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Abstract: In this paper, we propose a hybrid ACO algorithm for solving vehicle routing problem (VRP) 
heuristically in combination with an exact  In the basic VRP, geographically scattered customers of known 
demand are supplied from a single depot by a fleet of identically capacitated vehicles. The intuition of the proposed 
algorithm is that nodes which are near to each other will probably belong to the same branch of the minimum 
spanning tree of the problem graph and thus will probably belong to the same route in VRP. Given a clustering of 
client nodes, the solution is to find a route in these clusters by using ACO with a modified version of transition 
rule of the ants. At the end of each iteration, ACO tries to improve the quality of solutions by using a local search 
algorithm, and update the associated weights of the graph arcs.  
Keywords: Hybrid algorithm; Vehicle Routing problem; Ant Colony Optimization. 

 
1. Introduction 

The vehicle routing problem is one of the main 
combinatorial optimization problems that many 
heuristics are compositing to solve it. The basic vehicle 
routing problem (VRP) consist of a number of customers., 
each requiring a specified weight of goods to be 
delivered. Vehicles dispatched from a single depot must 
deliver the goods required, and then return to the depot. 
Each vehicle can carry a limited weight and may also be 
restricted in the total distance it can travel. Only one 
vehicle is allowed to visit each customer. The problem is 
to find a set of delivery routes satisfying these 
requirements and giving minimal total cost. In practice, 
this is often taken to be equivalent to minimizing the total 
distance traveled, or to minimizing the number of 
vehicles used and then minimizing total distance for this 
number of vehicles. 
The VRP is categorized by Capacitated VRP (CVRP), 
Multi-depot VRP (MDVRP), VRP with Time Windows 
(VRPTW), Stochastic VRP (SVRP), Site-dependent VRP 
(SDVRP), Open VRP (OVRP) and so on with different 
constraints [1,2].  
In the CVRP one has to deliver goods to a set of 
customers with known demands on minimum-cost 
vehicle routes originating and terminating at a depot. The 
vehicles are assumed to be homogeneous and having a 
certain capacity. In some versions of the CVRP one also 
has to obey a route duration constraint that limits the 
lengths of the feasible routes. The VRPTW extends the 
CVRP by associating time windows with the customers. 
The time window defines an interval during which the 
customer must be visited. The OVRP is closely related to 
the CVRP, but contrary to the CVRP a route ends as soon 
as the last customer has been served as the vehicles do 
not need to return to the depot. The MDVRP extends the 
CVRP by allowing multiple depots. The SDVRP is 

