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LYAPUNOV-TYPE INEQUALITIES FOR PLANAR

LINEAR DYNAMIC HAMILTONIAN SYSTEMS

Martin Bohner, Ağacık Zafer

We give new Lyapunov-type inequalities for linear Hamiltonian systems on

arbitrary time scales, which improve recently published results and hence

all the related ones in the literature. As an application, we obtain new

diconjugacy criteria for linear Hamiltonian systems.

1. INTRODUCTION

In this paper, we establish Lyapunov-type inequalities for the planar Hamil-
tonian system

(1.1) x∆ = α(t)xσ + β(t)u, u∆ = −γ(t)xσ − α(t)u,

where α, β, γ are real-valued rd-continuous functions defined on a given arbitrary
time scale T.

Lyapunov-type inequalities have proved to be very useful in studying the
qualitative behavior of solutions such as oscillation, disconjugacy, and eigenvalue
problems for differential and difference equations. Although Lyapunov-type in-
equalities are well developed for the continuous case after the appearance of Lya-
punov’s well-known inequality, discrete Lyapunov-type inequalities and their time
scale versions are in early stages and therefore need to be improved.

Recently, He et al. [8] have obtained several Lyapunov-type inequalities for
the Hamiltonian system (1.1), which improved the earlier results given by Jiang

and Zhou [9], and hence the related ones in [1, 2, 5–7]. The following theorem
seems to be the best result for (1.1) thus far.
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Theorem 1.1 (See [8, Theorem 3.1]). Suppose that

(1.2) 1− µ(t)α(t) > 0 for all t ∈ T

and

(1.3) β(t) ≥ 0 for all t ∈ T.

Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.1) has a real solution (x, y) such that x is

nontrivial and has generalized zeros at a and b, i.e., either x(a) = 0 or x(a)xσ(a) <
0; either x(b) = 0 or x(b)xσ(b) < 0. Then one has the inequality

(1.4)

∫ b

a

|α(t)|∆t+

[∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t

]1/2
≥ 2,

where we put as usual λ+ = max{λ, 0} for any λ ∈ R.

In all Lyapunov-type inequalities given for (1.1) in the literature, the condi-
tion (1.2) is a must. We show in this paper that this condition can be completely
dropped. To do this, we will introduce a new definition for a generalized zero,
motivated by the one given in [11] for the discrete case.

Note that inequality (1.4) is trivial if
∫ b

a

|α(t)|∆t ≥ 2.

Let ∫ b

a

|α(t)|∆t < 2,

then inequality (1.4) is equivalent to

(1.5)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥

[
2−

∫ b

a

|α(t)|∆t

]2
.

As an improvement as well as an alternative to inequality (1.5), we will also show
that if

(1.6) 1− µ(t)α(t) 6= 0 for all t ∈ T,

then a Lyapunov-type inequality of the form

(1.7)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥ 4 exp

(
−

∫ b

a

|ψµ(t)(−α(t))|∆t

)

holds, where

ψh(z) =

{
log |1 + hz|

h
, h 6= 0, 1 + hz 6= 0

z, h = 0.

In fact, inequality (1.5) follows from (1.7) under an additional condition im-
plying (1.2), see Remark 3.17 below.
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Definition 1.2. A real nontrivial solution (x, u) of (1.1) is said to have a relative

generalized zero (with respect to x) at t0 ∈ T if either x(t0) = 0 or x∗(t0) < 0,
where

(1.8) x∗(t) := [1− µ(t)α(t)]x(t)x(σ(t)).

Definition 1.3. The Hamiltonian system (1.1) is said to be relatively disconjugate

(with respect to x) on [a, b]T if there is no real solution (x, u) with x having more

than one generalized zero in [a, b]T.

The paper is organized as follows. In the next section, we give some properties
of the time scale exponential function and introduce some estimates for a time scale
exponential bound function (see Definition 2.8). Lyapunov-type inequalities will be
given in Section 3. The last section is devoted to a simple application, namely new
disconjugacy criteria are given for linear Hamiltonian systems.

2. TIME SCALES EXPONENTIAL FUNCTION

In this section, we let p : T → R be rd-continuous and regressive, i.e.,

1 + µ(t)p(t) 6= 0 for all t ∈ T,

and we let s, t, r ∈ T.

Definition 2.4. The time scales exponential function is defined by

ep(t, s) := exp

(∫ t

s

ξµ(t)(p(τ))∆t

)
,

where

ξh(z) :=

{
Log(1 + hz)

h
, h 6= 0, 1 + hz 6= 0

z, h = 0

is called the cylinder transformation.

