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E very summer, the Salanter Akiba Riverdale (SAR) Academy must create class placements for their elementary
school students. Each grade of 80 to 100 students must be divided into four classes. In assigning students
to classes, the school administration aims to foster a positive social and educational environment for students
while satisfying placement requests and recommendations from parents, teachers, and school therapists. The
school must satisfy several constraints such as not placing certain pairs of students in the same class or keeping
boy/girl ratios balanced. The process of creating optimal class placements by hand can be laborious and difficult,
especially for grades with many constraints to satisfy. This paper describes a model that is being used to assist
SAR Academy with creating class placements. Following the constraints and objectives given by administrators
at the school, we describe an integer-programming model for satisfying placement constraints and heuristics to
further improve on the outputs of the integer-programming model. The results of this process were successfully
used to assist administrators in assigning students in one grade for the 2012-13 school year, and SAR Academy

plans to use the model for help with future class placements.
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1. Introduction

Salanter Akiba Riverdale (SAR) Academy is a coedu-
cational, private Modern Orthodox Jewish day school
located in the Riverdale section of the Bronx, New
York City. Every summer, SAR Academy must assign
students in their elementary school to classes. Gener-
ally, each grade of 80 to 100 students is split into four
different classes. The school’s administration aims to
create classes that foster a positive social and edu-
cational environment for students and that make
teaching easier for teachers. Typically, a few different
parties provide input that administrators use to assign
students to classes. Parents may provide information
such as which other students their children should
be with for social reasons. Teachers and school ther-
apists also provide input on how to best meet each
student’s social and educational needs. Assigning stu-
dents to classes is a difficult task. Recommendations
and requests from different parties often conflict with
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each other and it falls on the administration to pri-
oritize which requests should be fulfilled over others.
For example, the administration might choose to sep-
arate two students with behavioral issues even if their
parents request that their children be placed together.
Poor student placement may make teaching difficult
and may result in dissatisfaction from students and
parents. Administrators gave the following general
criteria for how they assign students into classes:

* The school guarantees that each student will be
placed with at least one child from a list of up to four
children provided by that student. For situations in
which this is not possible, they are in touch with the
parents to explain and discuss. Teachers and thera-
pists also frequently recommend students who should
be placed together and administrators try to take their
recommendations into account.

¢ Parents, teachers, and therapists may request that
certain students not be placed together for social,
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behavioral, or other reasons. Additionally, according
to school policy, twins may not be placed into the
same class.

® One or two of the classes are designated as
“inclusion classes.” Certain students with an acade-
mic need for more closely supervised study must be
placed in such classes (along with other students not
in such a category). These classes are staffed with
teachers having skills and experience appropriate for
such students.

* The four classes should all have roughly the
same number of students, although the inclusion
class(es) may have a few more if necessary in gener-
ating a feasible solution.

¢ Students in the school come from various loca-
tions in the New York City area. It is preferable for
students to have at least one or two other children
from their neighborhood in their class, but it is also
preferable that not too many students from one neigh-
borhood are in the same class.

¢ The school prefers that each class include stu-
dents with a range of academic abilities. One benefit
of this policy relates to gifted students being taken out
of class to be given enrichment in subjects that they
excel in. Spreading such students out over all classes
limits the impact on the class when they are taken out
for enrichment activities.

When placing students manually, it is very diffi-
cult to simultaneously take all of these factors into
account. An algorithmic approach to this problem
allows administrators to decide how to weight these
factors and determine class placements taking all of
these factors into account. Our goal in undertaking
the work described in this paper was to provided ele-
mentary educators with an easy-to-use Excel-based
tool that helps them improve classroom assignments
while spending less time on this task. Moreover, we
wanted to provide a solution framework that could
easily evolve and be fine tuned as needs dictate.

We present a model that was developed for help-
ing the school to assign their students to classes based
on the criteria provided above. The integer program
described in this paper is used first to satisfy the basic
constraints that the administrators determine are nec-
essary for their class placements. It provides a start-
ing point that can then be improved further using
heuristics, especially if the integer program is found
to have many feasible solutions. Next, because the
school wishes to balance multiple objectives in cre-
ating classes, an evolutionary algorithm is used as
a heuristic to further improve the class placements
after the basic constraints are fulfilled with the inte-
ger program. Although the evolutionary algorithm is
unsuitable for finding globally optimal class place-
ments based on the inputs provided, it is generally

suitable for finding a near-optimal solution that is sat-
isfactory to the administration. It also allows admin-
istrators to easily tweak the class placements if they
are unhappy with some characteristics of the model’s
outputs.