another generalization of the CVRP in which one can 
specify that certain customers only can be served by a 
subset of the vehicles. Furthermore, vehicles do not need 
to have the same capacity in the SDVRP. In the CVRP, 
MDVRP and SDVRP one seeks to minimize the total 
traveled distance, whereas in the OVRP and VRPTW, the 
first priority is to minimize the number of vehicles and 
minimizing the traveled distance is the second priority. 
The choice of objective is not an intrinsic feature of the 
problems, but just the tradition in the metaheuristic 
literature. Most exact methods and some metaheuristics 
for the VRPTW minimize total traveled distance instead 
of minimizing number of vehicles used. 
Due to the nature of the problem it is not viable to use 
exact approaches for large instances of the VRP (for 
instances with few nodes the branch and bound 
technique [3] is well suited and gives the best possible 
solution). Therefore, most approaches rely on heuristics 
that provide approximate solutions.  
Basically, VRP heuristics can be divided into three 
categories: construction heuristics and improvement 
heuristics and metaheuristics. Most of the research efforts 
aimed at solving the VRP have focused on the 
development of various metaheuristic algorithms. It has 
been experimentally shown [4] that, in general, tour-
improvement heuristics produce better quality results 
than tour-constructive heuristics. Still, a tour-constructive 
heuristic is necessary at least to build the initial solution 
for the tour-improvement heuristic. 
Construction heuristics generate feasible solutions by 
performing sequences of simple operations that minimize 
or maximize a given criterion. This class of methods 
includes the well-known savings heuristic of Clarke and 
Wright [5] that proceeds by merging two routes into a 
single route according to the savings obtained by this 
merger. Other well-known examples of construction 
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heuristics are the sweep algorithm of Gillett and Miller 
[6], the insertion heuristic of Christofides et al. [7], the 
improved savings heuristic of Paessens [8] and the petal 
algorithm of Renaud et al. [9]. More details can be found 
in the survey papers of Laporte et al. [10], Laporte and 
Semet [11], and Van Breedam [12], which presents a 
parametric analysis of a number of construction 
heuristics. 
Improvement heuristics seek to iteratively enhance a 
feasible solution (usually generated by a construction 
heuristic) through locally replacing a set of arcs or 
customer nodes. These local operations are performed as 
long as they produce improvements in the value of the 
objective function. These methods thus typically yield 
solutions that are local optima, with respect to the set of 
solution modifications considered. For more information, 
we refer the reader [13,14], and the surveys [10], [11]. 
Recently, most of the research efforts aimed at solving the 
VRP have focused on the development of various 
metaheuristic algorithms. A metaheuristic can be defined 
as a top-level general strategy which guides other 
heuristics to search for good solutions. Most of the VRP 
metaheuristics are based on some construction and 
improvement heuristics, i.e., they use the so-called local 
search principle [15].  
The tabu search implementations of [16,17] have obtained 
the best known results to benchmark VRPs. Various 
authors have reported similar results, obtained using 
tabu search [18,22], or simulated annealing [23]. 
However, it has been observed by [19] that such 
heuristics require substantial computing times and 
several parameter settings. 
Ant colony optimization is another recent approach to 
difficult combinatorial problems with architecture 
number of successful applications reported, including the 
VRP have been [20-21, 25] developed so far.  
The second main metaheuristic principle is population 
search, which consists of maintaining a pool of solutions, 
and efficiently combining and replacing the solutions in 
the pool. A classical example of population search is the 
genetic algorithm. Applications of genetic algorithms 
have been reported for the CVRP [26-28], VRP with time 
windows [2,38], backhauls [40], multi-depot routing 
problem [35]. A hybrid approach to the vehicle routing 
problem using neural networks and genetic algorithms 
[40,41], another hybrid approach using GA an ACO [42] 
and a school bus routing problem [37] have also been 
reported.  
Reference [29] adapt a variant of genetic algorithm, 
evolution strategies, for the VRP and combine it with 
guided local search. The ant algorithms of [21,30-31] can 
also be viewed as a population search metaheuristics. For 
more details on the metaheuristics for the VRP, we refer 
to extensive surveys of [33-34,19]. 
The paper is organized as follows. In Section II we give a 
formal definition of the CVRP problem and describe 
some heuristics for the VRP. Section 3 comprises a 

description of ACO approach, while Section IV is devoted 
to our ACO approach to the VRP and method of 
constructing the minimum spanning tree for the graph of 
problem. Next, in Section V, we present the description of 
the proposed algorithm and in Section VI show the 
results of implementations. Finally in last Section we 
draw some overall conclusions and suggest directions for 
future work. 

2. The vehicle routing problem 

The basic vehicle routing problem (VRP) consists of a 
large number of customers, each with a known demand 
level, which must be supplied from a single depot. . 
Vehicles dispatched from the depot must deliver the 
goods required, then return to the depot. Each vehicle can 
carry a limited weight and may also be restricted in the 
total distance it can travel. Only one vehicle is allowed to 
visit each customer, so that all customer demands are 
satisfied and each customer is visited by just one vehicle. 
Possible objectives may be to find a set of routes which 
minimizes the total distance traveled, or minimizes the 
number of vehicles required and the total distance 
traveled with this number of vehicles. Various 
mathematical formulations of the VRP were given by, for 
example, [43,44]. 

2.1. Formal problem definition 
We now present a mathematical formulation of the 
Capacitated Vehicle Routing Problem (CVRP) which is 
the most general version of the VRP. The CVRP is defined 
on a complete undirected network G =(V, E) with a node 
set   and an arc set E. Node 0 is a depot with m identical 
vehicles of capacity Q, m can be fixed a priori or left as a 
decision variable. Each other node i > 0 represents a 
customer with a non-negative demand qi and each arc (i, 
j) has a non-negative travel distance dij=dji. 
The CVRP consists of determining a set of m vehicle trips 
of minimum total cost, such that each trip starts and ends 
at the depot, each client is visited exactly once, and the 
total demand handled by any vehicle does not exceed Q. 
Let R1, . . . , Rm be a partition of V representing the routes 
of the vehicles to service all the customers. The cost of a 
given route ( , where  and  , denotes the depot), is given 
by: 
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3. Ant colony optimization 

