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ATOMS AND CLIQUE SEPARATORS IN GRAPH

PRODUCTS

Bijo S. Anand, Kannan Balakrishnan, Manoj Changat, Iztok Peterin

We describe in the present work all minimal clique separators of the four

standard products–Cartesian, strong, direct, and lexicographic–as well as all

maximal atoms of the Cartesian, strong and lexicographic product, while

we only partially describe maximal atoms of direct products. Typically, a

product has no clique separator and so the product is a maximal atom.

1. INTRODUCTION AND PRELIMINARIES

A clique separator of a graph G with k components is a clique (a subgraph
consisting of pairwise adjacent vertices) in G whose removal disconnects the graph
into more than k components. Clearly every clique separator is a subgraph of just
one component of G. A clique separator of G is said to be a minimal clique separator

if it does not contain any other clique separator ofG. A connected induced subgraph
of G that contains no clique separators is called an atom of G. A maximal atom of
G is an atom of G which is not contained in any other atom of G.

Decomposing a graph into atoms and clique separators is a very important
problem, algorithmically or otherwise, because, many hard graph problems like
finding a maximum size clique can be optimized by first decomposing the graph
into smaller clique separator-free graphs. This decomposition also preserves induced
cycles, holes, and anti-holes in the graph. Decomposition by clique separators of a
graph was first obtained by Tarjan [16], where he designed an O(mn) algorithm.
Tarjan’s decomposition may not produce a unique decomposition of the graph.
He left open the problem of such a unique decomposition. An algorithm yielding
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a unique decomposition containing all the atoms of the graph was obtained by
Leimer in [7]. A review on the topic can be found in [4].

One of first non-algorithmic results on clique separators goes even further
back to Dirac in 1961 [6], where he characterized chordal graphs using clique
separators. The atoms and clique separators of graphs also play an important role
in one type of graph convexity, namely the induced path convexity. The induced

path convex set or J-convex set in a connected graph G = (V,E) is a subset W of
V which contains vertices on all induced paths between all pairs of vertices in W.
The induced path convexity is a well-studied convexity in graphs as can be seen
from the papers [9, 8] and the references therein. Note that a characterization of
the convex hulls of induced path convex sets in a graph G = (V,E) due to Duchet

[9] involves clique separators. Using this characterization and an application of the
decomposition algorithm [7], an algorithm for computing the induced path convex
hull of a vertex subset of G is presented in [2].

Various graph products have been investigated in the last few decades and a
rich theory involving the structure and recognition of classes of these graphs has
emerged, cf. the new book [11]. The most studied graph products are the Cartesian
product, the strong product, the direct product, and the lexicographic product
which are also called standard products. The other standard approach to graph
products is to deduce properties of a product with respect to its factors. See a short
collection of such results in [3, 10, 12, 13, 18]. We wish to obtain results of that
type for minimal clique separators and maximal atoms for all standard products.
Recently this was done for the minimal vertex separators of the Cartesian product
in [14], of the strong product in [15] and was discussed for the direct prodcut in
[5]. A characterization of the induced path (as well as the geodesic and the Steiner)
convex sets in lexicographic product was presented in [1].

In this paper, we study the atoms and clique separators of all standard prod-
ucts. For this we completely describe minimal clique separating sets of all four
products as well as maximal atoms of the Cartesian, the lexicographic, and the
strong product, while for the direct product this task is done partially. These
structural characterization enable us to apply the decomposition algorithm from
[4] to obtain fast decompositions in lexicographic and strong product in comparison
with applying the algorithm directly. We estimate the time complexity of such a
procedure. The paper is organized as follows. In the remainder of this section we
define all four standard products and give some of their basic properties. The next
sections are then devoted to minimal clique separators and maximal atoms of the
Cartesian, the lexicographic, the strong, and the direct product, respectively. We
end with a section on the decomposition algorithms.

For all four products of (simple) graphsG andH the vertex set of the product
is V (G) × V (H). Their edge sets are defined as follows. In the Cartesian product

G�H two vertices are adjacent if they are adjacent in one coordinate and equal
in the other. In the direct product G × H two vertices are adjacent if they are
adjacent in both coordinates. The edge set E(G⊠H) of the strong product G ⊠ H
is the union of E(G�H) and E(G × H). Finally, two vertices (g, h) and (g′, h′)
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are adjacent in the lexicographic product G ◦ H (also G[H ]) either if gg′ ∈ E(G)
or if g = g′ and hh′ ∈ E(H). For ∗ ∈ {�,⊠,×, ◦} we call the product G ∗ H
nontrivial, if both G and H have at least two vertices. For h ∈ V (H), g ∈ V (G),
and ∗ ∈ {�,⊠,×, ◦}, denote by Gh = {(g, h) ∈ G ∗ H : g ∈ V (G)} a G layer in
G∗H, and denote by gH = {(g, h) ∈ G∗H : h ∈ V (H)} an H layer in G∗H. Note
that the subgraph of G ∗H induced on Gh is isomorphic to G and the subgraph of
G∗H induced on gH is isomorphic to H for ∗ ∈ {�,⊠, ◦}. On the other hand there
are no edges between vertices of Gh and between vertices of gH in G×H. Note also
that all four products are associative and only first three are commutative while
the lexicographic product is not, cf. [11]. The map pG : V (G ∗H)→ V (G) defined
with pG((g, h)) = g is called a projection map onto G for ∗ ∈ {�,⊠,×, ◦}. Similarly
we can define the projection map onto H.

Let S ⊂ V (G). With 〈S〉 we denote the subgraph of G induced by S. We will
also use for a graph G the standard notations NG(g) for the open neighborhood

{g′ : gg′ ∈ E(G)}, NG[g] for the closed neighborhood NG(g) ∪ {g}, and SG
k (g) for

the k-th sphere {g′ : dG(g, g
′) = k}.