Before continuing, we briefly review some related
literature. Cutshall et al. (2007) used integer program-
ming to form student teams in the integrated core
MBA program at Indiana University. Lopes et al.
(2008) used integer programming to form student
teams for senior design projects in the College of
Engineering at the University of Arizona. Krass and
Ovchinnikov (2006, 2010) used a heuristic column-
generation approach to create MBA study groups in
the Rotman School of Management at the Univer-
sity of Toronto. These problems all have the char-
acter of partitioning students into groups, balanc-
ing multiple objectives and a combination of soft
and hard constraints. Of course the devil is in the
details concerning the specific objectives and con-
straints, which vary quite a lot across these prob-
lems. One distinguishing aspect of our problem is
that we are partitioning the set of students typically
into a smaller set of larger groups. This kind of dif-
ference in the character of instances can have a dra-
matic effect on the solvability of partitioning prob-
lems, independent of whether we consider different
objectives and constraints. This ultimately has some
effect on the types of methods that were found effec-
tive in each of the applications. Finally, we mention
that Aboudi (1986), Aboudi and Nemhauser (1991,
1990) developed integer-programming formulations
and methods for a rather different classroom assign-
ment problem based on an assighment-problem with
side-constraints model. Although they were assign-
ing classes to room/time slots, rather than students to
classes, still the problem has the general flavor of an
assignment type problem with side constraints. A dis-
tinguishing feature of their problem is that they were
assigning one class to each room/time slot, whereas
our problem as well as the other cited ones assign
many students to each class.

We assume some familiarity with both linear inte-
ger programming and genetic algorithms, mostly at
the modeling level. In §2, we give a linear integer-
programming formulation that is aimed at generating
a good feasible solution. In §3, we describe a genetic
algorithm that we used to improve the solution gener-
ated by the linear integer program. In §4, we describe
how we implemented our solution, and we summa-
rize our computational results. We make some con-
cluding remarks in §5.
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2. Linear Integer-Programming

Formulation

In this section, we give a linear integer-programming
formulation of the problem. For an introduction to
integer programming, see Wolsey (1998). We can
regard the formulation that we give as a transporta-
tion problem with side constraints. Such problems,
and more generally integer network-flow problems
with side constraints have numerous applications
(e.g., see the references in Barr et al. 1986, §1, p. 68).

From the viewpoint of formulating our problem as
a transportation problem with side constraints, we
regard each student as a unit of demand that must be
satisfied exactly, and we regard each class as a supply
point with a total supply equal to the capacity of the
class. Next, we make this formulation precise, and as
we go, we introduce all of the side constraints. We
let m denote the number of students and n denote
the number of classes. Let Xjj be a 0/1 variable with
x;; =1 indicating that student i is assigned to class j,
fori=1,...,m, j=1,...,n

For assigning each student to a class, we have

ijjzl, fori=1,...,m. (1)
=1

To insure that a maximum class-size k is respected,
we have

in]_SK’ f()]j‘j:l,...,n. (2)
i=1

To make sure that every student is assigned to a
class with one of their designated friends, we have

x; <y xg, fori=1,...,m;j=1,...,n, (3)

seL;

where L; denotes the set of students comprising the
list of friends of student i. Note how if student 7 is
assigned to class j (wWhereupon the left-hand side of
the inequality equals 1), then some student on stu-
dent i’s list is also assigned to class j.

Suppose that G is a group of students for which we
want to make sure that none of them is the only one
from their group in a class. This may not correspond
to a set of friends selected by a student, but it could
be, for example a geographic group. Then we can treat
any such restriction similarly:

x;< Y xg, forieG;j=1,...,n (4)
seG\{i}

To enforce that the boy/girl ratio is between p
and g, we have

prxijSinijxeij, forj=1,...,n, (5

ieF ieM ieF

where F is the set of girls and M is the set of boys.

