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Abstract Skid-steered mobile robots have been widely
used in exploring unknown environments and in
military applications. In this paper, the tuning fuzzy
Vector Field Orientation (FVFO) feedback control
method is proposed for a four track wheel skid-steered
mobile robot (4-TW SSMR) using flexible fuzzy logic
control (FLC). The extended Kalman filter is utilized to
estimate the positions, velocities and orientation angles,
which are used for feedback control signals in the FVFO
method, based on the AHRS kinematic motion model
and velocity constraints. In addition, in light of the
wheel slip and the braking ability of the robot, we
propose a new method for estimating online wheel slip
parameters based on a discrete Kalman filter to
compensate for the velocity constraints. As
demonstrated by our experimental results, the
advantages of the combination of the proposed FVFO
and wheel slip estimation methods overcome the
limitations of the others in the trajectory tracking
control problem for a 4-TW SSMR.
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1. Introduction

In recent years, many mobile robotic system applications
have been developed. Several types of system have been
designed and manufactured based on the locomotion
systems of robots. With a 4-TW SSMR, there is no steering
mechanism and the direction of motion is changed by
turning the left and the right side tracked wheels at
different velocities. Because of complex wheel-ground
interactions and kinematic constraints, the path tracking
control of the mobile robot makes it difficult to obtain an
accurate experimental result.

In the literature, there are several approaches to solving
the path tracking problems of a mobile robot. For

Int J Adv Robotic Sy, 2013, Vol. 10, 218:2013


http://crossmark.crossref.org/dialog/?doi=10.5772%2F56355&domain=pdf&date_stamp=2013-01-01

example, a combination of kinematic and torque control
frameworks using a backstepping technique to join robot
kinematics into dynamics allows us to apply approaches
from a model-dependent computed torque method
(CTM) to a robust sliding mode control (SMC) method
[1]. In [2], the adaptive SMC is designed for an uncertain
dynamic model with parametric uncertainties associated
with the camera system. Another type of controller for an
autonomous mobile robot is the stable tracking control
method which is proposed based on an error model of the
kinematic model [3]. Although there are many interesting
features to all these control methods, they are difficult to
tune, in contrast to the flexibility of the fuzzy logic control
(FLC). The fuzzy logic controller for the path tracking of a
wheeled mobile robot is presented in [4]. A fuzzy
adaptive tracking control method for wheeled mobile
robots is proposed, where unknown slippage occurs and
violates the nonholonomic constraint in the form of state-
dependent kinematic and dynamic disturbances [5]. In
[6], a pseudo-static friction model is used to capture the
interaction between the wheels and the ground, and an
adaptive control algorithm is designed to simultaneously
estimate the wheel/ground contact friction information
and control the mobile robot’s trajectory as desired.

In previous work, the novel Vector Field Orientation
(VFO) feedback control method was developed for a
Differentially Driven Vehicle (DDV), a Threecycle Mobile
Robot and a 4-WD SSMR in [7-9]. Also in [10], the
extended VFO control method for a mobile vehicle was
proposed to compensate for skid-slip phenomena.

In a mobile robot’s field of operation, wheel slip limits
traction and braking ability, especially for a four track-
wheel differentially skid-steered mobile robot (4-TWD
SSMR). Accurate estimation of slip is essential to
obtaining the precise position of a mobile robot operating
in unstructured terrain. Several approaches to slip
estimation have been developed. For example, using a
sliding mode observer (SMO) as a means to estimate slip
parameters based on the kinematic model of a skid-
steering vehicle is proposed in [11]. In another study, a
novel method combining an optical flow algorithm with a
sliding mode observer to estimate the slip parameters of a
SSMR is introduced [12]. However, in order to validate
the proposed method, it needs to be tested on more
complex trajectories and longer travelling distances.
Reference [13] proposes an experimental slip model for
exact kinematic modelling and the parameters of this
model are determined based on experimental analysis.

The contribution of this paper is the combination of the
proposed FVFO and novel wheel slip compensation
methods for the trajectory tracking of a mobile robot.
First, the tuning fuzzy Vector Field Orientation (FVFO)
feedback control method is proposed for a 4-TW SSMR.
While the stable tracking control in [3] and conventional
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VFO feedback control methods in [7-10] do not perform
well over a wide range of operating conditions because of
the fixed gains used, the FVFO used the FLC to tune
parameters of the VFO method. That is the flexibility of
the proposed method, thanks to which we are able to
obtain more precise trajectories. Second, in the field of
mobile robotics, wheel slip limits the traction and braking
ability of the robot; the methods in [11-13] retain these
limitations when the robot is travelling on different
ground surfaces with different and longer trajectory
shapes. In this paper, we propose a novel method for
online wheel slip estimation based on a discrete Kalman
filter to compensate for the velocity constraints. The
experimental results show that the combination of the
proposed FVFO and novel wheel slip compensation
methods overcomes the limitations of the others in the
trajectory tracking control problem. This system can be
enhanced by using trajectory tracking control for a 4-TW
SSMR. The experiment is performed on the NT - Hazard
Escape - 1%, as shown in Figure 1.