Some of the properties enjoyed by the time scales exponential function are
given next.

Theorem 2.5 (See [4, Theorem 2.36]). We have

e⊖p(t, s) = ep(s, t) =
1

ep(t, s)
, where ⊖ p :=

1

1 + µp
,(2.9)

ep(t, s)ep(s, r) = ep(t, r), ep(t, t) = 1,(2.10)

eσp (·, s) = (1 + µp)ep(·, s), eσp (s, ·) =
ep(s, ·)

1 + µp
,(2.11)

and

e∆p (·, s) = pep(·, s), e∆p (s, ·) = −peσp(s, ·).(2.12)
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The following variation of parameter formula holds.

Theorem 2.6 (See [4, Theorem 2.74]). Suppose f : T → R is rd-continuous. Then

x solves

x∆ = −p(t)xσ + f(t)

if and only if

x(t) = ep(s, t)x(s) +

∫ t

s

ep(τ, t)f(τ)∆τ.

Theorem 2.7 (See [3, Proof of Theorem 3.4]). We have

|ep(t, s)| = exp

(∫ t

s

ψµ(t)(p(τ))∆t

)
,

where

ψh(z) :=

{
log |1 + hz|

h
, h 6= 0, 1 + hz 6= 0

z, h = 0.

We now introduce a function that will serve as a bound for the absolute value
of the exponential function on time scales.

Definition 2.8. The time scales exponential bound function is defined by

Ep(t, s) := exp

(∫ t

s

∣∣ψµ(t)(p(τ))
∣∣∆t

)
.

For later use in this paper and also for future reference, some of the properties
satisfied by the time scales exponential bound function are gathered next.

Theorem 2.9. We have

1 ≤ Ep(t, s) ≤ Ep(t̃, s̃) if s̃ ≤ s ≤ t ≤ t̃,(2.13)

Ep(s, t) ≤ |ep(t, s)| ≤ Ep(t, s) for t ≥ s,(2.14)

Ep(t, s) ≤ |ep(t, s)| ≤ Ep(s, t) for t ≤ s,(2.15)

Ep (min{s, t},max{s, t}) ≤ |ep(t, s)| ≤ Ep (max{s, t},min{s, t}) ,(2.16)

E⊖p(t, s) = Ep(t, s) =
1

Ep(s, t)
,(2.17)

Ep(t, s)Ep(s, r) = Ep(t, r), Ep(t, t) = 1,(2.18)

and

Eσ
p (·, s) = max

{
|1 + µp|,

1

|1 + µp|

}
Ep(·, s).(2.19)
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Proof. Clearly, (2.13) and (2.18) follow from the definition of E. The second
equality of (2.17) follows from (2.18). Now note that

ψµ(t)((⊖p)(t)) =

{
log |1 + µ(t)(⊖p)(t)|

µ(t)
, µ(t) 6= 0

(⊖p)(t), µ(t) = 0

=






log

∣∣∣∣
1

1 + µ(t)p(t)

∣∣∣∣
µ(t)

, µ(t) 6= 0

−p(t), µ(t) = 0

= −ψµ(t)(p(t))

implies ∣∣ψµ(t)((⊖p)(t))
∣∣ =

∣∣ψµ(t)(p(t))
∣∣ .

This shows the first equality of (2.17). Now let t ≥ s. Then we have

|ep(t, s)| = exp

(∫ t

s

ψµ(τ)(p(τ))∆τ

)
≤ exp

(∫ t

s

∣∣ψµ(τ)(p(τ))
∣∣∆τ

)
= Ep(t, s).

This shows the second inequality of (2.14). Moreover, by using (2.9), (2.17), and
the second inequality of (2.14), we obtain

|ep(t, s)| =
1

|e⊖p(t, s)|
≥

1

E⊖p(t, s)
=

1

Ep(t, s)
= Ep(s, t).

This shows the first inequality of (2.14). Next let t ≤ s. Then we can use (2.9), the
second inequality of (2.14), and (2.17) to obtain

|ep(t, s)| =
1

|ep(s, t)|
≥

1

Ep(s, t)
= Ep(t, s),

which shows the second inequality of (2.15). Moreover, by using (2.9), the second
inequality of (2.15), and (2.17), we obtain

|ep(t, s)| =
1

|e⊖p(t, s)|
≥

1

E⊖p(s, t)
=

1

Ep(s, t)
= Ep(t, s).