Ant Colony Optimization (ACO) [45,46] belongs to the 
class of metaheuristics [46]-[48], which are approximate 
algorithms used to obtain good enough solutions to hard 
CO problems in a reasonable amount of computation 
time. Other examples of metaheuristics are tabu search 
[45], simulated annealing [49], and evolutionary 
computation [50]. 
The inspiring source of ACO is the pheromone trail 
laying and following behavior of real ants which use 
pheromones as a communication medium. In analogy to 
the biological example, ACO is based on the indirect 
communication of a colony of simple agents, called 
(artificial) ants, mediated by (artificial) pheromone trails. 
The pheromone trails in ACO serve as a distributed, 
numerical information which the ants use to 
probabilistically construct solutions to the problem being 
solved and which the ants adapt during the algorithm’s 
execution to reflect their search experience. 
However, since the initial work of Dorigo, Maniezzo and 
Colorni on Ant System [51], ACO is now quickly 
becoming a mature research field: a large number of 
authors have developed more sophisticated models that 
were used to successfully solve a large number of 
complex combinatorial optimization problems and 
theoretical insights into the algorithm are now becoming 
available. For ACO convergence proofs, theories and 
open problems we refer the readers to [52]. 
Several successful applications of ACO to a wide range of 
different discrete optimization problems are now 
available. The large majority of these applications are to 
NP-hard problems, for example routing (such as vehicle 
routing problem), assignment, scheduling and subset 
problems. For a list of current applications of ACO 
algorithms we refer the readers to [53]. For many of these 
problems, ACO algorithms produce results that are very 
close to those of the best-performing algorithms, while on 
some problems they are the state-of-the-art. These latter 
problems include the sequential ordering problem, open 
shop scheduling problems, some variants of vehicle 
routing problems, classification problems, and protein–
ligand docking. 
ACO Applications to telecommunication networks are 
consist of routing problems in circuit switched networks 
[54] and then in packet-switched networks [55]. For a 
survey on routing algorithms in a variety of wired 
network scenarios; see [56]. More recently, an ACO 
algorithm designed for routing in mobile ad hoc 
networks was shown to be competitive with state-of-the-
art routing algorithms [57], while at the same time 
offering better scalability.  
Apart from the research on previous applications, new 
trends in ACO are multi-objective problems [61],[66], 
dynamic optimization problems [55], [57], Stochastic 
optimization problems [58],[60], Parallel implementations 
[62-63], Continuous optimization [64,65]. 

In the constructive phase of the ACO algorithm decisions 
are based on both heuristic information and the 
pheromone values. We add a new parameter to this 
decision in our approach which is called weight. At the 
end of each iteration, i.e. once all ants have gone through 
solution construction and local search, the pheromone 
update procedure is applied to these pheromone values. 
Fig. 1. Title of the figure, left justified 

4. Our approach 

Due to its constructive nature of ACO and because at 
each construction step an ant chooses exactly one of 
possibly several ways of extending the current partial 
solution, ACO can be regarded as a tree search method 
[67]. This view of ACO as a tree search procedure allows 
us to put ACO into relation with classical minimum 
spanning tree.  
Our strategy for solving VRP is based on the fact that the 
VRP is a generalization of the TSP. Thus, besides the 
routing aspect already existing in the TSP one has to find 
an assignment (or clustering) of customers to vehicles. 
Once this assignment is done, the problem reduces to 
independently solving a VRP. Each ant works only on its 
current cluster which is a branch of the minimum 
spanning tree. The intuition is that nodes that are near to 
each other will probably belong to the same branch of the 
minimum spanning tree of the graph and thus will 
probably belong to the same route in VRP.  
The idea of this paper is to hybridize the solution 
construction mechanism of ACO with a modified version 
of MST, which results in a new approach to solve VRP. In 
this approach the extension of partial solutions is usually 
done by using a probabilistic greedy policy with respect 
to a weighting function that gives weights to the arcs of 
the problem graph and update the weights to reinforce 
the edges contained in the best. 