Figure 1. The NT - Hazard escape — 1 Mobile Robot

This paper is organized as follows: Section 2 introduces
the experimental NT — Hazard escape — 1 mobile robot
setup. Section 3 proposes a tuning fuzzy Vector Field
Orientation (FVFO) feedback control method for a mobile
robot. The implemented extended Kalman filter and slip
estimation are designed in Section 4. The experimental
results, including analysis and evaluation, are discussed
in Section 5. Finally, Section 6 presents the conclusion.

2. The experimental NT-Hazard escape — 1 mobile robot
setup

The NT - Hazard escape — 1 mobile robot, with four NT —
track wheels, considered in this study, has been applied
in a disaster area, has been used to run through and
observe rough terrain including a construction site and
has run up stairways. A robot with small actuators was
created for the first time in Korea, providing the robots
with various functions. Each of the eight motors operates
and functions independently. The robot can easily lift 2
tracks even when fully loaded. The robot can move whilst
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maintaining its central balance like a tank. In addition,
the RS232C is supported and enabled by an embedded
board and computer which operate through wireless
telecommunication. The dimensions of the mobile robot
are shown in Figure 2.
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Figure 2. Dimensions of the NT — Hazard escape - 1

Range Accuracy Resolution
Attitude +1800 0.1°0 0.0020
Angular Rate +3000/S 0.146°/S
Acceleration +2G 0.0025G
Heading +1800 0.1°0 0.0020

Table 1. The AHRS - 03 - 300 specifications

For research purposes, an experimental mobile robot was
designed. The system configuration is represented by the
element component configuration shown in Figure 3,
while a real photograph of the experimental system is
displayed in Figure 4. Using these figures, the AHRS
(AHRS - 03 — 300) was mounted on the top centre of the
robot on a base platform. The AHRS specifications are
shown in Table 1. Two incremental encoders (E40H-8-
1024-3-N-5) were installed on the robot’s front left and
front right track wheels. A notebook model ASUS U365
was used to collect data from the sensors through an AVR
128-pro board and also performed all the algorithms in
real-time. Here, the software control algorithm for the
system was coded in the programming language C#
(using the Microsoft Visual Studio 2008 version).

(.

The NT - Harzard escape - 1

AHRS and Encoder

L AVR 128 - pro

Figure 3. The system configuration

During the experiment, the measurement sampling
frequency for the AHRS and incremental encoders was
set to 20Hz. The robot was programmed to follow desired
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trajectories on concrete terrain. Based on the
measurements from these two sensors, the robot position
values are derived using a Kalman Filtering technique
and then the trajectory tracking controllers are applied to

drive the robot along desired trajectories.
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Figure 4. The real photograph of the experimental system
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3. The tuning Fuzzy VFO feedback control method for the
path tracking of the mobile robot

A path tracking control method is used to control the
trajectory of the experimental robot’s motion as desired,
based on closed-loop control systems and the sensor
fusion technique for feedback control signals.

/ Notebook Computer \ Position
Outpus

Ahrs Data

Kalman

Filtering
I Technique I

Position, velocity and orientation estimations

Trajectory e, Fuzzy
generation controller

VFO feedback Discrete PID

Reference e ] Jacobian T ] MR
Trajectory 5 matrix P NT-Hazard |

method controllers
m@

Figure 5. The diagram of the implemented control algorithm

Desired Position,

Qe\ocity and Orientation

Figure 5 shows a diagram of the implemented control
algorithm. As shown in this figure, the control systems
include three closed-loop controls: two low-level closed-
loop controls for motor speed on the left and right sides,
and a high-level closed-loop control for the robot’s
position. For low-level closed-loop controls, discrete PID
controllers are applied, and the tuning fuzzy VFO (FVFO)
feedback control method is designed for high-level
closed-loop control. Then, the extended Kalman filter
(EKFx) is utilized to estimate the positions, velocities and
orientation angles, which are used for feedback control
signals in the high-level closed-loop control, based on the
AHRS kinematic model and velocity constraints.
Additionally, a discrete Kalman filter for the slip
estimator (KFA) is proposed to compensate for the
velocity constraints for EKFx in order to improve the
accuracy of estimation values. The EKFx and KFA are
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implemented simultaneously using measurements from
the AHRS sensor and encoders. They are introduced in
the next sections.

3.1 The VFO feedback control method

The stable tracking control (STC) method is introduced in
[3-4], based on an error model of the kinematic model.
The linear velocity output vc and the angular velocity
output we of the control law are:

v, =v, cose,, +K ey

@™

0. =w, + Vd(Kyeby +Ky sineyy,)

where v, @, are the desired linear and angular velocities
of the mobile robot; Kx , Ky and Ky are all positive
constants ; and e, €y and e, are three instantaneous
error variables associated with the body frame. In this
work, the VFO control feedback method is applied to
high-level closed-loop control of the robot’s position [7-
10]. The kinematics modelling of the 4-TW SSMR can be
expressed as

XN cos¥ 0 cos¥V 0
Yy |=| sin® 0 {VB}: sn¥ vy +| 0|0 (2)
N o 1? 0 1
or
q=g,u; +8,u, 3)

where q = [XN,YN,‘{’]T .8, 2 [cos‘l’ sin ¥ O]T ,

g, = [O 0 1]T, u, =vgp and u, =®. The VFO approach
comes from a simple geometrical interpretation of a
possible time evolution of Equation (2) or (3).