This shows the first inequality of (2.15). Finally, (2.16) follows by combining (2.14)
and (2.15).

3. LYAPUNOV-TYPE INEQUALITIES

Theorem 3.10. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and

(3.20) β(t) ≥ 0, β(t) 6≡ 0, t ∈ [a, b]T.
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If (1.1) has a real solution (x, u) such that x(a) = 0 and x(b) = 0, and if x(t) 6= 0
for all t ∈ [a, b]T, then

(3.21)

∫ b

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥ 4 exp

(
−

∫ b

a

|ψµ(t)(−α(t))|∆t

)
.

Proof. By the variation of parameters formula (Theorem 2.6), we write

(3.22) x(t) = e−α(s, t)x(s) +

∫ t

s

e−α(τ, t)β(τ)u(τ)∆τ.

Put s = a and use x(a) = 0 in (3.22). Then

(3.23) |x(t)| ≤

∫ t

a

|e−α(τ, t)|β(τ)|u(τ)|∆τ.

For a ≤ τ < t ≤ b, we use (2.15) and (2.13) to obtain

|e−α(τ, t)| ≤ E−α(t, τ) ≤ E−α(t, a),

which together with (3.23) shows

(3.24) |x(t)| ≤ E−α(t, a)

∫ t

a

β(τ)|u(τ)|∆τ.

Next, putting s = b and using x(b) = 0 in (3.22) leads to

(3.25) |x(t)| ≤

∫ b

t

|e−α(τ, t)|β(τ)|u(τ)|∆τ.

For a ≤ t ≤ τ < b, we use (2.14) and (2.13) to obtain

|e−α(τ, t)| ≤ E−α(τ, t) ≤ E−α(b, t),

which together with (3.25) shows

(3.26) |x(t)| ≤ E−α(b, t)

∫ b

t

β(τ)|u(τ)|∆τ.

Now let

Q1 =
|x(t)|

E−α(t, a)
, Q2 =

|x(t)|

E−α(b, t)
.
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Then (2.18), the arithmetic-geometric inequality, (3.24), (3.26), and (2.13) yield

|x(t)|√
E−α(b, a)

=
|x(t)|√

E−α(b, t)E−α(t, a)

=
√
Q1Q2 ≤

Q1 +Q2

2
=

|x(t)|

2E−α(t, a)
+

|x(t)|

2E−α(b, t)

≤

E−α(t, a)
t∫
a

β(τ)|u(τ)|∆τ

2E−α(t, a)
+

E−α(b, t)
b∫
t

β(τ)|u(τ)|∆τ

2E−α(b, t)

=
1

2

∫ b

a

β(s)|u(s)|∆s

and thus, by the Cauchy–Schwarz inequality (see [4, Theorem 6.15]),

(3.27)
4x2(t)

E−α(b, a)
≤

[∫ b

a

β(s)|u(s)|∆s

]2
≤

∫ b

a

β(s)∆s

∫ b

a

β(s)u2(s)∆s.

Next, we use the time scales product rule (see [4, Theorem 1.20]) and (1.1) to
calculate

(xu)∆ = x∆u+ xσu∆ = (αxσ + βu)u− (γxσ + αu)xσ = βu2 − γ(xσ)2.(3.28)

Hence

0 =

∫ b

a

{
β(τ)u2(τ) − γ(τ)(xσ(τ))2

}
∆τ

and thus

(3.29)

∫ b

a

β(τ)u2(τ)∆τ =

∫ b

a

γ(τ)(xσ(τ))2∆τ ≤

∫ b

a

γ+(τ)(xσ(τ))2∆τ.

Using (3.29) in (3.27), we find

(3.30)
4x2(t)

E−α(b, a)
≤

∫ b

a

β(s)∆s

∫ b

a

γ+(s)x2(σ(s))∆s.

Pick now t∗ ∈ [a, σ(b)] such that

|x(t∗)| = max
a≤t≤σ(b)

|x(t)| > 0.

As in [8], by treating b left-scattered and left-dense seperately, (3.30) yields

4x2(t∗)

E−α(b, a)
≤ x2(t∗)

∫ b

a

b(s)∆s

∫ b

a

γ+(s)∆s,

which clearly results in (3.21).
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Theorem 3.11. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If (1.1)

has a real solution (x, u) such that x(a) = 0 and x∗(b) < 0, then

(3.31)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥ 4 exp

(
−

∫ b

a

∣∣ψµ(t)(−α(t))
∣∣∆t

)
.