2. THE CARTESIAN PRODUCT

In this section we give a short discussion on the (minimal) clique separator
and (maximal) atoms in the Cartesian product. As we will see there are no clique
separators in most Cartesian product graphs and thus most of them do not contain
any proper atoms. Note that for general minimal vertex separators this is not the
case cf. [14].

Let (g, h) and (g′, h′) be two vertices that are not in the same (G or H)
layer, that is g 6= g′ and h 6= h′. They are clearly not adjacent and thus not in the
same clique. Hence every clique of G�H must be contained in one layer, say Gh.
Furthermore, a subset A of Gh is clearly a separator of G�H for connected graphs
G and H if and only if A = Gh and h is a cut vertex of H. Since we are interested
in clique separators only, this implies that Gh must induce a complete graph and
hence G is also a complete graph. The following proposition is then clear.

Proposition 2.1. The nontrivial Cartesian product G�H of connected graphs G
and H has a (minimal) clique separator K if and only if either K =

〈

Gh
〉

where

G is complete and h is a cut vertex of H or K = 〈gH〉 where H is complete and g
is a cut vertex of G.

Let g1, . . . , gk be cut vertices of G. For g1 and a component Ci, i = 1, . . . , ig1
of G − {g1}, we denote by Cg1

i = 〈Ci ∪ {g1}〉 and by G1 = Cg1
1 ∪ · · · ∪ Cg1

ig1
. We

continue with the same procedure with gj on Gj−1 for every j > 1. At the end we
obtain a graph G+ = Gk that is not connected whenever k ≥ 1. In particular note
that for two adjacent cut vertices gi and gj , the edge gigj is a component of Gk.
Also G+ has no cut vertices and every vertex of V (G) − {g1, . . . , gk} is in exactly
one component of G+. If G has no cut vertices we simply write G+ = G.

Theorem 2.2. The nontrivial Cartesian product G�H of connected graphs G and

H has a maximal atom A if and only if either
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(i) A = G�CH where G is complete and CH a component of H+, or
(ii) A = CG�H where H is complete and CG a component of G+, or
(iii) A = G�H if G and H are not complete.

Proof. Since G�H is nontrivial, both G and H have at least two vertices. If G
and H are not complete graphs, A = G�H has no clique separators by Proposition
2.1 and hence A is an atom. If H is a complete graph and CG a component of
G+, then CG has no cut vertices. By Proposition 2.1, A = CG�H has no clique
separators and hence A is an atom. Moreover, if A ⊂ A′ there exists (g, h) ∈ A′−A,
which is a neighbor of (g′, h) ∈ A. Clearly A′ is not an atom, since {g′} ×H is a
clique separator of A′. Hence A is a maximal atom. The same can be concluded
for A = G�CH when G is complete and CH a component of H+.

Conversely, note that conditions (i), (ii), and (iii) have pairwise empty inter-
sections. Now, let A be a maximal atom of G�H. If G and H are not complete,
A = G�H contains no clique separators by Proposition 2.1 and (iii) follows. So let
H be a complete graph. If pG(A) contains a cut vertex g of 〈pG(A)〉 , then

gH ∩A
is a clique separator by Proposition 2.1 again, which is a contradiction. Hence
pG(A) has no cut vertices in 〈pG(A)〉 . On the other hand, maximal subgraphs of
G without cut vertices are clearly isomorphic to components of G+. Let C be a
component of G+ with |V (C) ∩ pG(A)| ≥ 2. Note that such a component exists,
since |pG(A)| ≥ 2 by maximality of A. By Proposition 2.1, C�H has no clique
separators and C�H ⊆ A by the maximality of A again. But then A = C�H,
otherwise we get the same contradiction again and (ii) follows. By symmetry, (i)
follows if G is a complete graph.

3. THE LEXICOGRAPHIC PRODUCT

We begin with a necessary and sufficient condition for the existence of clique
separators in the lexicographic product G ◦H.

Proposition 3.3. Let G be a connected graph and H a graph. The nontrivial

lexicographic product G ◦H has a clique separator K ′ if and only if G has a clique

separator K and H is a complete graph.

Proof. Suppose G has a clique separatorK and H is complete. ClearlyK ′ = K◦H
is a clique in G◦H. We claim that the subproduct K ′ of G◦H is a clique separator
in G ◦ H. Let g, g′ be two vertices lying in two different components of G − K.
Consider the graph (G ◦ H) − (K ◦ H). Now there is no path between any two
vertices (g, x) and (g′, y) in (G ◦ H) − (K ◦ H), because of the definition of the
lexicographic product and since there is no path between g and g′ in G−K. Thus
K ◦H is a clique separator in G ◦H.

Suppose G◦H has a clique separator K ′ and suppose for the moment that H
is a non-complete graph. For any vertex g of G the H layer gH is not properly con-
tained inK ′. Choose any two vertices (g1, h1) and (gk, hk) of (G◦H)−K ′. If g1 . . . gk
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is a g1, gk-path in G, then there exists h2, . . . , hk−1 in H so that (g1, h1) . . . (gk, hk)
is a (g1, h1), (gk, hk)-path in (G ◦H)−K ′ —a contradiction with the fact that K ′

is a clique separator of G ◦H. Hence H has to be complete.

Now it remains to prove that G has a clique separator. Clearly (G ◦H)−K ′

and 〈pG((G ◦H)−K ′)〉 are not connected graphs. On the other hand pG(K
′)

induces a clique in G, and since K = G− pG((G ◦H)−K ′) ⊆ 〈pG(K
′)〉, K is the

desired clique separator of G. �

Note that in the above proof there can exist a clique separator Y in G ◦ H
such that pG(Y ) is not a (clique) separator of G. For instance, P3 ◦ K2 has a 3-
vertex clique separator that properly contains the middle K2 layer and so is not
minimal. However, K = G − pG((G ◦H) −K ′) is a clique separator in G as long
as K ′ is a clique separator of G ◦H. This phenomena cannot occur if we restrict to
the minimal clique separators as the next result shows.