4.1. Related work 
Decomposing the problem to solve only the much smaller 
subproblems resulting from the decomposition was 
presented before in [16],[21],[68]. 
Reference [21] presents an algorithm that builds on the 
Savings based Ant System presented before by the 
authors and enhances its performance in terms of 
computational effort. Initially, an Ant System solves the 
master problem for a given number of iterations. Given 
the best found solution so far the algorithm determines 
for each route of this solution the center of gravity. Then 
it clusters these route centers and solves each of the 
resulting clusters independently by applying SbAS. After 
all subproblems have been solved it re-assembles the 
global solution and updates the global pheromone 
information. 
The connection between ACO and minimum spanning 
tree techniques was established before in [16], [68]. 
Taillard [16] suggests to decompose the problem and 
proposes two distinct methods for partitioning a problem 
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instance. For uniform problems, a partition into sectors is 
suggested, while for non-uniform problems Taillard uses 
a partitioning method based on trees and associated 
shortest path. In this partitioning method, the 
decomposition of the arborescence consists in deleting 
arcs in such a way that the subproblems successively 
created involve a quantity of goods as close to the 
capacity of the specified number of vehicles and as far 
from the root as possible. Recently an ACO approach to 
solve capacitated minimum spanning tree was proposed 
in [68]. 
 

Problem 
instance 

vehicles Best Worst Average deviation 

C1 (50) 11 520 559 550 1.946863 
C2 (75) 11 852 881 871 1.692397 

C3 (100) 11 732 763 745 1.165359 
C4 (150) 9 1082 1111 1101 1.676005 
C5 (199) 12 1298 1395 1382 1.842710 
C11 (120) 14 1027 1109 1078 6.648178 
C12 (100) 12 804 869 840 3.613903 

Table 1. Our algorithm’s results for Christofiede’s instances. 
 

Problem 
instance 

[74] [24] [16] [28] [73] 
Our 
best 

V1 V2 

C1 524 524 524 524 524 520 5 11 
C2 835 835 835 835 835 852 10 11 
C3 826 829 826 829 829 732 8 11 
C4 1031 1044 1028 1034 1038 1082 12 9 
C5 1311 1334 1298 1327 1305 1298 17 12 
C11 1042 1042 1042 1046 1074 1027 7 14 
C12 819 819 819 819 819 804 10 12 

Table 2. Comparison of our algorithm with published 
results. 
 

Problem 
instance 

Previous best 
result 

Our best 
result 

Worst Averagedeviation

Tai75a 1618 1614 1740 1700 8.881 
Tai75b 1344 1335 1375 1371 2.128193
Tai75c 1291 1345 1380 1354 4.767333
Tai75d 1365 1303 1453 1402 17.810032
Tai100a 2041 2101 2162 2115 7.251285

Tai100b 1940 2022 2099 2065 7.072515

Tai100c 1406 1400 1441 1416 5.100808
Tai100d 1581 1692 1756 1727 5.371103
Tai150a 3055 2932 3368 3293 48.282687
Tai150b 2727 2746 3036 2854 12.070302
Tai150c 2341 2355 2673 2531 10.187444
Tai150d 2645 2625 2699 2657 11.233412

Table 3. Our algorithm's results for taillard's instances. 

5. The proposed algorithm 

The proposed algorithm exploits two important problem 
characteristics by hybridizing ACO with an exact 
algorithm for clustering the problem. More precisely, a 
solution of the problem asks for two decisions, namely 
the clustering of nodes to find heuristically the nearest 
nodes and the ‘design’ for each cluster. 
The algorithm mainly consists of the iteration of these 
steps: 
• decomposing the problem with minimum spanning 

tree, 
• generation of solutions by ants according to  

pheromone information and arc weights, 
• application of a local search to the ants’ solutions, 
• update of the pheromone information, 
• update of the arc weights. 
The algorithm iteratively does these five steps until the 
stopping criterion is met. As for all other meta-heuristics, 
the stopping criterion can either be static, i.e. a fixed 
number of iterations or dynamic, i.e. a fixed number of 
non-improving iterations. The implementation of these 
five steps is described below. 
Step 1. decomposing the problem with minimum 

spanning tree 
At this step we build the MST of the problem graph. An 
MST can be computed in polynomial time by some well-
known algorithms, e.g. the algorithms of Kruskal [69] or 
Prim [70]. 
Clearly, we want to find a decomposition that leads to 
sub-problems with geographically close tours in order to 
be able to then solve these regional sub-problems 
efficiently. This should help us to improve both the 
routing on these tours but also the clustering. 
The problem of finding an MST is quite easy and several 
efficient exact algorithms have been proposed for its 
resolution. In this paper we will use the well known 
algorithm of Prim. Starting from an empty tree, i.e. no 
selected arcs, it repeatedly includes the shortest arc 
connecting a node that is already part of the growing tree 
with a node that is not yet part of this tree, if it doesn’t 
construct a tour for connected nodes. The algorithm ends 
once n−1 arcs have been included. The time complexity of 
an efficient implementation of this algorithm is O(n2), 
where n is the number of nodes. 
We modify this method by assigning a weight wij to each 
arc (i,j) in the problem graph and using this weights 
instead of length of arcs for constructing the MST. In 
other words, in each step, the method selects the arc with 
maximum weight instead of minimum distance that 
doesn’t construct a tour. The initial weight values are the 
reverse of distances between nodes, that means. 
Step 2. generation of solutions by ants according to  