Proof. We proceed as in the proof of Theorem 3.10 and arrive at (3.24). Replacing
s by b in (3.22), we obtain

(3.32) x(t) = e−α(b, t)x(b)−

∫ b

t

e−α(τ, t)β(τ)u(τ)∆τ.

Multiply the first equation in (1.1) by µ(t) and use xσ = x+µx∆ (see [4, Theorem
1.16]) to obtain

(3.33) (1− µ(t)α(t))xσ(t) = x(t) + β(t)µ(t)u(t).

Let

kb := −
x∗(b)

x2(b)
> 0.

Then (3.33) yields

(3.34) x(b) = −
1

kb + 1
β(b)µ(b)u(b),

and hence (3.32) leads to

x(t) = −
1

kb + 1
β(b)µ(b)u(b)e−α(b, t)−

∫ b

t

e−α(τ, t)β(τ)u(τ)∆τ

and thus, by (2.14) and (2.13),

|x(t)| ≤ E−α(b, t)

[
1

kb + 1
β(b)µ(b)|u(b)|+

∫ b

t

β(τ)|u(τ)|∆τ

]
(3.35)

= E−α(b, t)

∫ σ(b)

t

βb(τ)|u(τ)|∆τ

(use [4, Theorem 1.75]), where

βb(t) =





β(t), t 6= b

1

kb + 1
β(b), t = b.

Note that since 1/(kb + 1) < 1, we have

(3.36) βb(t) ≤ β(t) for all t ∈ T.
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As in the proof of Theorem 3.10, applying the arithmetic-geometric inequality with

Q1 =
|x(t)|

E−α(t, a)
, Q2 =

|x(t)|

E−α(b, t)

and using (2.18), (3.24), (3.35), (2.13), and the Cauchy–Schwarz inequality, we get

4x2(t)

E−α(b, a)
≤

[∫ σ(b)

a

βb(τ)|u(τ)|∆τ

]2
≤

∫ σ(b)

a

βb(τ)∆τ

∫ σ(b)

a

βb(τ)u
2(τ)∆τ(3.37)

≤

∫ σ(b)

a

β(τ)∆τ

∫ σ(b)

a

βb(τ)u
2(τ)∆τ,

where we also have used (3.36). On the other hand, integrating (3.28) from a to b
and using (3.34) yields

∫ b

a

β(τ)u2(τ)∆τ +
1

kb + 1
β(b)µ(b)u2(b) =

∫ b

a

γ(τ)(xσ(τ))2∆τ,

and hence

(3.38)

∫ σ(b)

a

βb(τ)u
2(τ)∆τ =

∫ b

a

γ(τ)(xσ(τ))2∆τ ≤

∫ b

a

γ+(τ)(xσ(τ))2∆τ.

Combining (3.37) and (3.38), we arrive at (3.31).

Theorem 3.12. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If (1.1)

has a real solution (x, u) such that x∗(a) < 0 and x(b) = 0, then (3.21) is satisfied.

Proof. As in the proof of Theorem 3.10, we see that (3.26) is satisfied. Replacing
s by a in (3.22), we obtain

(3.39) x(t) = e−α(a, t)x(a) +

∫ t

a

e−α(τ, t)β(τ)u(τ)∆τ.

Let

ka := −
x∗(a)

x2(a)
> 0.

From (3.33), we have

(3.40) x(a) = −
1

ka + 1
β(a)µ(a)u(a).

Using (3.40) in (3.39) gives

x(t) = −
1

ka + 1
β(a)µ(a)u(a)e−α(a, t) +

∫ t

a

e−α(τ, t)β(τ)u(τ)∆τ(3.41)

=

(
1−

1

ka + 1

)
β(a)µ(a)u(a)e−α(a, t) +

∫ t

σ(a)

e−α(τ, t)β(τ)u(τ)∆τ

=

∫ t

a

e−α(τ, t)βa(τ)u(τ)∆τ,
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where

βa(t) =





β(t), t 6= a

ka
ka + 1

β(a), t = a.

Note that ka/(ka + 1) < 1 implies

(3.42) βa(t) ≤ β(t) for all t ∈ T.

From (3.41), using (2.15) and (2.13), we get

(3.43) |x(t)| ≤ E−α(t, a)

∫ t

a

βa(τ)|u(τ)|∆τ.

