d − b, w(r2) = d − a,

w(r3) = w(r4) = c, w(r5) = w(r6) = a+ b− c− d. It can be shown that all weights
are non-negative, if c+ d ≤ a+ b holds.

By adequately choosing when to use even and when odd blocks, it can be
shown that for a 2-join in an even-hole-free graph G (or more generally a graph in
CPARITY ), α(G2) = α(G).

We observe that such construction of blocks is not class-preserving, so it
would not allow for inductive use of the decomposition theorems. This problem
is avoided in [46] by building the decomposition tree in two stages. First using
blocks of decomposition constructed as in Section 4 (that are class-preserving). In
the second stage the decomposition tree is reprocessed to replace marker paths
by gadgets designed for even and odd blocks. This results in the leaves of the
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decomposition tree that are not basic as in the decomposition theorems used, but
some extensions of these basic classes, for which it is shown that the weighted stable
set problem can be computed efficiently.
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ces, Parts I and II. Journal of Combinatorial Theory B, 81 (2001), 243–306.
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Part II: Recognition algorithm. Journal of Graph Theory, 40 (2002), 238–266.
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