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Abstract: Although there have been many researches on mobile robot localization, it is still difficult to obtain
reliable localization performance in a human co-existing real environment. Reliability of localization is highly
dependent upon developer’s experiences because uncertainty is caused by a variety of reasons. We have developed
a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we
found out that there are several significant experimental issues. In this paper, we provide useful solutions for
following questions which are frequently faced with in practical applications: 1) How to design an observation
likelihood model? 2) How to detect the localization failure? 3) How to recover from the localization failure?

We present design gquidelines of observation likelihood model. Localization failure detection and recovery schemes
are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building
environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover,
the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of
experiments and analysis clearly present the usefulness of proposed solutions.

Keywords: Mobile robot localization, Monte Carlo Localization (MCL), Observation likelihood model, Wheel

slippage, Wheeled mobile robot.

1. Introduction

There have been successful applications on autonomous
navigation of mobile robots. However, developing a
localization scheme for an inexperienced newcomer is
still a difficult problem since there are various issues that
affect to the localization results. In this paper, we
concentrate on three issues which are design of
likelihood model, localization failure
detection and recovery from the failure. So far, the

observation

presented issues are difficult to be solved, and the
have been developed mainly based on
developer's experiences.

Thrun et.al. introduced the Monte Carlo Localization
(MCL) in (F. Dellaert, et. al, 1999). The MCL technique can
deal with both global localization and local localization
problem. The MCL is widely used due to its superior
robustness to sensor noise. Gutmann et. al. conducted an

solutions

experimental comparison of MCL with other localization
schemes in (J. S. Gutmann and D. Fox, 2002).

The observation likelihood model design has been
studied extensively to solve the mobile robot self
localization problem. Thrun et.al. presented the Beam
Model in (S. Thrun, etf. al. 2005). The Beam Model is
computed by the multiplication of individual sensor
measurements. One of the disadvantages of the Beam
Model is the discontinuity of the computed result.
Therefore, the Beam Model requires additional filtering
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schemes to exclude unmapped obstacles in a given
environmental map. Another observation likelihood
model is the Likelihood Field in (S. Thrun, et. al. 2005).
The Likelihood Field is difficult to be applied in dynamic
environments because the performance becomes worse
under data corruption. Therefore, it is desirable to build
robust observation likelihood model under the obstacles.
In addition, design of observation
likelihood model should be clearly presented.

Another important problem in this paper is the detection
of localization failures. Sidek and Sarkar proposed the
FDI framework to detect wheel slippage by using the
neural network in (N. Sidek and N. Sarkar, 2006). Sidek
and Sarkar exploited an additional accelerometer.
Sundvall and Jensfelt proposed a method for detecting a
collision due to obstacles which cannot be detected using
the laser scanner in (P. Sundvall and P. Jensfelt, 2006). By
using the CUSUM (F. Gustafsson, 2000) test, they
estimated the difference of the expected poses between
the odometry and the laser scanned image. Verma et. al.
presented a method for detecting a fault of the Rover,
which is equipped with 6 wheels, by using the particle
filter (A. Doucet, et. al. 2001) in (V. Verma, et. al. 2004).
This method cannot be applied directly to an indoor two
wheeled differential mobile robot. In addition, it requires
high computational cost as shown in (C. Plagemann, et.
al., 2007).

requirements
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Observation Likelihoods | Limitations

Beam-Model
(S. Thrun, et. al., 2005)

- Performance drops under unmapped obstacles. Additional algorithm is
required to filter out obstacles.
- Probability distribution is discontinuous.

Likelihood-Field Model
(S. Thrun, et. al., 2005)

- No consideration of the occlusion of a line of sight during likelihood computation

Sampling Schemes Limitations

SRL -Noise rejection and failure recovery cannot be carried out simultaneously.

(S. Lensor, et. al., 2000)

- Landmark based approach.

Mixture MCL
(S. Thrun, et. al., 2000)

- Requires additional data structure such as KD-tree to represent the proposal
distribution based on the sensor measurement.
- Computationally expensive because additional samples are required

Verma
(V. Verma, et. al., 2004)

information.

- Computationally expensive.
- Localization failure detection is not available without redundant odometry

Table. 1. Features and limitations of previous localization schemes.