Proposition 3.4. Let G be a connected graph and H a graph. The nontrivial

lexicographic product G ◦H has a minimal clique separator K ′ if and only if K ′ =
K ◦H, where K is a minimal clique separator of G and H is a complete graph.

Proof. Let K ′ be a minimal clique separator of G ◦H. By Proposition 3.3, H is
complete. It is clear that any clique separator of G ◦ H contains at least one H
layer. Say that K ′ contains an H layer gH. If gH = K ′, then g is a cut vertex in
G, since K ′ is a clique separator. Hence K ′ is the desired subproduct {g} ◦H. Now
suppose that K ′ 6= gH. If (g′, h) ∈ K ′ and g 6= g′, then g′

H ⊆ K ′. Indeed, if not,
then (g′, h′) /∈ K ′ for some h′ ∈ V (H) and since (G ◦ H) − K ′ is not connected,
then also (G ◦ H) − (K ′ − {(g′, h)}) is not connected, a contradiction with the
minimality of K ′. Thus K ′ is a subproduct K ◦ H. Furthermore, by Proposition
3.3, K is a clique separator of G and if K is not a minimal clique separator of G,
there exists K∗ ⊂ K that is a clique separator of G. This yields a contradiction
with the minimality of K ′ = K ◦ H again, since K∗ ◦ H is a clique separator of
G ◦H by Proposition 3.3, which is properly contained in K ′.

Conversely assume that K is a minimal clique separator of G and H is a
complete graph. If K ′ = K ◦H is not a minimal clique separator of G ◦H , then let
K ′′ be a clique separator of G◦H which is contained in K. Thus G−(pG((G◦H)−
K ′′)) is a clique separator of G and G− (pG((G ◦H)−K ′′)) ⊂ K, a contradiction
to the minimality of K. �

Having exactly described minimal clique separators of the lexicographic prod-
uct, we can do the same with maximal atoms of that product.

Theorem 3.5. Let G be a connected graph and H a graph. The nontrivial lexi-

cographic product G ◦H has a maximal atom A′ if and only if either A′ = G ◦H
and H is not complete or A′ = A ◦H, where A is a maximal atom in G and H is

complete.

Proof. If H is not complete, then, by Proposition 3.3, it follows that G ◦H has no
clique separators, and hence G ◦ H is itself an atom (which is also maximal). So
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let H be a complete graph and A a maximal atom in G. Again by the Proposition
3.3, it is clear, that a subgraph of G ◦H of the form A ◦H is a maximal atom in
G ◦H.

To prove the converse, suppose that A′ is a maximal atom in G ◦H. Again,
if H is not complete, G ◦H has no clique separators by Proposition 3.3 and hence
G ◦H is a maximal atom. So let H be a complete graph. We show that 〈pG(A

′)〉
contains no clique separators. If not, let K be a clique separator of 〈pG(A

′)〉, and
consider vertices g1 and g2 lying in different components of 〈pG(A

′)〉 −K. Clearly
A′ ∩ (K ◦H) is a clique in A′. For any two vertices (g1, h1) and (g2, h2) of A

′ there
exists no path between them in A′ − (A′ ∩ (K ◦H))—a contradiction with the fact
that A′ is an atom. Thus 〈pG(A

′)〉 is an atom in G and 〈pG(A
′)〉 contains no clique

separators. By Proposition 3.3 also 〈pG(A
′)〉 ◦H has no clique separators and A′

must be equal to 〈pG(A
′)〉 ◦ H (since A′ is a maximal atom in G). If 〈pG(A

′)〉
is not a maximal atom in G, there exists an atom, say U , containing 〈pG(A

′)〉 .
Again we get a larger subgraph U ◦H containing A′ without clique separators, a
contradiction to the maximality of A′. Hence A′ = A ◦ H, where A is a maximal
atom in G.

4. THE STRONG PRODUCT

In [15], Špacapan recently described minimal separating sets (not necessarily
cliques) of G⊠H as I-sets (a subproduct G⊠H ′ for a proper subgraph H ′ of H or a
subproduct G′⊠H for a proper subgraph G′ of G) or L-sets ((G′⊠H ′)−(G′′⊠H ′′)
for a proper subgraphG′′ of G′, which is again a proper subgraph ofG, and similarly
for H ′′, H ′, and H). In this section we show that a similar result holds for minimal
clique separators. Also we can use the previous section for a partial result. Namely
G ◦Kn

∼= G ⊠ Kn
∼= Kn ⊠ G. But first we observe a simple fact about cliques in

the strong product.

Lemma 4.6. The nontrivial strong product G⊠H of connected graphs G and H has

clique 〈K〉 if and only if pG(K) and pH(K) induce cliques in G and H, respectively.

Proof. Since Kn ⊠ Km
∼= Knm, one direction is trivial. So suppose that K is a

clique in G ⊠H and let g, g′ ∈ pG(K). If g = g′, there is nothing to prove. So let
g 6= g′ and let g = pG((g, h)) and g′ = pG((g

′, h′)). Since (g, h)(g′, h′) ∈ E(G⊠H)
and g 6= g′, we have gg′ ∈ E(G) and 〈pG(K)〉 is a complete graph. By symmetry,
〈pH(K)〉 is also complete. �

We continue with a small example of a clique separator that we generalize
later. Let g′ and h′ be pendant vertices of G and H , respectively, with gg′ and hh′

being the edges incident with g′ and h′, respectively. In the strong product G⊠H,
these edges force a K4 in G ⊠ H and by removing the triple (g, h)(g, h′)(g′, h)
from G ⊠H, we get an isolated vertex (g′, h′). Hence K3 = (g, h)(g, h′)(g′, h) is a
(minimal) clique separator in G ⊠H if at least one of G and H in not isomorphic
to K2 and we have the following remark.
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Remark 4.7. If G and H are noncomplete connected graphs containing pendant vertices
then the complete graph K3 forms a (minimal) clique separator in the strong product
G⊠H.