In the VFO strategy the trajectory tracking control
problem is divided into two subtasks: convergence of
position and orientation to the desired values. The vehicle
is driven by the pushing control vs with a careful pushing
strategy, while the orienting control w is responsible for
matching the vehicle’s heading vector with the position
convergence vector. Such tasks are accomplished with the
help of the choice of a proper convergence vector field,
which defines the instantaneous convergence direction
and orientation of the vehicle. The control position errors
e = [ex,ey]T are defined as:

P
e X, -X
B e O A T ) I 4)
e 949 (
! L’y} {Yd ~ Yy }
where q; =[X4, Yy ]T and q* = [XN,YN]T are the desired
and actual positions of the mobile robot. The convergence
vector field is defined as h é[hl,hz,h3]T :[hT,hO]T eR®
where h b € R? defines the convergence direction and

orientation of the q* sub-state, and h_ defines the
convergence orientation of the ‘¥ variable. For VFO
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tracking control, the positional component of the

convergence vector field is defined as a linear

combination of the control position errors and

feedforward terms as follows:

h, -
hp:{hj:erIﬁ—qd, K, >0 ®)

whereK is a design parameter, q, is the desired
velocity vector.

Using kinematics modelling (2), the simultaneous
attenuation of both the position and orientation errors
during a transient stage requires highly oscillatory
vehicle movement, which usually does not occur in
practice [10]. To avoid transient oscillations the third
component of h can be designed to introduce the so-
called auxiliary orienting variable y, =arg(h,) rather
than the desired orientation angle'V;. The auxiliary
orienting variable , allows the robot to approach a
position  trajectory q; =[Xd,\{d]T smoothly, and is
described by Equation (6) as:

w, = Atan2c(h, sgn(vy),h;sgn(v,)) (6)

where Atan2c(.,,.): RxR - Ris a continuous version of
the four-quadrant function Atan2(,.):RxR—>[-7,7)
(refer to the appendix in [7]). The auxiliary orienting
variable is now introduced as:

e, =y, -¥ (7)

Since the third component, which is the convergence
orientation, is:

h,=h,=K.e, +y,, K,>0 8)
where K is a design parameter, and

v hzhl _hzhl
' hi+h}

©)

Using the principles of the VFO method, the VFO
feedback control law is:

u, = g;Thp =v.=u,; =h;cos¥ +h,sin¥ (10)
u2:h0:>wc:u2:Kaea+l/)a (11)

where vc and wc are the linear and angular velocity
outputs from the VFO controller. The left and right

angular speed inputs|[w, , @y ] are computed using ve and
wcby using the Jacobian matrix as follows:

Mk,

L

2r {Vc} (12)
L ||

2r

T I
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where r is the radius of the tracked wheel and L is the
distance between the left and right sides of the robot.

3.2 The tuning fuzzy VFO feedback control method

From Equations (5) and (8), it can be seen that the
position and orienting components of the convergence
vector field are similar to a PD control, but the derivative
parameter is fixed at one. The Kp and K are considered to
be proportional parameters. However, the conventional
VFO feedback control does not offer reasonable
performance over a wide range of operating conditions
because of the fixed gains used. That is why fuzzy logic
has to be chosen to tune the proportional parameters K
and K, of the VFO feedback control automatically. This is
called the fuzzy VFO feedback control method (FVFO).
Based on the definition of the control position errors
e, = [eX,ey]T , Equation (5) can be rewritten as

h K, ©0 e .
hp:|: 1:|: P |:X:|+qd, pr,pr>O (13)
hy) | 0 K, |e

where the Kp in Equation (5) is separated into two
components pr'pr corresponding to e and ey,
respectively. Then the three parameters K, , K and K,
are tuned by using three fuzzy tuners. The detailed fuzzy
VFO scheme is shown in Figure 6.

LY
VFO fedddback corNthod]v;—b
X
s

e=[e,.e,,€a]”

Desired
trajectory

3 3 C Ky Ka
1) Ko=[Kox, Kpyl™

Feedback signals from the EKF

Figure 6. The tuning fuzzy VFO scheme of the high-level closed-
loop control

From Figure 6 it can be seen that there are three fuzzy
tuners for the three output parametersK,,, , K, and K, .
Two input signals are needed for each fuzzy tuner [14];
the absolute error lel and derivative error Idel, such as
le land lde, Ifor the pr tuner, |ey |and|dey | for the
pr tuner, and le,landlde, Ifor the K, tuner. The
ranges of these inputs are from 0 to 5, which are obtained
from the absolute values of the system error and its
derivative through the scale factors chosen empirically
from experiments. Triangle and trapeze membership
functions are then utilized to create the fuzzy input
partitions. Here, five membership functions (VS, S, M, B,
VB) representing the five input states (very small, small,
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medium, big, very big), respectively, are used for the
controller. Details of the fuzzy inputs’ membership
functions are shown in Figures 7 and 8 (a =b =5).