In order to recover from the localization failure, Thrun et.
al. introduced the MCL with the mixture proposal
distribution in (S. Thrun, et. al., 2000). The scheme in (S.
Thrun, et. al., 2000) maintains partial samples as a global
localization status which is distributed based on the
sensor measurements. However, it is not sufficiently fast
to deal with localization failure due to wheel slippage.
Lensor and Veloso introduced the Sensor Resetting
Localization (SRL), which is used for soccer robot
localization in (S. Lensor, et. al., 2000). The SRL is difficult
to apply in a large office building environment. The

limitations of previous researches summarized in Table. 1.

We developed a range sensor based integrated
localization scheme. The proposed scheme can be used
for human co-existing real environment such as a science
museum or an office building. Lee and Chung introduced
a localization algorithm using the selection technique that
decides a strategy between the global localization and the
local localization in (D. Lee and W. Chung, 2003-2006).
Kim and Chung proposed a navigation behavior selection
scheme that exploits localization status and navigation
history in (G. Kim and W. Chung, 2007 ; W. Chung, et. al.,
2007) based on the Generalized Stochastic Petri-Nets (J.
Wang, 1998). From our experiences, we found out several
significant issues in the MCL based pose estimation. In
this paper, we focus on three key issues based on the
MCL scheme. The three issues are as follows:

(1) Design requirements of a desirable observation
likelihood model and performance analysis of our design.

(2) Localizer status estimation by computing map-
matching error.

(3)  Semi-global to deal with
localization failure due to the abrupt wheel slippage.
The first issue is the design of an observation likelihood
model of the MCL. The design requirements are
established. Thereafter, map-matching function and
probability mapping function are developed. The
usefulness of the proposed design is verified through

localization scheme

experiments.
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The second issue deals with the following question: Can
we rely on the current localization result? There are many
exceptional situations such as severe sensor data
corruption by visitors, or abrupt wheel slippage due to
uneven floor conditions. In this paper, we concentrate on
the localization failure due to an abrupt wheel slippage.
The third issue is the semi-global localization scheme,
which is developed to deal with the localization failure
due to abrupt wheel slippage. Once the localization fails,
samples should be redistributed over the entire region of
the given environment to carry out a global localization.
In our approach, the sample distribution area is
efficiently limited to a small region by exploiting the
history of the localization status.

The remainder of this paper is organized as follows. In
Section 2, we present the design requirements of the
observation likelihood model and our observation
likelihood model. In Section 3, it is shown how to detect
the localization failure. The recovery strategy is also
presented. Experimental results are presented in section 4.
Finally, some concluding remarks are given in section 5.

2. Observation Likelihood Model Design

2.1. Observation likelihood model design

The first step in the design of the observation likelihood
model is the determination of pose error E(x), where x
is a robot pose. E(x) is determined by a sensor type, map
representations, selection of features, map-matching
function and so forth. E(x) is affected by sensor noise
and unmapped obstacles.

Our pose error E(x) corresponds to the map-matching
error between the scanned and predicted range images.
The map-matching error should be minimized at the real
pose. The error should be smoothly increased if the pose
of the computed reference sample pose moves away from
the real pose. This fact implies that sensitivity J0E(x)/0x
should not be too high.
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Another significant property is that E(x) should be
insensitive to partial corruption of sensor data. Partial
corruption occurs when there are unmapped obstacles
around the robot and JE(x)/0x becomes smaller than the
obstacle free case. However, it is desirable that E(x)
maintains its overall convergence property with reduced
accuracy.

After the definition of E(x), the next step is to design a
probability mapping function P(E) to perform re-
sampling. The term OP(x)/0x determines the resultant
convergence speed. If OP(x)/0x is too high, convergence
property becomes worse. Since the pose estimation result
is too much sensitive to sensor data, convergence to
wrong position may take place when there exist sensor
noise or data corruption due to obstacles. MCL may fail
to track the robot pose because too fast convergence
reduces the area of sample distribution. The larger area of
sample distribution implies higher uncertainty handling
capacity.

On the other hand, too small 0P(x)/0x results in poor
performance of pose estimation due to slow convergence.
Therefore, it can be concluded that P(E) and E(x)
should be carefully designed in order to achieve fast
convergence and appropriate sample distribution area.

2.2. Design of map-matching error

Scan Data
a7

*
/s Grid Map

Laser Seanner

Fig. 1. Illustration of matching error.