If S is a set of students that must all be assigned
to different classes, presumably with |S| < n, then we
can add the constraints

injfl, forj=1,...,n. (6)

ieS
Such constraints are normally called cligue constraints,
though that terminology here is ironic! We may
have many of these constraints, but for computa-
tional purposes it is best to have these sets be large
(as this implies a tighter linear-programming relax-
ation that can generally be exploited for efficiency by
integer-programming solvers). For example, whether
we use the single set {1, 2, 3} or the three sets {1, 2},
{1,3},{2,3}, we will assign the three students 1, 2, 3
to different classes. But it is far better, computation-
ally, to use the single set {1, 2, 3} for defining the con-
straints.

In some situations, certain students must be placed
together. These students form a clique in the more
conventional sense. If S is a (maximal) set of students
that must be placed together, we simply include the
constraints

Xij =Xy, forall pairsi#leS; j=1,...,n.  (7)

Sometimes a student i must be placed in a spe-
cific class j. In such a situation, we simply fix x; =1
(and then we could remove x;;, from the model, for all
k).

Sometimes there is a group of students 5 who are
a bit too “energetic,” finding it difficult to sit still in a
classroom setting. We can easily limit the number of
such students with constraints

Yox;<t, forj=1,...,n, 8)

i€eg

where t is the limit selected.

3. Heuristic
It is not so clear how to formulate an objective func-
tion. For example, matching up each student with one
friend is considered important enough to be enforced
via constraints, but each friendly match beyond that
has some diminishing marginal value. Additionally,
there really are multiple objectives that should be bal-
anced (e.g., involving friend requests, academic diver-
sity, etc.). Therefore, optimizing some linear objective
on the assignment variables, subject to all of our con-
straints, may fall short of providing an ideal solution.
As it stands, there may well be many feasible solutions
to the constraints, and therefore we may expect a good
deal of latitude in how we make the final assignments.
We used a genetic algorithm to improve on the
feasible solution obtained via integer linear program-
ming. Genetic algorithms are heuristics used for find-
ing good solutions using processes that mimic the
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process of natural evolution (see Eiben and Smith
2008 for an introduction). Such algorithms are well
suited for heuristically handling nonlinear (noncon-
vex) objective functions that are not easily and
efficiently handled in the context of linear integer
programming. Of course there are other possibilities
like employing off-the-shelf global-optimization soft-
ware, but such methods have a very high computa-
tional cost. The genetic algorithm that we employed
has a few distinguishing features.

* The genetic algorithm is seeded with one indi-
vidual solution that was created using the feasible
solution of the integer program, thereby speeding up
the time to evolve an acceptable class placement.

* Rather than creating new generations entirely
composed of individual solutions that went through
the processes of crossover and mutation, the best indi-
vidual solutions from each generation were copied
into the new generations. This is known as the
“elitism strategy.”

* Each chromosome contains one gene for each
student in the grade, and each gene is encoded with
integer values between 1 and 4 to represent class
placement in one of four classes.

e The fitness function, which is described further
below, calculates how each candidate solution ful-
fills certain criteria (e.g., balanced boy-to-girl ratios,
restriction on the number of overly energetic students
per class, etc.).

Our fitness function is calculated using the follow-
ing factors:

* Points are given for each of the parents’ “friend
requests” satisfied. To ensure that constraint (3)
remains satisfied, the marginal value of satisfying
additional requests decreases, with a particularly
large drop-off after the first request is fulfilled. Specif-
ically, zero points are given if no friend request is
satisfied for a student, 7,000 points if one request is
satisfied, 7,200 for two, 7,300 for three, 7,350 for four,
and 7,375 for five. The specific choice of these num-
bers was determined in a back-and-forth process with
administrators, learning what kind of solutions were
desired.

* Points are also given for satisfying teachers’
requests that certain students be placed together.
In this case, the number of points given increases lin-
early with each request fulfilled. Specifically, we used
50 points per satisfied request.