»
0 0.125a 0.3125a 0.5625a a
Figure 7. Membership functions of inputs le:|, leyland leal
A
s S M B VB
A
»
0 0.25b 0.5b 0.75b b

Figure 8. Membership functions of inputs Idex|, Ideyland |de.l

A
Vs S M B VB
| A .
e - o »
0 0.25 0.5 0.75 1

Figure 9. Membership functions of the outputs kpx, kpy and kpa

There are three outputs from the three fuzzy tuners: kp,
kyy and ks with the outputs having ranges from 0 to 1.
Singleton membership functions are then used for the
fuzzy output partitions. Figure 9 shows five membership
functions (VS, S, M, B, VB) corresponding with the five
output states (very small, small, medium, big, very big),
respectively. Because the same properties of the three
output parametersK_ , K, and K,
proportional parameters, fuzzy rules are composed
generally as follows, using the above fuzzy sets of input
and output variables:

are used as

Rule i: If lex| (leylor ledl) is Ai and Idex| (Ideylor ldeal) is Bi
then kpx (kp}/ or ku) isCi,i=1,2,...,n

where n is the number of fuzzy rules; Ai, Bi and Ci are
the i"" fuzzy sets of the input and output variables used
in the fuzzy rules. Ai, Bi and Ci are also the linguistic
variable values of the input and output signals in the
fuzzy tuners.
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Idel
Fe K ea VS S M B VB
VS VS VS VS VS VS
S M M S S S
lel M B B M M M
B VB VB M M M
VB VB VB VB VB VB

Table 2. Rule table of the fuzzy tuners

The rules of the fuzzy tuners are designed as shown in
Table 2. The MAX-PROD formula is chosen as the main
strategy for the implication process:

Ky =max(u(e) p(de)) (14)

where u(e), pu(de) are membership values with respect to
input variables ; y(i,ut is the membership value with
respect to the output variable at the i rule. The centroid
defuzzification method is used to convert the aggregated
fuzzy set to a crisp output value. In this case, because the
membership functions for the fuzzy output partitions are
in Singleton form, the outputs of fuzzy tuners are
calculated as:

25 i
Z,u (l)ut ’ yz)ut
YOut = 1:1257 (15)
lu(lmt
i=1
where yi)ut is the output value of the i" rules which can be
determined in Figure 9; the output of the fuzzy tuner
Yout 18 kex, kpy or ka. Then, these output values of the fuzzy
tuners are substituted into Equation (16) to compute the
proportional parameters K pr and K, in Equations

px’
(8) and (13).
pr = pr min + kpx (prmax - pr min)
KPY = prmiﬂ + ku(KPymax - prmin) (16)
Ka = Kamin + ka(Kamax - Kamin)
where [prmax’prmin] 4 [prmaX’prmin] and
[K,max-Kamin] are the ranges of pr , pr and K_,

respectively. In this paper, these ranges are set from 2 to
4.5and they are determined from experiments.

4. Extended Kalman Filter (EKFx) and Slip estimation
(KFA) design

4.1 AHRS kinematic model and velocity constraints
4.1.1 AHRS kinematics model

We define a navigational reference frame N(X,Y,Z) and
robot body frame B(x,y,z) as shown in Figure 10. Let
PN(E=[XN() YN(E) ,ZN)]T € R?, VN(E=[VX(t), Vi(t), VA()]T
eR® and O©=[¢,0,y]" eR>denote the position, the
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velocity and the attitude angle vectors of AHRS in the N
frame, respectively. We also define AHRS acceleration,
angular rate measurement, acceleration walking bias and
angular rate walking bias in the B frame as as = [asx, asy,
as,|T € R™ op= [cwsx, wsy, ws.]T < R , bas = [babx, bay, bas]T
eR’ and bgs = [bgsx, bgsy, bgsz]T < R’ , respectively.

Trajectory'/
/

Figure 10. An AHRS kinematics model of a 4TW SSMR

After subtracting the constant offset and local gravity
vector, the acceleration and angular rate models can be
described by [15]:

ag =Xg +bp + W, 17)
g =Ty + bgB +Worros (18)
with
: 1 26 of s
b= _:baB .. Waccbias (19)
2
b=~ b O o

where the true acceleration vector, the true angular rate
vector of the vehicle in the B frame, the acceleration white

noise and the angular rate noise are
Ir

white
o re . . _ T
Xp =[Xpy, Xpy, Xp,|" s Tg = [Ty, Mgy 15,1 Waccel and w,

N yros /
respectively. Andz,, o) 5, W

2
accbias / z-g 4 o-bgB and wgyrobias

are time constants, noise variances and zero-mean white
noises with E[w?]=1 of acceleration walking bias and
angular rate walking bias and f is the sampling
frequency.