Fig. 1 illustrates a designed map-matching error function
named "matching error”. The matching error E, (x) is
defined as the difference in the area between the free
space of the scanned image and the expected reference
image. The expected reference distance is computed from
a given grid map. The term Scan distance Z] corresponds
to jth measured distance from the scanned data. The term
Reference distance Z/” is a computed distance obtained by
using the ray-casting algorithm. The matching error is
defined by the following equations:

4" =(Z")Y Ao 6

Al =(Z))’ A6 @)
) =|4] - 4] ®)
A4

x100(%) @)

Equations (1) and (2) imply the area of the free spaces.
Equation (4) defines the matching error £, (x). A# is the

angular resolution of laser range finder. The denominator
in eq. (4) carries out normalization. There are two roles of
normalization. The first role is that the reliability of
current map-matching performance can be evaluated as a
bounded region from 0% to 100%. The designer can
evaluate the localizer reliability by considering E, (x).

The second role of normalization is to modulate the effect
of obstacle locations. E,(x) becomes too large when

obstacles are close to a robot without normalization.
E (x) was empirically designed after testing a large

variety of candidate functions. The proposed matching
error shows several advantages. In the conventional
approach in (S. Thrun, et al, 2005), the error is
independently evaluated for each range data. The
resultant positional probability is computed by
multiplication of individual probabilities. Therefore,
corrupted sensor data should be filtered out by using
additional filtering techniques, as shown in (D. Fox, et. al.,
1998). However, the proposed matching error in this
paper is less sensitive to partially corrupted sensor data
due to obstacles.

Fig. 2 shows the result of the matching error distribution
simulation when the real robot pose is located at (101,101)
in the given map. For simplicity, the environment is a
square and we use a grid map. The boundary of a
rectangle is occupied and represented by black dots. Fig.
2(b) shows the matching error distribution with four
obstacles, which are denoted by black dots. From Fig. 2(a),
it is verified that matching error E, (x) is minimum at the

real pose and the error surface smoothly increases
according to the pose error. Fig. 2(b) shows that the
overall shape of E, (x) surface does not change a lot even

though the accuracy was decreased due to data
corruption by obstacles.

Fig. 3 shows the matching error under orientation errors.
It is verified that E, (x) is designed to achieve desirable

convergence properties for all cases. Therefore, it can be
concluded that the proposed map-matching function
E,(x) satisfies the design requirements in section 2-1.
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Fig. 2. The matching error distribution plot as the robot
position changes for two cases: (a) without obstacle and
(b) with for obstacles (marked by black dots).
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Fig. 3. The matching error plot along the changes of the
orientation error.
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2.3. Probability density function using the matching error

Once map-matching function is defined, a developer
should design the probability update rule, which is
represented by p(o,|x;,,m)<«E, (x). One example is to

it
use the reciprocal error function in (D. Lee and W. Chung,
2006). However, it is difficult to estimate resultant
performances of the localizer by using the reciprocal
function.

Our suggestion is the use of a saturated Gaussian
function as the probability density function. By
monitoring the standard deviation of matching error, a
designer can obtain quantitative insights into the
convergence  properties.  Furthermore,
convergence can be prevented by using the saturation.
The probability saturation region is designed in order to
avoid erroneous concentration of probability. The
localization accuracy cannot be higher than the resolution
of a grid map and sensing accuracy. Therefore, it is
advantageous to saturate the probability around the
center of Gaussian distribution. The excessive number of
iteration may reduce the pose distribution to a very small
area and may disturb the uncertainty handling capability.
Pfaff et.al. proposed a localization algorithm using an
adaptive likelihood model in (P. Pfaff, et. al., 2006). The
adaptive likelihood model is advantageous in dynamic
environments. In this paper, we exploit this algorithm.
We use the statistical data of the samples, which are the
mean value and standard deviation of the sample's
matching error, to adjust the convergence speed. The
designed probability updating rule is given by the
following equations:

excessive

P(E, (X)) =—L—: E_(x) < bias )

270!