pheromone information and arc weights 
At the beginning of this step, all ants start their move from 
depot and select a random branch of the MST to follow. 
Each ant starts a vehicle which starts its route from the 
depot and ends it in the depot too. After a vehicle 
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completes its tour, the ant starts a new vehicle. In other 
words a tour is built node by node, so each ant iteratively 
adds new nodes until all nodes have been visited. 
This method is implemented as follows. At each time 
step, each ant uses a transition rule, which is called 
modified pseudo-random proportional rule to select the 
next node from the current branch of the tree : Let k be an 
ant located at a node i,  be a parameter, and q a uniform 
random value in [0, 1]. The next node j to be visited is 
randomly chosen according to the following probability 
distribution: 
• If q < q0: 

 
1 , arg max { . . }
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Where, and correspond to the pheromone values, heuristic 
information and weight on edge (i,j) respectively. 
In the above equations, is the feasible neighborhood, i.e. 
the set of nodes which ant k can choose to move to them 
from node i. The neighborhood consists of all the nodes in 
the current branch of the MST which hasn’t already been 
visited. If the selected node has a capacity less than or 
equal to the remaining capacity of the current vehicle, the 
ant moves to this node, adds it to the current route and 
subtracts the request of this node from the capacity of the 
current vehicle, otherwise moving to this node violates the 
capacity constraint of the vehicle, so in this situation, the 
ant returns to the depot (it starts a new vehicle with full 
capacity), and then moves to the selected node. 
When all the nodes of the current branch, were selected 
before, the ant considers the nearest neighbor branch as 
the current branch. In other words, the nearest branch to 
node i is assigned to the current branch and 
neighborhood is updated.     
All pheromone parameters have values in the interval. 
We set all initial pheromone values to.   
Step 3. application of a local search to the ants’ solutions 
It is very clear after all the existing literature on VRP that 
local search is almost mandatory to achieve results of 
high quality [26],[72]. So In order to find competitive 
solutions it is in general necessary to use some kind of 
local search to improve the individual ants' solutions. In 
the proposed approach, this could be done by the sweep 
and 3-opt algorithms. 
After the ants have constructed their solutions but before 
the pheromone is updated each ants’ solution is 
improved by applying a local search. We first apply a 
local search based on swap moves to an ant’s solution. 
The use of swap moves was proposed in [24] for the VRP. 
A swap move aims at improving the clustering of the 

solution by exchanging two customers from different 
tours, i.e. a customer i from tour k is exchanged with a 
customer j from tour l. 
Following [25] we then apply the 3-opt algorithm [13]. This 
algorithm iteratively exchanges three arcs with three new 
arcs until no further improvements are possible. In the 
context of the VRP it is applied separately to all vehicle 
routes built by the ants, thus aiming to improve the routing 
of each tour, while leaving the clustering unchanged. Thus, 
we first improve the clustering and once no more 
improvements are possible, we improve the routing. 
Step 4. update of the pheromone information  
After all ants have constructed their solutions and all 
ants’ solutions have been taken to a local optimum, the 
pheromone trails are updated on the basis of the local 
optimal solutions. According to the rank based scheme 
the pheromone update is as follows [71]: 

  
1

*

1

en r
ij ij ij e ij

r
nτ ρτ τ τ

−

=
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Where is the trail persistence and ne is the number of 
elitists. Using this scheme two kinds of trails are laid. 
First, the best solution found during the process is 
updated as if ne ants had traversed it. The amount of 
pheromone laid by the elitists is , where L* is the objective 
value of the best solution found so far. Second, the ne − 1 
best ants of the iteration are allowed to lay pheromone on 
the arcs they traversed. The quantity laid by these ants 
depends on their rank r as well as their solution quality 
Lr, such that the rth best ant lays. Arcs belonging to 
neither of those solutions just lose pheromone at the rate, 
which constitutes the trail evaporation. 
Step 5. update of the arc weights 
At the end of each iteration, weight values of the arcs 
which belong to the best solution are being updated to 
increase the probability of selecting these arcs in future 
solutions. The weight update is in the following way 