We can generalize this observation even further. A clique K of a noncomplete
graph G is called a pendant clique if K * NG(G − K). In other words, K is a
pendant clique of G whenever there exists a vertex u ∈ K for which NG(u) ⊆ K.
We call such a vertex u a pendant clique vertex and denote the set of all pendant
clique vertices of K with Kp. In particular, we need to exclude complete graphs
from the definition, since they satisfy the definition but have no clique separators.
Also note that every pendant clique K with the set of pendant clique vertices Kp

of a noncomplete graph G contains a clique separator K ′ = K −Kp.

Now, we move on to describe clique separators in the strong product.

Theorem 4.8. The nontrivial strong product G⊠H of connected graphs G and H
has a minimal clique separator K if and only if either

(i) K = G⊠KH where G is complete and H has a minimal clique separator

KH , or
(ii) K = KG ⊠H where H is complete and G has a minimal clique separator

KG, or
(iii) K = KG ⊠KH −Kp

G ⊠Kp
H where KG and KH are pendant cliques in G

and H, respectively.

Proof. Suppose that G ⊠ H has a minimal clique separator K. By Lemma 4.6
〈pG(K)〉 and 〈pH(K)〉 are complete graphs and at most one equals to G and H,
respectively. Let first Kn

∼= 〈pH(K)〉 = H. Clearly (ii) (and (i) by commutativity
of the strong product) follows from Proposition 3.4.

Suppose now that both G and H are not complete graphs. Let (g1, h1) and
(gk, hk) be vertices of two different components of (G ⊠ H) − K. By Lemma 4.6
〈pG(K)〉 = KG and 〈pH(K)〉 = KH are complete graphs. Hence neither (g1, h1)
nor (gk, hk) are in KG ×KH . If (g1, h1) /∈ V (KG ×KH), then at least one of the
layers g1H or Gh1 , say Gh1 , has an empty intersection with K. Moreover, in Gh1

there exists a vertex (g, h1) for which also gH has an empty intersection with K.
Now for every vertex (g′, h′) of A = (V (G)× V (H))− (V (KG)× V (KH)) at least
one layer g′

H or Gh′

has an empty intersection with V (KG ×KH), and this layer
then has a non-empty intersection with Gh1 or gH. Thus vertices of A induce a
connected graph and (gk, hk) must be from V (KG) × V (KH) which is a clique.
Moreover, gk and hk must be pendant clique vertices of KG and KH , respectively,
otherwise they would be adjacent to a vertex of A which is impossible. Thus
V (K) ⊂ V (KG) × V (KH), where KG and KH are pendant cliques of G and H,
respectively. Clearly every vertex (g′′, h′′) ∈ (V (KG)×V (KH))−(V (Kp

G)×V (Kp
H))

must be in K, otherwise there would be a (g1, h1), (gk, hk)-path in (G ⊠ H) − K.
Hence K ⊇ (KG⊠KH)−(Kp

G⊠Kp
H). On the other hand, (KG⊠KH)−(Kp

G⊠Kp
H)

is a clique separator since it separates Kp
G ⊠Kp

H from A. Thus K = (KG ⊠KH)−
(Kp

G ⊠Kp
H) and (iii) follows.
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Conversely it is clear for (i) that K = G⊠KH is a clique separator when G is a
complete graph and KH a clique separator of H. Moreover, K is minimal, since KH

is minimal. Similarly for (ii). For (iii) note that K = (KG⊠KH)− (Kp
G⊠Kp

H) is a
clique separator that separates Kp

G⊠Kp
H and (V (G)×V (H))− (V (KG)×V (KH))

for pendant cliques KG and KH of G and H, respectively. The minimality follows
immediately since the product of all pendant vertices is excluded. �

Note that the strong product of typical graphs has no (minimal) clique sep-
arators. This holds if both factors are complete graphs, one is complete and the
other has no clique separator, or at least one has no pendant clique. Using The-
orem 4.8, we can also describe the structure of all clique separators of the strong
product. If G⊠H has a maximal atom A, one factor, say G, is a complete graph
and the other has a minimal clique separator KH , and K = (G⊠KH)∪A induces
a connected graph, then it is clear that K is a clique separator if and only if either
〈pH(K)〉 is not a pendant clique of H or 〈pH(K)〉 is a pendant clique and there
exists (g, h) /∈ K for some h ∈ 〈pH(K)〉p . Indeed, if 〈pH(K)〉 is not a pendant
clique, the part G⊠KH insures that K is a separator and pH(K) insures that K
is a clique. Otherwise, if pH(K) is a pendant clique, the fact that (g, h) /∈ K for
some h ∈ 〈pH(K)〉p guarantees that (G⊠H)−K is not connected.

If G and H are not complete, note that we need a pendant clique in each
factor to assure the clique separator in the strong product. Thus K is a clique
separator if and only if the following condition holds

(KG ⊠KH)− (Kp
G ⊠Kp

H) ⊆ K ⊂ KG ⊠KH ,

where KG and KH are some pendant cliques in G and H, respectively. Clearly K
is a clique and the proper subset guarantees that K also separates the product.

Next we describe all maximal atoms of the strong product G⊠H.

Theorem 4.9. The nontrivial strong product G⊠H of connected graphs G and H
has a maximal atom A if and only if either

(i) A = G⊠AH where G is complete and H has a proper maximal atom AH ,
or

(ii) A = AG⊠H where H is complete and G has a proper maximal atom AG,
or

(iii) A = KG ⊠ KH where KG and KH are pendant cliques in G and H,
respectively, or

(iv) A = (G⊠H)− (PG×PH) where PG and PH are sets of all pendant clique

vertices of G and H, respectively, or
(v) A = G⊠H.