P(E, (x)) ==L exp[ £~ bias) }
\/27[0'; ZO't (6)

bias < E (x) < u, + 30,
P(E, (X)) =0;E, (x) > 4, +30, -

We compute the probability using (5), (6), and (7). 7 is a
normalizer. The o, and pu, denote for the standard

deviation and mean value of sample's the matching error
at time f Bias determines the region of probability
saturation. The adopted Bias is 3% because the grid
resolution is 10cm. The region of saturation is inside of 3%
E,(x) contour in Fig. 2(a). From Fig. 2(a), it is clear that

3% contour region is much smaller than the grid
resolution. This value implies that the saturation region is
about 30cm, as shown in Fig. 2(a). Equation (5) implies the
saturation region of probability. The bias means that if the
matching error is smaller than the bias, the probability is
saturated. Equation (7) shows if the matching error E, (x)

is larger than x, + 3o, . This fact implies that the region of

convergence covers 99.7% of the entire probability
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distribution region. Equation (6) shows the Gaussian
probability function. The bias implies the convergence
limit of the observation likelihood model.

a0 B0 70 80 S0 100 10 1200 1300 140 180
#(10cm)

(b)
Fig. 4. The probability distribution simulation results as
the robot position changes. (Red curve indicates the
highest probability contour.) (a) Beam Model, (b)
Proposed model.

Fig. 4 shows the probability distribution of the Beam-
model and the proposed model under the identical
environmental conditions with Fig. 2(b). It is well-known
that the continuous distribution is more robust than the
discontinuous distribution. As shown in Fig. 4(a), the
probability distribution shows local discontinuity around
the true position. The positional error is larger than 20cm.
This result implies that the Beam-model requires a large
number of samples to deal with sensor noise. However,
the probability distribution of the proposed scheme is
smooth around the true position as shown in Fig. 2(b).
Therefore, it is advantageous to adopt the proposed
observation likelihood model.

Since the proposed scheme is a range sensor based
localization scheme, it works only when sensor readings
are partially corrupted by obstacles. In the highly
dynamic environment,

additional sensors such as

upward pointing cameras should be installed.

3. Localizer Status Estimation and
Semi-Global Localization

3.1. Localizer status estimation using the matching error

The objective of the localizer status estimation is to decide
whether the current localization status is localizer success
or localizer failure. The matching error was used to detect a
localizer failure. It is assumed that matching error is
greater than a specific threshold when localization is
failed. The major difficulty lies in the determination of the
threshold. The threshold cannot be a single constant.

Sl M ’
30 J ‘\M‘ ‘ ~ r“ [ 1 FI“W | j | ‘J
o A s e
0 0 } 2‘000 ‘ 46026r;ti2(,i00 80‘00 } 1 0600
600 T (a)
0 0 10 20 EWE)[())/O) 40 ;0 (l)() 70
(b)

Fig. 5. Experimentally measured matching error during a
navigation. (a) Matching error history, (b) Matching error
histogram.

Fig. 5 shows experimentally measured the matching error
history while the mobile robot performs 11,000 steps of
the MCL successively. The navigation experiment is
conducted in a typical office building which is shown in
Fig. 7 and travel distance is about 670m. As shown in Fig.
5, the matching error is non-zero due to various errors,
even for a successful localization. The matching error is
affected by the scale of environment, unmapped
obstacles, sensing accuracy and so forth. Therefore, it is
difficult to estimate the localizer status with a constant
threshold of the matching error. In this paper, the
threshold & is the upper limit of the matching error of a
localizer success.
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h=uy,_,. +30,,, +bias ®)

Equation (8) shows the computation of threshold h. x,_,,

is the mean value of the matching error from (i-k)th step
to i-th step. o,_,, is the standard deviation of the matching

error.

Equation (8) exploits the sliding window scheme based
on Hypothesis testing using Gaussian and »” test in (F.
Gustafsson, 2000). The proposed equation is a simplified
representation of the Hypothesis testing. Since bias
indicates the upper bound of the Gaussian probability,
the threshold is shifted by bias. The confidence interval is
determined by 3 o, since the matching error does not
exceed the confidence level in most cases without wheel
slippage. Finally, the sliding window size k is empirically
determined from experiments. k is 500, which
corresponds to 100s.

The localizer status estimation is independently carried
out with the MCL loop for updating cycle of sensor data,
since the MCL cycle time is more slower than the sensor
cycle time. The matching error can be higher than / for a
short time period. In most cases, instantaneous failures
can be recovered by conventional MCL owing to its
robustness. Hence, we use a median filter (E. Olson, et. al.,
2005) to eliminate the short-term outlier values. A median
filter removes the outlier by replacing a data with the
median value of the n surrounding points. In the
experiment, n was set to 15. The localization status is
switched to localizer failure when the computed value of
the matching error by the median filter is greater than /.