As before by employing the arithmetic-geometric inequality with

Q1 =
|x(t)|

E−α(t, a)
, Q2 =

|x(t)|

E−α(b, t)

and then using the Cauchy–Schwarz inequality, we get

4x2(t)

E−α(b, a)
≤

[∫ b

a

βb(τ)|u(τ)|∆τ

]2
≤

∫ b

a

βa(τ)∆τ

∫ b

a

βa(τ)u
2(τ)∆τ(3.44)

≤

∫ b

a

β(τ)∆τ

∫ b

a

βa(τ)u
2(τ)∆τ,

where the last inequality follows from (3.42). Now from (3.28), we see that

∫ b

a

γ(τ)(xσ(τ))2∆τ =

∫ b

a

β(τ)u2(τ)∆τ −
1

ka + 1
β(a)µ(a)u2(a)

=

∫ b

σ(a)

β(τ)u2(τ)∆τ +

(
1−

1

ka + 1

)
β(a)µ(a)u2(a) =

∫ b

a

βa(τ)u
2(τ)∆τ,

and hence

(3.45)

∫ b

a

βa(τ)u
2(τ)∆τ ≤

∫ b

a

γ+(τ)(xσ(τ))2∆τ.

Combining (3.44) and (3.45), we see that (3.21) holds.

Theorem 3.13. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If (1.1)

has a real solution (x, u) such that x∗(a) < 0 and x∗(b) < 0, then (3.31) is satisfied.

Proof. The proof can be easily accomplished by combining the arguments in the
last two theorems.

From Theorems 3.10–3.13, we easily deduce the following theorem.
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Theorem 3.14. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If (1.1)

has a real solution (x, u) with generalized zeros at a and b, and if x(t) 6= 0 for all

t ∈ [a, b]T, then (3.31) is satisfied.

By using similar arguments, we will next show that inequality (1.4) is valid
without the condition (1.2). The result follows from the following counterpart
of Theorem 3.14. Since the condition (1.6) is dropped, we deduce that (1.2) in
Theorem 1.1 is superfluous. The proof is relatively less complicated because no
exponential bound function is involved. The main difference is the use of

(3.46) x(t) = x(s) +

∫ t

s

α(τ)x(σ(τ))∆τ +

∫ t

s

β(τ)u(τ)∆τ

instead of the variation of parameters formula (3.22). The equality (3.46) simply
follows from integrating the first equation in (1.1).

Theorem 3.15. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.3). If (1.1) has a real

solution (x, u) with generalized zeros at a and b, and if x(t) 6= 0 for all t ∈ [a, b]T,
then

(3.47)

∫ b

a

α(t)∆t +

[∫ σ(b)

a

β(t)∆t

]1/2 [∫ b

a

γ+(t)∆t

]1/2
≥ 2.

Pproof. We will only give the proof when x(a) = 0 and x∗(b) < 0, i.e., the case
contained in Theorem 3.11. From (3.46), we write that

(3.48) x(t) =

∫ t

a

α(τ)x(σ(τ))∆τ +

∫ t

a

β(τ)u(τ)∆τ

and

(3.49) x(t) = x(b)−

∫ b

t

α(τ)x(σ(τ))∆τ −

∫ b

t

β(τ)u(τ)∆τ.

From (3.48), we have

(3.50) |x(t)| ≤

∫ t

a

|α(τ)||x(σ(τ))|∆τ +

∫ t

a

β(τ)|u(τ)|∆τ.

As in the proof of Theorem 3.11, with kb defined as there, we obtain (3.34). Using
(3.34) in (3.49) leads to

x(t) = −
1

kb + 1
β(b)µ(b)u(b)−

∫ b

t

α(τ)x(σ(τ))∆τ −

∫ b

t

β(τ)u(τ)∆τ

and hence

|x(t)| ≤
1

kb + 1
β(b)µ(b)|u(b)|+

∫ b

t

|α(τ)||x(σ(τ))|∆τ +

∫ b

t

β(τ)|u(τ)|∆τ(3.51)

≤

∫ b

t

|α(τ)||x(σ(τ))|∆τ +

∫ σ(b)

t

βb(τ)|u(τ)|∆τ,
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where βb is defined as in the proof of Theorem 3.11. Note that 1/(kb + 1) < 1
implies that (3.36) holds. By using the inequalities (3.50) and (3.51), (3.36), and
the Cauchy–Schwarz inequality, we have

2|x(t)| ≤

∫ b

a

|α(τ)||x(σ(τ))|∆τ +

∫ σ(b)

a

βb(τ)|u(τ)|∆τ(3.52)

≤

∫ b

a

|α(τ)||x(σ(τ))|∆τ +

[∫ σ(b)

a

β(τ)∆τ

] 1

2
[∫ σ(b)

a

βb(τ)u
2(τ)∆τ

] 1

2

.