Proof. Note that conditions (i), (ii), (iii), (iv), and (v) have pairwise empty
intersections. For instance in (i) and (ii) the proper maximal atom is needed which
differentiates (i) and (ii) from (v). First, let A be a maximal atom in G⊠H. Thus
there is no clique separator in A. By Theorem 4.8 the following disjoint possibilities
for clique separators may occur: either one factor is complete and the other contains
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a proper minimal clique separator, or G and H have both some pendant cliques, or
there is no proper clique separator in G ⊠H. The last case clearly yields (v) and
the first case yields (i) or (ii), respectively, since the separation by minimal clique
separators implies proper atoms (which are contained in proper maximal atoms).
The middle case implies that G and H are not complete. Let (g, h) ∈ A for pendant
clique vertices g of G and h ofH. If g ∈ KG and h ∈ KH for pendant cliquesKG and
KH , then KG ⊠KH ⊆ A by (iii) of Theorem 4.8 and furthermore, KG ⊠KH = A
by the same reason. Hence (iii) follows. If no such vertex exists in A, we only need
to see that A = (G ⊠ H) − (PG × PH) is an atom, since every additional vertex
would yield the previous case (iii). If A contains a clique separator K, then K is
also a clique separator of G ⊠ H, since every pendant clique vertex belongs to a
unique maximal pendant clique. But this is a contradiction with Theorem 4.8.

Suppose now that either (i), (ii), (iii), (iv), or (v) holds. If G (or H) is
complete we can use the argument in the proof of Theorem 3.5 to see that A =
Kn⊠AH (or A = AG⊠Kn) is a maximal atom for a proper maximal atom AG (or
AH) of G (or H).

If (iii) is fulfilled, note that G and H are not complete, A is a clique and
that by (iii) of Theorem 4.8 K = A − (Kp

G ⊠Kp
H) is a clique separator of G ⊠H,

where KG and KH are pendant cliques of G and H, respectively. Hence A has no
clique separator and is maximal, since otherwise K would be a clique separator in
A ∪ {(g, h)}, where (g, h) /∈ A is an arbitrary vertex adjacent to a vertex of A.

Let now A = (G⊠H)−(PG×PH) for the sets of all pendant clique vertices PG

and PH ofG andH, respectively. ClearlyA is maximal in the sense that A∪{(g, h)},
(g, h) /∈ A, contains a clique separator K = (KG ⊠KH) − (Kp

G ⊠Kp
H) by (iii) of

Theorem 4.8, where KG and KH are pendant cliques of G and H, respectively, and
g ∈ Kp

G and h ∈ Kp
H . If A is not an atom, then there exists a clique K in A, which

separate A. Again this yields a contradiction with Theorem 4.8, since K would then
be a clique separator of G⊠H by unique membership in a maximal pendant clique
of each pendant clique vertex.

Finally, let A = G ⊠ H. Note that all cases from Theorem 4.8 have been
covered by (i), (ii), (iii), and (iv) and thus it remains that G⊠H contains no clique
separator. Hence A is the maximal atom.

5. THE DIRECT PRODUCT

The minimal separation by vertices of the direct product is a tough problem
as observed by Brešar and Špacapan in [5]. This is not the case if we restrict
ourselves to the clique separators, since no direct product has a clique separator
with three or more vertices, as we will see in Theorem 5.12.

For the direct product every clique Kn of G × H clearly implies cliques of
the same order in the factors G and H, since every edge of G ×H is projected to
an edge in every factor and two vertices of the same layer are nonadjacent. On
the other hand the direct product is not always a connected graph even if both
factors are. Indeed, G×H is a connected graph if and only if at least one of G and
H is non bipartite. Moreover, if both G and H are bipartite, G × H has exactly
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two components—see [17] and also [11]—where vertices (g, h) and (g, h′) with
hh′ ∈ E(H) are in different components, as are (g, h) and (g′, h) with gg′ ∈ E(G).

Lemma 5.10. Let G and H be connected graphs, each on at least three vertices. If

(g, h) is a cut vertex of G×H, then g and h are cut vertices in G and H, respectively.

Proof. Suppose that g is not a cut vertex of G but (g, h) is a cut vertex of G×H.
Let (g0, h0) and (gk, hk) be in different components of (G×H)−{(g, h)} but there
exists a path P = (g0, h0) . . . (gk, hk) in G ×H. Moreover, every (g0, h0), (gk, hk)-
path in G ×H contains (g, h). Note that pG(P ) induces a g1, gk-walk in G. Since
g is not a cut vertex, there exists a g0, gk-path Q = g0g

′

1 . . . g
′

igk in G for which
g /∈ Q. If Q and P have the same parity, we have, for i + 1 = |Q| ≥ |P | = k, a
(g0, h0), (gk, hk)-path

(g0, h0)(g
′

1, h1) . . . (g
′

k, hk)(g
′

k+1, hk−1)(g
′

k+2, hk) . . . (g
′

i, hk−1)(gk, hk)

in G×H that does not contain (g, h) which is a contradiction. Similar for i+1 < k
the path

(g0, h0)(g
′

1, h1) . . . (g
′

i, hi)(gk, hi+1)(g
′

i, hi+2)(gk, hi+3) . . . (g
′

i, hk−1)(gk, hk)

yields a contradiction again.

Hence Q and P must have different parity. In particular Q and pG(P ) form
an odd closed walk and G is not a bipartite graph. But then in (Q∪pG(P ))×{h0h1}
there exist at least two different (g0, h0), (g0, h1)-paths P1 and P2. The first starts
in the first coordinate along Q and the second along pG(P ) and exchanging the
second coordinate. Moreover (g, h) is on at most one of them (if h = h0 or h = h1).
Suppose that (g, h) is not on P1. The walk pH(P ) is a walk in H between h0 and hk

and contains a walk between h1 and hk that is of the same parity as Q. Thus there
exists a path P ′ between (g0, h1) and (gk, hk) in G×H with (g, h) /∈ P ′. But then
P1 ∪P

′ induces a (g0, h0), (gk, hk)-walk in (G×H)−{(g, h)}, a final contradiction.

Lemma 5.11. No edge is a (clique) separator of Cn × P3 for n ≥ 3.