3.2. Semi-Global Localization

We propose a semi-global localization scheme to deal with
exceptional localization situations. Many uneven floors
exist in indoor environments. In such a case, abrupt
wheel slippage may occur, which cannot be compensated
by conventional MCL techniques. Using the localization
status history of past movements, we can detect the
moment that robot fell into localizer failure. Therefore, we
can specify the reachable region of the robot. Semi-global
localization implies that the sample distribution can be
limited to the robot's reachable region.

Maximum Motion Boundary

Fig. 6. Conceptual illustration of semi-global localization.
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Fig. 6 shows the maximum motion boundary region as a
circle after the localizer fails to estimate a robot pose.
Suppose that a robot starts navigation at time ¢,

following the reference path. The localizer status is
estimated as a localizer success at time ¢, . While the

robot moves forward, the robot's wheel slips at time ¢, . In

Fig. 6, slip distance of the left wheel was larger than that
of the right wheel. Since it takes time for a robot to detect
localization failure, the robot's localization status was
switched into localization failure at t,. It is clear that the

local tracking may fail at #; as shown in Fig. 6. The

maximum motion boundary region of a robot after slippage
is a circle, as represented in Fig. 6. The maximum motion
boundary region is computed by assuming that the
maximum moving distance is the accumulated distance
from time ¢, to ¢, in all directions.

Sonax = Z(l +30) | As, | )

Equation (9) shows S, ., which is the maximum moving

distance. o is the standard deviation of the motion
model. As, is the moving distance from wheel encoders.

Using a motion model that has the Gaussian probability
distribution, we assume the maximum moving distance

by abrupt wheel slippage as max(d,,,,) =3c . We perform

the semi-global localization in the maximum motion boundary
area with intentionally added 300 samples.

4. Experimental Results

4.1. Experimental environments

ps
20+ B
LT C

15+ A C ||
10 ] | |

60 70 80

X[m]
(b)

Fig. 7. Experimental environments and its grid map.
(a) Target workspace, (b) Grid map.
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Fig. 8. A mobile robot used for experiments.

The experiments with the proposed observation
likelihood model are conducted in a large building,
which is shown in Fig. 7. Fig. 7(a) shows the target
workspace. The environment contains some difficulties: a
mirror-like surface around the elevator hall, which is
located around x=64m~70m and a stair, which is an open
space. Fig. 7(b) shows the environment as a grid map
with a grid resolution 10cm. Fig. 8 shows a two wheeled
differential drive mobile robot. The robot is equipped
with two SICK laser scanners in the front and rear. The
laser range finder scans 180 with 1" angular resolution
and the maximum range was set to 9m.

4.2. Observation likelihood model

Fig. 9 shows a localization result using the proposed
matching error. Fig. 9 shows contour of the matching
error on the left side and probability distribution on the
right side. Fig. 9(a) shows first sampling result in which
the samples are randomly distributed. After the first
update, the samples are converged to a region in which
the matching error is smaller than 60% as shown in Fig.
8(b). After 3 steps of sensor update, the samples converge
to the 10% region as shown in Fig. 8(d). The experiment
showed that the samples converged to the real robot pose
after iterations. The samples did not converge excessively

¢ =20%

e

Probabiliy

(c)

when the saturation was used. In addition, a designer can
monitor the localization result intuitively using the
matching error. For example, the map-matching result
can be clearly monitored quantitatively by drawing the
matching error contour.

Fig. 10 shows the matching error contour under the
different corruption ratios due to obstacles. A corruption
ratio is a percent of corrupted sensor readings, where the
range error is greater than 1m. As shown in Fig. 10, the
contour shape does not change greatly even when
obstacles block the sensor. Therefore, the convergence
property is still maintained, even though absolute
accuracy was decreased.

ObStacles 60 62 64 EBX( )BE w72 74
(b)
Fig. 10. Matching error contour from corruption of sensor
data by obstacles. (a) Corruption ratio 0%, (b) Corruption
ratio 30%.