We define the state vector

;((t) = [PN (t),VN (t),@)(t),baB (t),bgB (t)} eRY  of the
model process. The kinematic motion equation for AHRS
can be simplified as:

www.intechopen.com



- VI - r 0 -
CIE;I (aB - baB +wacce1) 0
0
q@(a)B _bgB+wgyros) >
7= 1 + |2 20
——b 5 accbias
7, a a
2
—ib Zfso_bgB
gB robia
| Tg N Tg gyro s—

where Cg and qg are the transformation matrix from the
B frame to the N frame and transformation matrix of the
Euler angles, as given by the following matrices:

c,C

_S'//C¢ +C S¢SH S¢SW + CWS€C¢

% %
N _ 22
Cp =] S, €40, +565,5, —5,0, +8,,5, | (22)
—S, CpSy 4o

1 S ty ¢y ty
d6=|0 ¢,  -s, (23)

0 s,/c, c4lcy
where ¢, = cos#,s, =siné,t, = tand and the same

notation convention is used for angles ¢ and y .
4.1.2 Velocity constraints

In the 4-TW SSMR, the motors that power the wheels on
each side are geared internally to ensure that the velocity
of the two adjacent wheels on each side are synchronized
and thus have the same velocity at ground contact. We
define v ,vy as the left and right linear velocities of the
robot, thus, we have:

VL = Vix = Vax

(24)
VR = Vax = Vax

where v, , v, , v, and v, are the centre linear velocities
for the front-left, rear-left, front-right and rear-right
wheels, respectively, as shown in Figure 11. The
longitudinal wheel slips of the left and right wheels
A, Az are defined as ratios of the wheel velocities and
centre velocities [16], as follows

T -V
By =L
“ (25)
T -V
ﬂ'R: @R R
Ty

where @, ,w; are the wheel angular speeds for the left
and right sides of the mobile robot. From Equation (25), it
can be seen that the wheel slip is 4 €[0,1]if the wheel is
under traction and A € (-w,0] when the wheel is braking.
Using the definition of the slip in (25), we have

v =(1-A)ray (26)
v = (L= A e
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P=[Xn, Yn, ¥

N Xn X
Figure 11. The 4-TW SSMR kinematics

Because of the symmetric mechanical structure of the
robot, it can be assumed that the centre of mass (COM) of
the robot is located at the centre of the geometry (COG) of
the body frame. The AHRS coordinate is located at the
COG of the body frame in the B frame, as shown in
Figure 10. Using two wheel encoders (one for each side of
the vehicle) we obtain the AHRS velocity vector
Vg = [VBX,VBy,VBZ]T in the B frame. From (26), using two
wheel encoder measurements and estimated slip
parameters, we obtain the longitudinal velocity v,  as:

Vo == e+ (- A ] (@7)
Based on [16], since the four tracked wheels of our robot
are always in contact with the ground and since the
AHRS is fixed on the robot platform, the velocity
constraints Vpy s Ve, in the y-axis and z-axis directions for
the AHRS device can be simplified to equal zero. The
noises in the longitudinal velocity vsx can be expressed as
the sum of the noise of the left and right wheels” angular
speeds wr and wr as measured by the encoders. It is
assumed that the noises for wr and wr have a normal
distribution with a zero mean Gaussian and
corresponding variances, and there is no cross-correlation
between the noise of wr and of wr [17]. The noise variance

of the longitudinal velocity vs: can be expressed as:

2
ot = (1= 2 var(eg ) + (1= 2 var (o)) (28)

The variances a&By , G\%Bz of the lateral velocity Vgy and the
ground surface topography vy, , respectively, are also
expressed by zero. In order to obtain the longitudinal
velocity ve: and its noise variance, we have to estimate
slips 4, and 4y . A new method to estimate these two slip
values is introduced in Section 4.3

4.2 Extended Kalman Filter (EKFx) design

Now, we define the state variable’s vector
X(k) =[Py (k), Vy (k),0(k),b_5 (k),b gB(k)]T e R . We rewrite
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the AHRS kinematics equation shown in (21) in discrete-
time form, then we obtain the process model as:

X(K) = f(X(k — 1), u(k), w(k), AT)

=X(k-1)+ AT * g(X(k - 1), u(k), w(k)) @9)

where the AHRS input signals at the k*» sampling time are
u(k) =[ag(k),@5(k)]" € R®, and the data sampling period
is AT. Also, the nonlinear function g of the process model
is:

gp
gv
g(X(k—1),u(k), w(k)) =| 8¢
8aB
8B
V(k-1)
Cy (k=D (ag(k) = b p(k=1)+ W, (K))

qo(k- D(“’B(k) ~bgg(k-1)+ Wgyms(k))

- 1
—T— b (k-1)
1
b (k-1)
gB
L Ty J
= 0 .
0
0
2f o2
+ s~ ba
%waccbias(k)
: (30)
2f50't2)gB
gyrobias(k)

and

W(k) = [waccle (k)’ wgyros(k)’ waccbias(k)’ Wgyrobias(k)]T € Rlz
is the process noise vector.

With velocity constraints (27), the AHRS velocities in the
B frame are considered as the measurement vector
y(k) :[VBX(k),VBy(k),VBZ(k)]T eR®. Including the wheel
encoder measurement noise and ground topography, the
measurement model is rewritten in discrete-time form as:

N T
y(K) = h(X(K) + n(k) = (C} ) Vg +n(k) (31)

where n(k) represents measurement noises. We assume
that the measurement noises n(k) are independent, zero-
mean and Gaussian white noise, i.e., n(k)~N(0, R). The
covariance matrix of the measurement noise is:

R(k) = diag(02s,, 7

By Ten,) €RTS (32)

where Uin , O_\%By , oiBZ are calculated in Equation (28). The
EKFx was implemented by using the systems (29) and
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(31) in order to obtain the estimated positions, velocities
and attitudes of the robot.