Proof. Let P3 = hh′h′′ and Cn = g1 . . . gn. First, note by symmetry that we only
have two types of edges (gi, h)(gi+1, h

′) or (gi, h
′)(gi+1, h). If n is odd, Cn × P2 is

a cycle on 2n vertices. Clearly (Cn × hh′)− e and (Cn × h′h′′)− e are paths on at
least 2n− 2 vertices. For n ≥ 3, n− 1 vertices are common to both (Cn × hh′)− e
and (Cn × h′h′′) − e. Hence (Cn × P3) − e is connected. If n, for n ≥ 4, is an
even number, then Cn × P3 and Cn × P2 have two components. Each component
of Cn × P2 is a cycle and in (Cn × P2)− e these cycles remain the same or convert
to paths for P2 = hh′ or P2 = h′h′′. These components have at least one vertex in
Ch′

n layer in common, since n ≥ 4 and (Cn × P3)− e has two components. �

Before we state the result on the direct product we add the notation G/e,
which is a graph obtained from graph G by contracting a fixed edge e. Also recall
that for a cut vertex g ∈ G and a component C of G − {g}, we denote Cg =
〈C ∪ {g}〉 .
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Theorem 5.12. Let G and H be connected graphs, each on at least three vertices.

The direct product G×H has a minimal clique separator K if and only if either

(i) K = {(g, h)} where g and h are cut vertices of G and H, respectively,
that are adjacent to a pendant vertex, or

(ii) K = {(g, h)} where g is a cut vertex of G not adjacent to a pendant vertex,

G−{g} has at least one bipartite component Cg, and h is a central vertex

of K1,n
∼= H, or

(iii) K = {(g, h), (g′, h′)} where g, g′ and h, h′ are adjacent cut vertices of G
and H, respectively, NG(g) − {g

′} and NH(h′) − {h} consist of pendant

vertices, and g′ and h are not adjacent to any pendant vertex, or

(iv) K = {(g, h), (g′, h′)} where g and g′ are adjacent cut vertices of G not

adjacent to any pendant vertex, G−{g} has at least one bipartite compo-

nent Cg, and hh′ ∈ V (H/hh′) is a central vertex of K1,n
∼= H/hh′ with

degH h > 1 and degH h′ > 1.

Proof. First, note that the conditions (i), (ii), (iii), and (iv) have pairwise empty
intersections, because of the requirements, whether vertices have a pendant vertex
in their neighborhood or not. Suppose that either (i), (ii), (iii), or (iv) is fulfilled. If
K = {(g, h)} for cut vertices g and h of G and H, respectively, that are adjacent to
a pendant vertex g′ and h′, respectively, then (g′, h′) is a pendant vertex of G×H
adjacent to (g, h). Clearly (G×H)−K has more components than G×H, and K
is a minimal clique separator.

Let h be a central vertex of H ∼= K1,n, g a cut vertex of G with no pendant
vertex in its neighborhood, and Cg a bipartite component of G−{g}. Denote with
h1, . . . , hn all pendant vertices of H and let C′ be a component of G−{g} different
from Cg. Furthermore, let A2i−1 = {(g′, hj) : g′ ∈ SCg

2i−1(g)} and A2i = {(g′, h) :

g′ ∈ SCg

2i (g)} for i ∈ N. Note that pX(A2i−1) and pX(A2i), for X ∈ {G,H}, induce
the partitions of V (H) and V (Cg). Thus A = 〈∪i∈NAi〉 form a component separated
by (g, h) from the graph B = (G×H)−(A∪{(g, h)}). Indeed, the projection of any
edge between a vertex from A and a vertex from B implies, that g is not a cut vertex
of G or an edge between two vertices of pX(A2i−1) or pX(A2i), for X ∈ {G,H},
which is impossible. Thus K = {(g, h)} is a (minimal) clique separator.

Let K = {(g, h), (g′, h′)} where g,g′ and h,h′ are adjacent cut vertices of G
and H respectively. If NG(g) − {g

′} = {gi : i ∈ {1, . . . , ig}} and NH(h′) − {h} =
{hi : i ∈ {1, . . . , ih}} consist of pendant vertices, then A = {(g, hi), (gj , h

′) :
j ∈ {1, . . . , ig}, i ∈ {1, . . . , ih}} forms a component not adjacent to any vertex of
(G×H)− (A∪K). Thus K is a clique separator. Moreover, {(g, h)} and {(g′, h′)}
are not clique separators since g′ and h are cut vertices not adjacent to any pendant
vertex.

Let K = {(g, h), (g′, h′)} for adjacent cut vertices g and g′ of G. Furthermore,
let Cg be a bipartite component of G − {g} and hh′ ∈ V (H/hh′) a central vertex
of K1,n

∼= H/hh′. In particular hh′ ∈ E(H) and 〈K〉 is an edge. Clearly NH(h′)−
{h} and NH(h) − {h′} contain only pendant vertices of H. We claim that for
A2i+1 = {(gj, hk) : gj ∈ SCg

2i+1(g), hk ∈ NH(h)} and A2i = {(gj, hk) : gj ∈

SCg

2i (g), hk ∈ NH(h′)} for i ∈ N0, the set A = (∪i∈N0
Ai) − {(g, h)} is separated
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from (G×H)−(A∪K) by K. First, note that all vertices of A, that have neighbors
outside of A, are (g, hk) for hk ∈ NH(h′) − {h} or (gj , hk) for gj ∈ NCg(g) and
hk ∈ NH(h). First ones are adjacent only to (g′, h′), since g and g′ are cut vertices
and NH(h′) − {h} contains only pendant vertices. Similarly the second ones are
adjacent only to (g, h), since g is a cut vertex and NH(h) − {h′} contains only
pendant vertices. Hence K is a clique separator and moreover it is a minimal since
g and g′ have no pendant vertices for neighbors.