 .( * / )rij ij ijw w L L δλ τ= + +   (7) 

Where λ is a suitable coefficient and L* is the objective 
value of the best solution found in the current iteration. It 
is clear that arcs with more pheromone values should 
have more direct effect on new weight values. But since 
has a value less than 1, it couldn’t help to increase the 
weight of selected arcs by itself. So in the above equation, 
we divided by to use the benefit of pheromone values. 
We first update pheromones and then use these new 
pheromone values to modify the weight of arcs which 
contributed in the current solution. 

6. Computational results 

A computational experiment has been conducted to 
compare the performance of the proposed algorithm with 
some of the best techniques designed for VRP. We 
executed the algorithm on some of the well-known 
problem instances from one dataset. Then, additional 
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simulations were conducted over another dataset and 
results reported accordingly. 
The algorithm were coded in C and, using a 2.0 GHz CPU. 
It was first applied to the 7 vehicle routing problems 
proposed by Christofides and can be downloaded from the 
OR-library (http://mistic.heig-
vd.ch/taillard/problemes.dir/vrp.dir/taillard.dir), and 
which have been widely used as benchmarks. The first 5 
problems (i.e. C1 to C5) have customers that are randomly 
distributed with the depot in an approximately central 
location. In the last two problems (i.e. C11 and C12), the 
customers are grouped into clusters. Then we applied the 
algorithm to the twelve instances from the second dataset 
which proposed by Taillard and can be downloaded from 
this url: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/. 
The results for those two datasets are reported for ten 
independent runs, and in each run the algorithm was 
executed for 200 iterations. Also we used 10 ants in each 
iteration for building the solutions. The common 
parameters for these instances include 0.8ρ = , 

1α γ δ= = = , 2β = , 0 0.9q =  and 0.2λ = . We set these 
parameters according to many experiments. 
Table 1 shows the best, worst and average values over the 
ten runs for each problem. Also it shows the number of 
vehicles needed for best values and standard deviation 
from best-known solutions. 
Table 2 shows the comparison of our algorithm with 
published results. The first column describes the various 
instances and their related size, whereas the second 
specifies well-known published best results obtained using 
simulated annealing and tabu search in five references. The 
following column refer to the best result of our method for 
these instances. New best results found with our approach 
are depicted in bold. The results show that our approach 
could find the new solutions for five instances.  
Although minimization of the vehicles is not the aim of 
our algorithm, we presented the number of vehicles 
which was needed for finding the best result of previous 
algorithms in column V1 and for the best result of our 
algorithm in column V2. 
Table 3 shows the results obtained for the second 
problem instances and presents the comparison of best 
results of previous methods and our algorithm. We 
depicted the best result in bold. It also includes the worst 
and average results of the new proposed algorithm. The 
results show that our approach could find the new 
solutions for six instances. 
The results show our algorithm can find better solutions 
for most of the problem instances in comparison with the 
other metaheuristics proposed previously to solve the VRP. 

7. Conclusions 

According to recent researches, hybrid algorithms are very 
promising so we used this idea in our approach. In this 
paper we presented a new algorithm which hybridized the 
ACO with an exact algorithm means MST to improve both 
the performance of the algorithm and the quality of 

solutions for the VRP. The intuition is that nodes which are 
near to each other will probably belong to the same branch 
of the minimum spanning tree of the graph and thus will 
probably belong to the same route in VRP. In the proposed 
algorithm, in each ACO iteration, we first apply a modified 
implementation of Prim’s algorithm to the graph of the 
problem to obtain a feasible minimum spanning tree 
(MST). Given a clustering of client nodes, the solution is to 
find a route in these clusters by using ACO with a 
modified version of transition rule of the ants. At the end 
of each iteration, ACO tries to improve the quality of 
solutions by using a local search algorithm, and update the 
associated weights of the graph arcs.  
Future work will be conducted to improve the proposed 
algorithm. Alternative formulas will be examined to 
enhance the method of weight update and pseudo-
random decision of ants for selecting the next node in 
solution construction. Additional improvements might lie 
on the combination of our approach with the other 
metaheuristics like genetic algorithm.  
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