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Detection of methane using multi-walled carbon nanotubes
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Abstract. A sensor for detecting and estimating methane using multi-walled carbon nanotubes (MWCNTs) as the
sensing element has been developed for the first time. Silver electrodes have been ink-jet printed on glass substrate
over which MWCNT is brush coated to fabricate the sensor element which is of chemoresistive type. The sensitivity
of the sensor (increase in the resistance of the sensor on exposure to analyte) increases linearly with concentration of
methane and a maximum sensitivity of about 20% has been observed for 160 ppm of methane. A prototype device
has been fabricated with this sensor and tested for its performance. It could be used to detect methane on site.

Keywords. Multi-walled carbon nanotubes; chemoresistive; methane sensor; ink-jet printing.

1. Introduction

Sensors find applications in various fields of scientific and
engineering disciplines ranging from controlling and monito-
ring chemical, machining process to biomedical devices.1–4

Chemical sensors especially, gas sensors find potential
applications in hospitals, industries and also for environ-
mental monitoring.5,6 Hydrocarbon gases constitute mostly
flammable fuels which are difficult to be detected as these
are colourless and odourless. Hence, the development of gas
sensors for hydrocarbon gases is of importance.7–9

Methane is being detected employing gas chromatogra-
phic techniques, NDIR sensors, fibre optic sensors, noncata-
lytic thermal sensors, electro-chemical sensors.7,10–19 All
these techniques are laboratory based and not cost effective.
In order to develop a low cost method, a reversible chemo-
resistive gas sensor using multiwalled carbon nanotubes
(MWCNTs), applicable for the detection of methane on
site has been fabricated. Our fabrication method of sensor
element has not yet been reported.

Single-walled carbon nanotube (SWCNT) has been exten-
sively used for gas sensing since it was discovered by
Iijima and Ichihashi in 1993.20 Carbon nanotubes (CNTs)
have been used for the detection of gases such as ethy-
lene and ammonia in ppm levels with high sensitivity even
at room temperature.21–24 SWCNT has additional and ben-
eficial physical, chemical and mechanical properties.25–28

MWCNT is a multi-layer of rolled graphene29 which has
higher surface-to-volume ratio than SWCNT.30

Here, we present a reversible chemoresistive sensor using
MWCNTs capable of detecting ppm levels of methane with
high sensitivity. The sensing mechanism is based on the
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removal of electron from CNTs upon exposure to analyte and
this leads to an increase in the resistance of CNTs as shown
schematically in figure 1. This principle is used widely for
gas-sensing applications.21,31

2. Experimental

2.1 Characterization of MWCNTs

MWCNT dispersion of 0.5 wt% in water was purchased
from Iolitech Ionic GmbH, Germany and has been char-
acterized by field emission scanning electron microscopy
(FESEM), Fourier transform infrared (FTIR) and Raman
spectra. FESEM image (figure 2) confirms the presence of
MWCNT with average diameter of about 40 nm.

The peaks at wavenumbers of 1641 and 3444 cm−1 32

in FTIR spectrum reveal the presence of MWCNTs on the
coated film. Raman spectrum (figure 3) with peaks at 1287
and 1600 cm−1 32 confirm signatures of MWCNT in coated film.

2.2 Preparation of silver electrodes

A 2.5 × 2.5 cm glass slide was cleaned chemically and pat-
terned with silver electrode by silver nanoconductive ink
using piezohead-based drop on demand ink-jet printing tech-
nology (Epson T60) with electrode width of 1, 2 mm of inter-
electrode distance and thickness of 10 μm. The glass slide
was dried in an hot air oven for 1 h at 120◦C. The electrode
printed is shown in figure 4a.

2.3 Deposition of MWCNT

MWCNT dispersion solution was concentrated until the vol-
ume of the solution is reduced to 1/4 of its initial value.
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(a) (b)

Figure 1. Schematic of methane detection by MWCNT chemoresistive sensor: (a) ambient and (b) exposed
to methane.

Figure 2. FESEM image of MWCNT bundles.

Figure 3. Raman spectrum of MWCNT.
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The concentrated MWCNT dispersion is then coated on the
silver IDT electrode using brush coating and dried in hot air
oven at 100◦C for 30 min. The thickness of the film was
found to be 10 μm (figure 4b). Silver contacts with silver
leads were provided for measurements.

2.4 Gas test cell set-up

The test cell is made of air tight acrylic chamber of dimen-
sions (4 × 4 × 3 cm) enclosing the sensor element at the

(a) (b) 

Figure 4. Sensing element fabrication: (a) silver IDTs printed on
glass substrate and (b) deposition of MWCNT on glass slide printed
with silver IDT electrodes (magnified image).

Figure 5. Prototype gas test cell.

centre. The silver electrodes of the sensing element is cold
soldered with flexible silver wires connected to copper leads
fixed on to the front side of the chamber (figure 5). The resis-
tance of the sensing element is measured using 6 1/2 digit
Agilent multimeter (Model: 34401A).

The test cell consists of two openings, one for the gas inlet
positioned over the chip and other for the gas outlet which is
air tightened. Methane was injected into the gas test cell by
means of gas collecting microsyringes.

2.5 Calibration of sensor

MWCNT sensor element used in this study was calibrated
with pre-calibrated standardized methane gas of different
(known) concentrations purchased from M/s. Chemtron Sci-
ence Laboratories Ltd, India. Reproducibility is confirmed by
repeated measurements.

The calibration curve of our sensor is depicted in figure 6.
Percentage sensitivity of the sensor is calculated using
equation (1) and percentage sensitivity/ppm of the sensor
is calculated from the slope of the calibration curve using
equation (2). Calibration curve indicates linearity, sensitivity
and repeatability

% Sensitivity =
(

−�R

R0

)
%

=
(

− (Rair − Ranalyte)

Rair

)
× 100, (1)

% Sensitivity/ppm =
(

�Y

�X

)
= 0.122. (2)

3. Results and discussions

The sensor element has a resistance of 1.0874 k� (Rair)

at room temperature in air. Pure methane gas was diluted
with air using peristaltic pump to vary its concentration to
obtain unknown samples, which is then injected into the test
cell.
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Figure 6. Calibration of MWCNT methane sensor.
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Figure 7. Sensitivity vs. methane concentration (unknown).
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Figure 8. Response of MWCNT sensor with methane gas concentrations.
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Figure 9. Sensitivity plots for three different analytes.

3.1 Sensitivity

The sensor instantaneously recorded an increase in resistance
and this change of resistance is found to be directly proportional

to the concentrations of methane. Sensitivity defined by
equation (1) is plotted against concentration of sample
methane (figure 7). The unknown (sample) methane concen-
tration is calculated from equation (2) of the calibrated plot.
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3.2 Response

Figure 8 shows the response time of the sensor element to
be 10 s and the recovery time to be 60 s for three different
concentrations. The sensor action is reversible. The output
response of the sensor is linear with ± 5% of accuracy.

3.3 Selectivity

Selectivity is a major limitation of chemical sensors.23,33

However, from the slopes of linear plots of sensitivity vs.
concentration, one will be able to distinguish the different
types of analytes as shown in figure 9, to some extent. Also
neural network patterns of different analytes can be of use
for selectivity distinction.34–39

4. Conclusion

This work reports the fabrication of methane sensor pro-
totype device using MWCNT sensor element on ink-jet
printed silver IDT electrodes. It shows reversible sensing of
methane and its response, recovery, sensitivity, linearity and
reproducible characteristics of the sensor are favourable for
potential applications.
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