Conversely, let K be a minimal clique separator with k = |K| ≥ 3. We
gain the contradiction in which we show that (G ×H) −K is a connected graph.
Clearly pG(K) and pH(K) are cliques KG

k and KH
k , respectively, and G and H

are non bipartite. If (g1, h1), (g2, h2), (g3, h3) ∈ K, then g1, g2, and g3 (h1, h2, and
h3) are different vertices of G (H). Let (i, j, k) be any permutation of {1, 2, 3}.
Note that (gi, hj) and (gi, hk) have a common neighbor (gj , hi) in (G × H) − K.
Similarly (gi, hj) and (gk, hj) have a common neighbor (gj , hi) in (G×H)−K and
in particular (〈pG(K)〉 × 〈pH(K)〉)−K is connected. Thus we have a contradiction
if G = KG

k and H = KH
k . So suppose that at least one, say G, is different than KG

k .
If g /∈ KG

k has a neighbor in KG
k , say g1, then (g, hi), for hi ∈ KH

k has at least one
neighbor in (〈pG(K)〉 × 〈pH(K)〉) −K. If H is also different than KH

k , then there
exists h /∈ KH

k adjacent to a vertex in KH
k , say h1. Since k ≥ 3, degG×H(g, h) > 1

(otherwise {(g1, h1)} is a clique separator contrary to the minimality ofK). If there
is another neighbor of (g, h) in 〈pG(K)〉 × 〈pH(K)〉 , we are done. Otherwise there
is a neighbor (g′, h′), either in KG

k ×H or in G ×KH
k . In both cases we have the

same situation as before. Furthermore, note that, since G and H are connected,
there exists a path from every vertex (g∗, h∗) ∈ (G×H)−K to either (g, h) or to
(g1, h) in G×H and by above also in (G×H)−K. Hence (G×H)−K is connected
which is impossible and |K| ≤ 2.

First, let |K| = 1 and let K = {(g, h)}. Clearly (g, h) is a cut vertex and by
Lemma 5.10, g and h are cut vertices of G and H, respectively. If for both g and
h there exists a pendant vertex in their neighborhood, (i) follows. So suppose that
for one of them, say g, every component Ci of G − {g} has at least two vertices.
If H or all Cg

i are not bipartite, then Cg
i × H is a connected graph and hence

(G×H)−K is connected contrary to the assumption. Thus H is bipartite as well
as at least one component, say Cg

1 . Let C
′ and C′′ be two components of Cg

1 ×H
and let NH(h) = {hi : i = 1, . . . , n}. Let, furthermore, g1 ∈ Cg

1 be a neighbor of
g. If there exists a vertex h′ ∈ SH

2 (h), we assume that h1 is a common neighbor of
h and h′. We choose C′ so that (g1, h1) ∈ C′ and then (g1, h) ∈ C′′. But then for
any vertex g′ ∈ NG−C

g

1 (g) the path (g′, h1)(g, h
′)(g1, h1) is a path from a vertex

from C′ to a vertex from (G×H)− ((Cg
1 ×H)∪ {(g, h)}). Since there also exists a

path (g1, h)(g, h1)(g
′, h) from C′′ to (G×H)− (Cg

1 ×H ∪{(g, h)}), this yields that
(G×H)−K has the same number of components as G×H, which is impossible,
since K is a clique separator. (We will call this argument distance 2 argument,
since dH(h, h′) = 2.) Thus all vertices of H are in NH [h] and since H is bipartite
we have H ∼= K1,n. Hence (ii) holds.

Finally let |K| = 2 and let K = {(g, h), (g′, h′)}. By Lemma 5.11, each of
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g, g′, h, and h′ must be either a cut vertex or a pendant vertex. Moreover, neither
g and g′ nor h and h′ are pendant vertices since G and H contains at least three
vertices. If NG(g)− {g′} is non-empty and contains only pendant vertices, then g
is a cut vertex in G and h is not adjacent to any pendant vertex, otherwise we have
(i) and a contradiction with minimality of K. If NH(h′)−{h} contains no pendant
vertex, then it contains a triangle or there exists a vertex h1 with dH(h′, h1) = 2.
The first case is not possible by Lemma 5.11 and the second is not possible by
the distance 2 argument. Thus NH(h′) − {h} consist only of pendant vertices, h′

is a cut vertex and g′ has no pendant neighbor by the same reason as above. In
particular h and g′ are not pendant vertices and are thus cut vertices. But then
(iii) holds.

Otherwise, let g be adjacent to a non pendant vertex different than g′ and
is thus a cut vertex by Lemma 5.11. Since H is connected and has at least three
vertices, there exists a vertex h∗ adjacent to either h or h′. Say first hh∗ ∈ E(H) and
thus degH h > 1. If h∗ is not a pendant vertex, we have a contradiction with distance
2 argument (if there exists a neighbor h2 of h

∗ with dH(h, h2) = 2) or a contradiction
that K is a (clique) separator by Lemma 5.11 (if h∗ and h are in common triangle).
Hence NH(h) − {h′} contains only pendant vertices. Furthermore, g can not be
adjacent to any pendant vertex, since we would have (i) and a contradiction with
minimality of K again. In particular g′ is a cut vertex.

Let Ci, for i = 1, . . . , k be components of G−{g}. If every Cg
i is not bipartite,

then Cg
i ×H is a connected graph and hence (G×H)−K is connected contrary to

the assumption. Thus at least one component, say Cg
1 , is bipartite. If degH h′ = 1

we have (ii) and a contradiction with minimality of K again. So degH h′ > 1. If
there is a non pendant vertex in NH(h′)−{h} we have a contradiction by distance
2 argument again. Hence also g′ is not adjacent to any pendant vertex, otherwise
we have (i) and a contradiction with minimality of K. Thus (iv) follows and the
proof is completed. �

From the proof of the above theorem it is easy to describe all clique separators.
Namely K is a clique separator of G×H if and only if either K is minimal clique
separator or K is an edge containing a cut vertex (which is a minimal clique separa-
tor). This is obvious since there are no clique separators on 3 or more vertices. On
the other hand the minimal clique separator K = {(g, h)} can separate differently
as K ′ = {(g, h), (g′, h′)}. For this, we observe P4 × P4 where g, g′, h, and h′ are
vertices of degree 2. Graph (P4 × P4) −K has 3 components, but (P4 × P4) −K ′

has 5 components. Note that this happens only when (iii) or (iv) are not fulfilled,
since g′ and h are adjacent to some pendant vertices. This must be considered to
describe maximal atoms.