* Points are subtracted for any violations of con-
straints that were previously satisfied with the integer
program. In most cases, these penalties are linear and
are large, making it unlikely that individual solutions
that violate these constraints will reproduce. However,
it is often the case in practice that these constraints are
violated on occasion if doing so will improve the fit-
ness function enough that the penalty is outweighed

by the improvements. In the case of class size, this is
encouraged by setting up the fitness function such that
the penalty for deviating from the optimal class sizes
increases exponentially as the class sizes diverge from
the optimum. For example, if 100 students must be
split into four classes of 25 (the “optimal placement”
for this objective), a placement scheme where one of
the classes has 26 students and another has 24 might
evolve if it improves the class placements enough in
other ways; however, greater deviations are increas-
ingly less likely to evolve since the penalty for devi-
ating from 25 students increases quadratically. Some
specifics are as follows: A penalty of 100 (25 — (actual
class size))?; a penalty of 1,000 points for (i) each boy
from Manhattan who is in a class without any other
boys from Manhattan, (ii) each girl from Manhattan
who is in a class without any other girls from Man-
hattan, (iii) each class that has fewer than six stu-
dents from New Rochelle, (iv) each class that has only
one student from the Bronx or Yonkers; a penalty
of 1,000 (0.6 — (fraction of class made up of girls))? for
each class where girls comprise less than 40% of that
class; a penalty of 1,000 for each student who is
designated as “too energetic” in excess of five in a
class; for other constraints, we attach extremely high
penalties to violations, so that these constraints are
never violated.

4. Implementation and

Computational Results

We implemented our algorithm in Microsoft Excel,
using the OpenSolver' and Evolver® packages. Using
Excel led to very rapid development of a useful
implementation with a user interface that is easy for
nonspecialists to use; see Jensen and Bard (2003) for
further examples of this type of approach.

The data set used for testing the algorithm had the
following characteristics:

* 100 students who needed to be placed into
classes of 25 students each.

¢ 43 girls and 57 boys (it was decided that a class
may only have up to 66% boys, and preferably lower).

* 9 students made no requests for friends, 5 made
only one request, 10 made two, 16 made three, 52
made 4 and 8 made 5 requests.’

e 39 pairs of students could not be placed together.

! opensolver.org.
2 www.palisade.com/evolver.

3Every student’s parents are asked to request four students.
In some cases, the data set shows fewer requests, which is usually
due to administrators eliminating some parents’ requests before we
got the data. Some parents will request more than four students,
which is accepted by the school, since that makes it easier to guar-
antee at least one request. Some parents will make no requests,
which gives even more leeway in forming classes.


http://opensolver.org/
http://www.palisade.com/evolver/

Downloaded from informs.org by [1.198.223.170] on 12 February 2018, at 06:27 . For personal use only, all rights reserved.

Krauss, Lee, and Newman: Optimizing the Assignment of Students to Classes

INFORMS Transactions on Education 14(1), pp. 39-44, ©2013 INFORMS

43

Figure 1 Objective Value vs. Time (Minutes)
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* 20 energetic students were in the grade, and it
was preferable to divide them between classes as
much as possible.

¢ 77 pairs of students requested (by teachers and
other staff) to be placed together.

¢ 20 students needed to be placed into specific
classes.

¢ 2 pairs of students and 1 trio of students had to

be placed together.
After setting up the model, the OpenSolver package
took approximately 2.55 seconds to provide a fea-
sible solution for the first step of the process. The
Evolver package was then used to further improve the
class placements and was run for 30 minutes, during
which time it made a small number of improvements.
It was run with a crossover rate of 0.5 and a muta-
tion rate of 0.1. A crossover rate of 0.5 implies that on
average, each parent solution gives 50% of its genes
to each offspring solution that it generates. A muta-
tion rate of 0.1 implies that each gene has a 10%
chance of being mutated. Because the genetic algo-
rithm employed utilizes a stochastic process to create
incremental improvements to the class placements,
running the algorithm for longer generally gives bet-
ter results, although the rate of improvement is slow.
For this particular problem, 30 minutes was chosen
as a reasonable amount of time to run the algorithm
since improvements to the solution at this point were
coming very slowly and the school administration
was already satisfied with the available solution. Fig-
ure 1 shows the behavior of the objective value over a
run of the algorithm. Note that a constant was added
to the objective so that the initial value was zero.

5. Conclusions

SAR Academy successfully utilized our methodology
to help assign students to classes in one grade for
the 2012-13 school year, and they intend to utilize it

0:15 0:20 0:25 0:30

further next year for other grades as well. So we can
regard our modeling and our solution approach and
delivery as very successful.