4.3 Slip estimation (KFA) method

In order to determine wheel slip parameters to
compensate for the velocity constraints and their variance
values in Section 4.1.2, a discrete Kalman filter, denoted
by KFA, is designed. By giving vsx in the body frame B
and yaw ratey, the wheel centre velocities along the x-

axis for the left and right side’s wheels are calculated by

V= Ve — Y
2 (33)

L.
Vi =VBX+EI//

By substituting (33) into (25), we have:

L.
TOL Vit Y
AT e
- (34)
ra)R_VBx_El//
%:7
raR
__ 1 |ve Ly
wL_l—zi r Zr}
= (35)
1 | Ve Ly
“R 1-Ag |t 2r

We define the unknown parameters:

— l . p— 1
1_lLlyR 1_2'[{/

Substituting (36) into (35), the relationship between the
angular speed from the encoders and unknown
parameters is described as:

" Ae(—o,1]=ye[0,+0) (36)

Ve Ly 0
|:a)L — r 2r |:ij| (37)

r 2r

The slip estimation based on the discrete Kalman filer
(KFA) is now established. We assume that the slip process
is a random process and then the unknown parameter
process can be modelled in discrete-time form

y(k) :d)ky(k—1)+w7(k—1) (38)

where y(k) =[y; (k), ;/R(k)]T is the process state vector at
time k step, wy(k):[wﬂ(k),wyz(k)]T is a process noise
vector, and ®, is the state transition matrix which is
defined as:
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From Equation (37), a measurement model can be written
which relates to the encoder measurement noises as:

z(k) =H, (K)y(k) +n, (k) (40)

where z(k):[a)L(k),a)R(k)]Tis the angular speed vector
from two encoders at time step k, n y(k) =[n ﬂ(k),nyz(k)]T
is the measurement noise vector and H (k)is the
measurement matrix, which is calculated as:

U () Ly(k) 0
2r

0 {mk) . Lgﬁ(k)J

r 2r

H, (k)= (41)

where \AZBX(k),l/;(k) are the estimation values of the linear
and angular velocities of mobile robot in the body frame,
which are computed as:

V() =V, () cos( (k) + V, (K)sin(p (k) (42)

oG —p(k-1)

e (13)
where \A/X(k), Vy(k) and (k) are given by the EKFx in
Section 4.2. Systems (38) and (40) are used to perform the
KFA in order to estimate the wheel slip parameters of the
left and right sides. From Equation (36), the estimated slip
parameters at the k step are calculated using the
estimated unknown parameters p;(k)and 7(k)as
follows:

A 1
K)=1-
A0=17270
Ao (K)=1— 1 “
A r(K)

Based on previous descriptions, the estimated slip values
ﬂt and X,Rare obtained indirectly using the unknown
parameters 7, and 7 . With this method, the current
values Vg (k) ,yj(k) (in Equations (42) and (43)) are
calculated by using the current state )A((k) and )A((k —-1) of
the EKFx in Section 4.2. Similarly, the current estimated
slip values in Equation (44) are used to compute the
longitudinal velocity vg (k)in (27) and its noise variance
value in (28) in order to perform the EKFx. After these
analyses, there are two Kalman filters running
concurrently; this is called a dual estimation algorithm [18-
19]. As illustrated in Figure 12, the top EKFx generates
state estimates and requires Ak - 1) for the measurement
update, the bottom KFA generates slip state estimates and

requires )A((k—l) for the measurement update. Table 3

www.intechopen.com

describes the dual estimation process using mathematical
equations [20-21].

Time Update Measurement

EKFx = Update EKFx

Ahrs data inputs

Encoder measurements

Time Update Measurement
KFA Update KFA

Figure 12. The dual estimation algorithm

o Initialize with:

7(0)=E[»(0)1,P,(0) = E[(7(0) ~ 7(0))(»(0) = 7(0))"]

X(0) = E[X(0)],P(0) = E[(X(0) — X(0))(X(0) - X(0))"]
o Fork efl,...,o}, the prediction step for KFA is

Hk/k-1)=d, 7(k-1)
P (k/k-1)=®,_P (k-1)d[_, +Q,

and the update step for KFA is

Vg (k=1) Ly(k-1) 0
2r

H, (k) = ) .
’ 0 [vgx<k1>+w<k—1)]

r 2r
K, (k) =P (k/ k—l)Hz(k)[Hy(k)Py(k /k~DHT (k) +Ry(1<)]_1
7(k) =7k / k=1)+ K (K)[z(k)-H, (k)7(k/k-1)]

P (k) = [I K (kH (k)] (k/k-1)

A () =1- , (=1

n( 7

where Qy and Ry(k) are the process and measurement
covariance matrices of w 7(k) and ny(k) , respectively.