There are too many possibilities to describe maximal atoms of the direct
product in the similar form as in Theorem 4.9 for the strong product and we proceed
step by step. First we consider all direct products without clique separators, i.e.
G × H is a maximal atom. This is easy by considering the opposite of Theorem
5.12. Note that the statement (i) of the following theorem covers (i) and (iii) of
Theorem 5.12.
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Theorem 5.13. Let G and H be connected graphs, each on at least three vertices,

where at most one of them is bipartite. Graph G × H is a maximal atom if and

only if either

(i) G and H have no pendant vertices, or

(ii) H ∼= K1,n and G has no pendant vertices and for every cut vertex g ∈
V (G) every component Cg of G− {g} is not bipartite, or

(iii) hh′ ∈ V (H/hh′) is a central vertex of K1,n
∼= H/hh′ with degH h > 1 and

degH h′ > 1, G has no pendant vertices and for every cut vertex g ∈ V (G)
every component Cg of G− {g} is not bipartite.

Proposition 5.14. An edge e is a maximal atom of G ×H if and only if it is a

pendant edge.

Proof. Clearly a pendant edge is a maximal atom. Contrary, if e = (g, h)(g′, h′) is
a non pendant edge of G×H, then g has a neighbor g′′ in G other than g′ as well
as h′ has a neighbor h′′ in H other than h. The 4-cycle (g, h)(g′, h′)(g, h′′)(g′′, h′)
does not contain any clique separator and e is not a maximal atom. �

An obstacle in describing maximal atom is that the direct product is not
connected when both factors are bipartite. But atoms are connected subgraphs.
Hence we cannot have a result of the type (maximal) atom is a subproduct of two
(maximal) atoms. We only give some directions in the end of this section, that
lead to other maximal atoms. Following (iii) of Theorem 5.12 let g and h′ be
cut vertices, where all but possible one, say g′ and h, respectively, neighbors are
pendant vertices. The set

((NG(g)− {g′})× {h′}) ∪ ({g} × (NH(h′)− {h})) ∪ {(g, h), (g′, h′)}

forms a maximal atom. Moreover, in that case

(G×H)− {(g, h), (g′, h), (g, h′) : (g, h) ∈ P}

is also a maximal atom for the set P of all pendant vertices of G × H, whenever
at least one of G or H is non bipartite and the other is not K1,n or K1,n can be
obtained by contracting an edge. Note that (g, h) must be excluded by (i) and
the edge (g′, h)(g, h′) by (iii) of Theorem 5.12. The remaining part is not hard
but tedious and have many cases since we have to observe only components of the
product and take into consideration whether one factor is isomorphic to K1,n or
K1,n can be obtained by contracting an edge and is omitted.

6. ALGORITHM FOR DECOMPOSITION BY MINIMAL CLIQUE

SEPARATORS OF LEXICOGRAPHIC PRODUCT AND STRONG

PRODUCT

The decomposition algorithm, that we call BPS algorithm for short, presented
in [4] will decompose the graph into maximal atoms and minimal clique separators.
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The algorithm can be described as follows. Decompose a graph with minimal clique
separators. The algorithm repeats the decomposition step given below on each of
the components until we have no separators.

Algorithm 5.15. Decomposition algorithm

1. Choose one minimal clique separator in G if such a separator exists.

2. Decompose G into set of subgraphs {
〈

Ci ∪NG(Ci)
〉

: Ci ∈ C(S)}.

Here C(S) denotes the set of components of G(V − S). The algorithm has
complexity O(mn) and it finds all minimal clique separators of G. We use this
algorithm to find minimal clique separators of G◦H which is done by the following
Algorithm.

Algorithm 5.16. Decomposition by minimal clique separators of lexico-

graphic product

Input: Graphs G, H, and G ◦H.

Step 1. Check whether H is complete or not. If not then G ◦H has no clique

separator by Proposition 3.3.

else

Step 2. Decompose G into maximal atoms by BPS algorithm

Step 3. For each minimal separator K found in Step 2, find K ◦ H by re-

stricting the vertices of H.

Stop.

Correctness of the algorithm follows from Proposition 3.4. If G has n1 vertices
and m1 edges and H has n2 vertices and m2 = n2(n2 − 1)/2 edges, the complexity
of finding the minimal clique separators directly by BPS decomposition algorithm
is O(n1n2(n1m2 +m1n

2
2)). On the other hand, we need to use the BPS algorithm

only for G which gives the complexity O(n1m1) and is much better.

Now, we describe the decomposition algorithm of strong product.

Algorithm 5.17. Decomposition by minimal clique separators in strong

product

Input: Graphs G, H, and G⊠H.

Step 1. If G or H is a complete graph, decompose the other by BPS algorithm

and find maximal atoms and minimal clique separators by restricting the product.

else

Step 2. Find all maximal atoms in G and H using BPS decomposition and

let S and T be the corresponding set of atoms in G and H, respectively.

Step 3. Remove all maximal atoms which are not cliques from S and T and

let S′ and T ′ be the set of maximal atoms in G and H, respectively, obtained like

this.

Step 4. For any two atoms QG in S′ and QH in T ′, find (QG⊠QH)− (Qp
G⊠

Qp
H).
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Stop.

Correctness of the algorithm follows from Theorem 4.8. If G has n1 vertices
and m1 edges and H has n2 vertices and m2 edges, the complexity of finding
the clique minimal separators directly by BPS decomposition algorithm is now
O(n1n2(n1m2+n2m1+m1m2)). To check whether a maximal atom is a clique, has
complexity O(n2

1) + O(n2
2), and to find all pendant clique vertices has complexity

O(n2
1) + O(n2

2). So the total complexity is O(n1m1 + n2m2 + n2
1 + n2

2), which is
much better again.
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