Although our model is useful for finding a good
assignment of students, its results of course depend
on having proper inputs as well as an effective set of
weights for the genetic algorithm to use in balancing
competing objectives. Therefore, it is important for
the school to develop appropriate input methods and
weights in order to use the model effectively in the
future. After all, it is ultimately up to administrators
to decide what constitutes a good class placement, so
they must be involved in fine tuning the algorithm.

When inputting data, the administrators and teach-
ers must be aware that the model needs correct
and unambiguous data to effectively place students
into classes. For example, when assigning students
by hand, administrators may consciously or subcon-
sciously assign varying degrees of importance to split-
ting up certain pairs of students. The current model
could be modified so that it gives varying penalties
for placing different students together (who should
not be together), which might allow the model to
be more flexible in improving placements in other
ways. However, the model currently utilizes only con-
straints (6) to separate certain pairs of students, and
these constraints treat all pairs in an identical fashion.
A better model might use a tiered system, whereby
only the more important pairs to be separated would
be included in the integer program, and the genetic
algorithm might address less important pairs. A sys-
tem for properly inputting data in such a way that
the algorithm could use it effectively is essential for
using the model to create better placements.

As discussed earlier, there are multiple objective
functions to be balanced in creating classes and a
proper set of weights must be used to come up with
the best solutions. Ideally, the most important issues
could be dealt with using the integer program and
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less important issues could be dealt with using the
genetic algorithm (with large penalties for breaking
constraints satisfied by the integer program). Further-
more, as much as possible, it is important for the
administrators to assign weights to the various objec-
tives so that the genetic algorithm can work toward
better solutions. Of course, this is somewhat more
of an art than a science, since it is ultimately up to
the teachers and administrators to decide what consti-
tutes the best placement. However, administrators can
use the process of trial and error to assign numeric
values to weight the importance of various factors,
and since the model works relatively quickly, they can
try out several solutions until they are satisfied.

Finally, other ways to accommodate the com-
plicated nature of trading off multiple nonlinear
objective functions include mixed-integer nonlinear
programming or a more complicated linear integer
program on an expanded set of variables. Though
this would lead to a more difficult mathematical
optimization model, it might provide better solu-
tions. We leave investigating such directions as future
research

Acknowledgments

The authors gratefully acknowledge that this paper would
not exist were it not for the kind introduction (of Jon Lee
and Daniel Newman) made by Stephen M. Pollock. The

research of J. Lee was partially supported by the National
Science Foundation [Grant CMMI—1160915].

References

Aboudi R (1986) A constrained matching problem: A polyhedral
approach. Ph.D. thesis, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, New York.

Aboudi R, Nemhauser GL (1990) An assignment problem
with side constraints: Strong cutting planes and separation.
Gabszewicz JJ, Richard J-F, Wolsey LA, eds. Economic Decision-
Making: Games, Econometrics and Optimisation (North-Holland,
Amsterdam), 457-472.

Aboudi R, Nemhauser GL (1991) Some facets for an assignment
problem with side constraints. Oper. Res. 39(2):244-250.

Barr RS, Farhangian K, Kennington JL (1986) Networks with side
constraints: An LU factorization update. Ann. Soc. Logist. Engi-
neers 1(1):68-85.

Cutshall R, Gavirneni S, Schultz K (2007) Indiana University’s
Kelley School of Business uses integer programming to form
equitable, cohesive student teams. Interfaces 37(3):265-276.

Eiben AE, Smith JE (2008) Introduction to Evolutionary Computing
(Springer, Berlin).

Jensen PA, Bard JF (2003) Operations Research Models and Methods
(John Wiley & Sons, Hoboken, NJ).

Krass D, Ovchinnikov A (2006) The University of Toronto’s Rotman
School of Management uses management science to create
MBA study groups. Interfaces 36(2):126-137.

Krass D, Ovchinnikov A (2010) Constrained group balancing: Why
does it work. Eur. J. Oper. Res. 206(1):144-154.

Lopes L, Aronson M, Carstensen G, Smith C (2008) Optimiza-
tion support for senior design project assignments. Interfaces
38(6):448-464.

Wolsey LA (1998) Integer Programming, 1st ed. (Wiley-Interscience,
Hoboken, NJ).