o The prediction step for EKFx is
X(k / k1) = X(k 1) + ATg(X(k — 1), u(k),0)

P(k / k—1) = F, (k)P(k - )E{ (k) + W(k)QW (k)

and the update step for EKFx is

Xuan Vinh Ha, Cheolkeun Ha and Jewon Lee: Fuzzy Vector Field Orientation Feedback Control-Based Slip

Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-Steered Mobile Robot



v (k) = 2 (1= Aoy (k) + (1 g o ()

2 ~ ~
Top = rz((l — Ig(k))? Var(a)R ) +(1- 2, (k))? Var(a)L ))
() = [V, (09, v, (k) v, (0] € B

R(k) = diag(ang ,agBy,

O-\%Bz) eR>®
S(k) = Hy (k)P(k / k = 1)H} (k) + R(k)
K(k) =P(k / k- 1)H; (k)S (k)
X(k) = X(k / k= 1) + K(K)[y(k) — h(X(k / k —1),0)]
P(k)=P(k / k- 1) - K(k)H, (k)P(k / k- 1)

where
F (k)_af(X,u(k),O) W(k)*a—f
x\&)= ’ - !
oX X(k-1) ow ()A((k—l),u(k))
oh(X,0
Hx(k):iéx )
X(k/k-1)

Q is the process covariance and the detailed
calculations of Fy (k), W(k) and H, (k) are described in
the Appendix.

o Updating estimation values GBX(k),xﬁ(k) for KFA as
Uy (k) = V, (k) cos(i7(K)) + V, (K)sin(7 (k)

k) —y(k-1)

(k)= AT

Table 3. The dual estimation equations
5. Experimental results

In this section, experiments were performed to prove the
effectiveness of the combination of the proposed FVFO
and slip compensation methods for the robot’s position in
a real-time application. The system was performed on
concrete terrain in an outdoor environment. The
experiments involve two scenarios:

e Scenario 1: The mobile robot is controlled along a
desired trajectory with two curves in two cases:
without and with slip compensation.

e Scenario 2: The mobile robot is controlled along a
desired circular trajectory with a 2-m radius in two
cases: without and with slip compensation.

5.1 The use of the FVFO method for mobile robot without slip
compensation

In this section, the proposed FVFO method is performed
in two scenarios without slip compensation. Additionally,
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the stable tracking control method (STC) and the
conventional VFO feedback control were applied in order
to compare them with the FVFO results.

In the first scenario, the output trajectories of the three
methods are shown in Figure 13 are and compared to the
desired trajectory. The response of STC is quite different
from the desired response, while those of VFO and FVFO
are close to the desired response. The linear and angular
velocities of the three methods, shown in Figures 14 and
15, are also close to the desired velocities despite the
mechanical vibrations and sensor noises.

20} f—
15}
E
(%2}
— 10 -
3
>
05} i j
Desired trajectory
,,,,,, STC without slip
,,,,,,, VFO without slip
0.0 —— FVFO without slip
0 2 4 ° ’
X axis [m]

Figure 13. The desired, STC, VFO and FVFO trajectories,
respectively, without slip compensation in scenario 1

In Figure 16, the position error of FVFO, which is the
distance from the estimated position of the robot at the
defined instant to the nearest point of the desired
trajectory, at any instance in time is the closest to zero
compared to those of the STC and conventional VFO. The
results suggest that the proposed FVFO has improved the
performance of the solving of the path tracking problem.
Consequently, the Root Mean Square Error (RMSE) of the
robot’s position of FVFO is the smallest (0.0494[m]), while
those of the STC and VFO are 0.0994[m] and 0.0845[m],
respectively.

0.25

0.20
@
3 015
2
S
K=
5]
>
5 0.10f
]
£
-
0.05 - Desired linear velocity,
—————— STC linear velocity
———————— VFO linear velocity ||
—— FVFO linear velocity ‘
0.00 L . !
0 10 20 30 40 50
Times [s]

Figure 14. The desired, STC, VFO and FVFO linear velocities,
respectively, without slip compensation in scenario 1
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ffffff STC angular velocity
———————— VFO angular velocity
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Figure 15. The desired, STC, VFO, FVFO angular velocities,

respectively, without slip compensation in scenario 1
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o 009}
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Figure 16. The position errors of STC, VFO and FVFO,

respectively, without slip compensation in scenario 1
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Figure 18. The desired, STC, VFO and FVFO linear velocities,
respectively, without slip compensation in scenario 2

0.8
Desired angular velocity| |
-—----STC angular velocity
——————— VFO angular velocity
—— FVFO angular velocity
0.6 - |

Angular velocity [rad/s]

Times [s]

Figure 19. The desired, STC, VFO, FVFO angular velocities,
respectively, without slip compensation in scenario 1

0.20

STC without slip

The trajectory responses of the three methods in the
second scenario are shown in Figure 17. The linear
angular velocities and position errors of the three
methods are shown in Figures 18, 19 and 20. It is clear
that the FVFO result is the best (with the smallest RMSE

,,,,,,, VFO without slip
— FVFO without slip
‘,,f\\

015}

(0.0688 [m])).