Probability

2

(d)

Fig. 9. Convergence of samples by MCL. (a) Initial sampling, (b) Sample distribution after 1st sensor data update,
(c) Sample distribution after 2nd sensor data update, (d) Sample distribution after 3rd sensor data updates.
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4.3. Localizer status estimation
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Fig. 11. Matching error history during a navigation. (a)
without median filter, (b) with median filter.

Fig. 11(a) shows the measured matching error that was
monitored when the robot moved in the experimental
environment for about 200s. A navigation experiment
was conducted in the environment shown in Fig. 7 and
the localizer successfully tracked the robot pose. This
means that the localization status was localizer success
during the experiment.

Even though the status of the localizer is localizer success,
the matching error is non-zero due to various error
sources. Fig. 11(a) shows the matching error which
exceeds the threshold # instantaneously, and those
instants are denoted by red-circle. False alarms occurred 6
times. This result implies that the localizer estimation
result might return a localizer failure, which is a wrong
estimation result without the median filter. Fig. 11(b)
shows the matching error with the median filer. As
shown in Fig. 11(b), outlier values are filtered out using
the median filter. Therefore, the result of the localizer
status estimation was always successful without any false
alarms.

Fig. 12. Wheel slippage situation ue to uneven floor
condition.
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As shown in Fig. 12, there are two different floors in our
experimental environment: one is cased with marble and
the other one is cased with rubber tile. Sometimes, two
wheels of the robot are stuck at the boundary of two
different surfaces. As a result, the robot cannot move
forward, even though the control input is pure
translational motion.

Scanned image by laser scanner

e i
‘t
e MCL Sample
i (Robot Pose)

S i )

Maximum
SEeNsor range

Xm)

Fig. 13. Grid map and scanned image obtained with laser
scanner.

Fig. 13 shows grid map and scanned image before the
active wheels are stuck over the floor. As shown in Fig. 13,
the scanned image (denoted by blue dots) and the grid
map (denoted by black dots) matches sufficiently. This
fact implies that the localizer successfully tracked the
robot's pose.

] =—

" 4

3

" 4

Hm) Hm)

© (d
Fig. 14. Localization failure.

Fig. 14 shows localization failure case by abrupt wheel
slippage. Even though the mobile robot cannot move to
forward due to the wheel slippage, the MCL samples
move forward from the real robot pose by the motion
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model. As a result, the localizer failed to track the robot
pose because there were no samples anymore at the real
robot pose.

50

30

E(%)

400 500 600 700 800 900
time(sec)

Fig. 15. Matching error history at localization failure 870s.

Fig. 15 shows the matching error history. Localizer failed
to track the robot pose at 870s due to abrupt wheel
slippage. As shown in Fig. 15, the matching error exceeds
threshold h, which is represented as red circles. As a
result of the estimation, localization status is switched to
localizer failure. The semi-global localization is carried out
after 870s.

_J

Fig. 16. Semi-global localization.

Fig. 16(c) shows that the localizer starts the semi-global
localization exceeded
threshold # by the wheel slippage. As shown in Fig. 16(c),
the sampling region is spread over the reachable region
after slippage at (2, 17). The localizer recovers from the
localization failure after 20s. The area of the reachable
region after slippage was about 2.6m?. If we adopt
conventional global localization instead of the proposed
semi-global localization scheme, the samples should be
spread over the whole workspace. The area of whole
workspace is about 1539 m?. The computational cost is

because the matching error

proportional to the number of samples. If the uniform
sample density is assumed, the number of samples is
proportional to the area of sample distribution. The
required sample size for the successfully global
localization in the given environments is about 5,000 ~
10,000 samples. However, the samples size for the semi-
global localization is 300 samples.It is advantageous to use
the proposed semi-global localization because it is
computationally efficient than the conventional global
localization.

5. Conclusions

Three practical issues of a reliable localization scheme
were addressed and then our solutions were presented.
By using the proposed analysis and design, a practical
and reliable localization solution was developed. The
presented approaches were successfully experimented in
real environments. Recognition of the localization status
greatly improves practical performance, even though the
presented matching error concept is quite simple. The
contributions of this paper are as follows:

(a) Using the proposed structural observation likelihood
model design scheme, inexperienced researchers have
guidelines for designing an observation likelihood model.

(b) The proposed scheme to identify the localizer status
is useful in practical environments.

(c) The semi-global localization is a computationally
efficient recovery scheme from localization failure.
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