On the other hand, (3.38) remains valid. In view of (3.52) and (3.38), we arrive at
(3.47).

Remark 3.16. If the condition (3.20) is replaced by

β(t) ≥ 0 for all t ∈ [a, b]T

with
β(t) 6≡ 0 on any subinterval J ⊂ [a, b]T,

then inequalities (3.31) and (3.47) become strict. In case T = R, we thus recover [10,
Theorem 2.4] from Theorem 3.14 and Theorem 3.15.

Remark 3.17. Assume (1.2). If µ(t) = 0, then

ψµ(t)(−α(t)) = −α(t)

and if µ(t) > 0, then

ψµ(t)(−α(t)) =
log |1− µ(t)α(t)|

µ(t)
=

log(1− µ(t)α(t))

µ(t)

= −α(t) +
log(1− µ(t)α(t)) + µ(t)α(t)

µ(t)
≤ −α(t)

as
log(1 + x) ≤ x for all x ≥ −1.

Hence we conclude

(3.53) ψµ(t)(−α(t)) ≤ −α(t) for all t ∈ T.

In case of α(t) ≤ 0 for all t ∈ T, (1.2) is satisfied and (3.53) implies
∣∣ψµ(t)(−α(t))

∣∣ ≤ |α(t)|,

and so (3.31) implies

(3.54)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥ 4 exp

(
−

∫ b

a

|α(t)|∆t

)
.

In view of (2− η)2 < 4e−η for η ∈ (0, 2), by taking

η =

∫ b

a

|α(t)|∆t,

we see that the Lyapunov-type inequality (3.47) follows from (3.54). So we may say in
this case that the inequality (3.31) is better than (3.47). In the special case T = R, the
inequality (3.31) implies (3.47) in view of ψµ(t)(−α(t)) = −α(t).
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4. DISCONJUGACY CRITERIA

In this section, we give a simple application. Consider the Hamiltonian system
(1.1) on [a, b]T.

Theorem 4.18. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If

(4.55)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t < 4 exp

(
−

∫ b

a

∣∣ψµ(t)(−α(t))
∣∣∆t

)
,

then the system (1.1) is relatively disconjugate on [a, b]T.

Proof. Suppose that system (1.1) is not relatively disconjugate on [a, b]T. Then
there exists a real solution (x, u) with x nontrivial and such that x(a) = 0 and that
x has a next generalized zero at c ∈ (a, b]T. We have either x(c) = 0 or x∗(c) < 0.
Applying Theorem 3.10 and Theorem 3.11, we see that

∫ σ(c)

a

β(t)∆t

∫ c

a

γ+(t)∆t ≥ 4 exp

(
−

∫ c

a

∣∣ψµ(t)(−α(t))
∣∣∆t

)
,

and hence

(4.56)

∫ σ(b)

a

β(t)∆t

∫ b

a

γ+(t)∆t ≥ 4 exp

(
−

∫ b

a

∣∣ψµ(t)(−α(t))
∣∣∆t

)
.

The inequalities (4.55) and (4.56) contradict each other.

In a similar manner, we can prove the following theorem.

Theorem 4.19. Let a, b ∈ T
κ with σ(a) ≤ b. Assume (1.6) and (3.20). If

(4.57)

∫ b

a

α(t)∆t +

[∫ σ(b)

a

β(t)∆t

]1/2 [∫ b

a

γ+(t)∆t

]1/2
< 2,

then the system (1.1) is relatively disconjugate on [a, b]T.

Remark 4.20. Note that the second-order equation

(4.58) (p(t)x∆)∆ + q(t)xσ = 0

can be expressed as an equivalent Hamiltonian system of type (1.1) with

α(t) ≡ 0, β(t) =
1

p(t)
, γ(t) = q(t).

Therefore, one can easily rewrite the corresponding theorems for (4.58).
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Remark 4.21. In the special case T = Z, our results coincide with the corresponding
ones in [11], where additionally the stability criteria are also given in connection with
Lyapunov-type inequalities when the system is periodic. The stability problem for (1.1)
on an arbitrary time scale has been studied in [12].
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6. G. Sh. Guseinov, B. Kaymakçalan: On a disconjugacy criterion for second order

dynamic equations on time scales. J. Comput. Appl. Math., 141 (1–2) (2002), 187–
196. Special Issue on “Dynamic Equations on Time Scales”, edited by R. P. Agarwal,
M. Bohner, and D. O’Regan.
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