Y axis [m]

Desired traj+ without slip
--——— STC traj+ without slip
,,,,,, VFO traj+ without slip
— FVFO trajT without slip

-2 -1 0 1 2
X axis [m]

3

Figure 17. The desired, STC, VFO and FVFO trajectories,

respectively, without slip compensation in scenario 2
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Figure 20. The position errors of STC, VFO and FVFO,
respectively, without slip compensation in scenario 2

5.2 The use of the FVFO method for a mobile robot with slip
compensation

In Section 5.1, although the FVFO method reduced more
position errors than the STC and VFO method, the system
error is still significant. In the field of mobile robotics,
wheel slippage limits the traction and braking ability of

Xuan Vinh Ha, Cheolkeun Ha and Jewon Lee: Fuzzy Vector Field Orientation Feedback Control-Based Slip

Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-Steered Mobile Robot



the robot, and causes large position errors in path
tracking control. In this section, the system is performed
again with slip compensation.

The STC, VFO and FVFO trajectories with slip
compensation in both scenarios are shown in Figures 21
and 24. The FVFO responses with slip compensation are
closest to the desired responses. Based on the slip
estimation, the estimated values from EKFx are more
precise than the
compensation. By considering position errors, it is clear

previous values without slip
that the performance results with slip compensation are
more accurate than previous results without slip, as
shown in Figures 22 and 25. Consequently, the smallest

RMSEs of the proposed method are 0.0124[m] and

0.0121[m] corresponding to the first and second
scenarios.
200
150
E
2 10}
©
>
05} i i
Desired trajectory
ffffff STC with slip
——————— VFO with slip
0.0 —— FVFO with slip
0 2 4 6 8
X axis [m]

Figure 21. The desired, STC, VFO and FVFO trajectories,
respectively, with slip compensation in scenario 1
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****** STC without slip
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02 e VFO slip
a 01— FVFO S|ip
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= 01t

0.2}

0.3 1 1 1 1

Right slip
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Figure 23. The estimated slip parameters of the left and right
wheels of the STC, VFO and FVFO methods, respectively, in
scenario 1
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——————— VFO traj+ with slip
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Figure 24. The desired, STC, VFO and FVFO trajectories,
respectively, with slip compensation in scenario 2
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Figure 22. The position errors of STC, VFO and FVFO,
respectively, without and with slip compensation in scenario 1
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Figure 25. The position errors of STC, VFO and FVFO,
respectively, without and with slip compensation in scenario 2
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It is clear from the above results that slip
compensation is very effective in the field of mobile
robotics. For the first scenario, the robot follows the
desired trajectory, which has two curves. For the first
curve, the angular speed of the right wheels is greater
than that of the left wheels. Then, the traction
phenomenon occurs on the right side while the braking
phenomenon appears on the left. Consequently, the
right wheel slip value is positive and the left wheel slip
value is negative. Similarly, for the right rotation in the
second curve, the right wheel slip value is negative
and the left wheel slip value is positive. Furthermore,
when the robot travels along the straight segment, less
force is needed to drive the robot and the left and right
wheel slips are close to zero. Figure 23 illustrates the
estimated slip parameters of the left and right wheels
for the three methods.

0.0

-0.1

-0.2

Left slip

——————— STCslip
————— VFO slip L
—— FVFOsslip i

-0.3

-0.4
0.24 -

0.16

Right slip

008

0.00 ! L L
0 20 40 60 80

Times [s]

Figure 26. The estimated slip parameters of the left and right
wheels of the STC, VFO and FVFO methods, respectively, in
scenario 2

For the second scenario, the robot follows the desired
circular trajectory counterclockwise. The angular speed of
the right wheels is always larger than that of the left
wheels. Consequently, the right wheel slip value is
always positive and the left wheel slip value is always
negative, as shown in Figure 26. All types of the
estimated slip parameters in both scenarios are consistent.
Tables 4 and 5 show RMSEs of all the experiments in this
work.

RMSE [m] STC VEFO FVFO
Without slip 0.0994 0.0845 0.0494
With slip 0.0688 0.0239 0.0124

Table 4. The Root Mean Square Errors (RMSEs) of the robot
position in scenario 1

RMSE [m] STC VFO FVFO
Without slip 0.1116 0.0882 0.0688
With slip 0.0818 0.0236 0.0121

Table 5. The Root Mean Square Errors (RMSEs) of the robot
position in scenario 2
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6. Conclusions

This paper presents experiments into a method of
controlling the 4-TW SSMR along a desired trajectory
based on estimated feedback control signals from an
extended Kalman Filter, which uses measurements from
an AHRS and two incremental encoders. In this paper,
we proposed a combination of the proposed FVFO and
novel wheel slip compensation methods for the trajectory
tracking of a mobile robot. The extended Kalman filter is
utilized to estimate the positions, velocities and
orientation angles, which are used for feedback control
signals in the FVFO method, based on an AHRS
kinematic motion model and velocity constraints.
Experimental results show the advantages of the
combination of these two methods, which are effective at
overcoming the limitations of the others in the trajectory
tracking control problem for a 4-TW SSMR, e.g. the
commercialized Hazard Escape I" mobile robot.
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