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Abstract. In this paper we consider the zeros of the differential polynomials

f2 + af (k) − c where k is a positive integer, and a, c are non-zero constants.

Our result improves a result of H.H. Chen and corrects an error of Y. Xu whose
result related to H.H. Chen.

1. Introduction and results

Let C be the open complex plane and D ∈ C be a domain. Let f be a mero-
morphic function in the complex plane, we assumed that the reader is familiar with
the notations of Nevanlinna theory(see, [5, 12, 11]). We say that f is a Yosida
function if there exists a positive number M such that f ](z) ≤ M for all z ∈ C,
where

f ](z) =
|f ′(z)|

1 + |f(z)|2
denotes the spherical derivative.

One of the most important results in the value distribution theory is the follow-
ing theorem of Hayman.

Theorem A. If g is a transcendental meromorphic function, then either g itself
assumes every finite complex value infinitely often, or g(k) assumes every finite
non-zero value infinitely often for any positive integer k.

As a consequence of Theorem A, we have

Theorem B. If f is a transcendental integral function, then f2 + af ′ has infin-
itely many zeros for finite non-zero complex value a.

In fact, for an integral function f , g = 1/f has no zeros and the zeros of g′−1/a
are zeros of f2 + af ′.

Ye [13], Chen and Hua [2] independently proved that Theorem B can be gener-
alized by substituting f (k) for f ′. In 1996, Chen [1] proved a stronger conclusion
for k = 2 in the case that f is not a Yosida function.

Theorem C. Let f be a transcendental integral function. If f is not a Yosida
function(in particular, if f is a function of order greater than 1), then for any finite
non-zero complex number a and any positive integer k, f2 + af (k) assumes every
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finite complex value infinitely often.

Xu [10] removed the restriction that f is not a Yosida function in Theorem
C, but there is a gap in his proof(the formula (6) does not always hold). In fact,
Doeringer [4] gave an example to show that there may exist some exceptional cases.

Example 1. If w ia a transcendental solution of wk = −2ac(w − c) with a, c non-
zero constants, then w(k) + aw2 may omit altogether the value ac2.

In this note, we shall prove that Doeringer’s example is unique in some sense.

Theorem 1.1. Let f be a transcendental integral function, for any finite non-zero
complex number a and any positive integer k. Set F = f2 + af (k)− c, then for any
non-zero complex number c: either (i)

T (r, f) ≤ (k + 1)N(r,
1
F

) + S(r, f). (1.1)

or (ii) f = −d + Ceλz, where C, λ are non-zero constants and λ satisfies the
equation azk − 2d = 0, d satisfies d2 − c = 0.

Corollary 1.2. Let f be a transcendental integral function, for any finite non-zero
complex number a and any positive integer k. If f does not satisfy the case (ii) in
Theorem 1.1, then f2 + af (k) − c has infinitely many zeros.

Remark 1. If c = 0, Chen ([1], Theorem 1) has proved that f2 + af (k) has infin-
itely many zeros. If c 6= 0, we know there exists an additional condition f is not
Yosida function(the order great than 1) in Theorem C provided that f2 + af (k)− c
has infinitely many zeros. Theorem 1.1 shows the condition of Theorem C is not
necessary and gives a quantitative estimate in the case (i). We will give some ex-
amples to show our results sharp in some sense.

Example 2. If f = −d + Ceλz, where d, C, λ satisfy the condition of case (ii) in
Theorem 1.1 and set k = 1, then

f2 + af (k) − c = [d2 − 2dCeλz + Ce2λz] + aCeλz − c

= Ce2λz + (aλ− 2d)Ceλz + d2 − c

= Ce2λz.

Obviously, f2 + af (k) − c has no zero and does not satisfy the case (i).

Example 3. If f = −d + Ceλz, where d, C, λ don’t satisfy the condition of case
(ii) in Theorem 1.1 and set k = 1, then

f2 + af (k) − c = [d2 − 2dCeλz + Ce2λz] + aCeλz − c

= Ce2λz + (aλ− 2d)Ceλz + d2 − c.

For aλ− 2d 6= 0, we can see f2 + af (k)− c has infinitely many zeros and satisfy the
inequality of (1.1), but the order of f not great than 1. The example also shows
the condition of Theorem C is not necessary.
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Remark 2. Chen’s proof used the theory of normal family, here we will take the
standard notation of Nevanlinna theory, and Wiman-Valiron theory (cf. [7, 9]).
Some ideas come from the proof of Hua in [8].

2. Some Lemmas

If the coefficients of differential polynomials M [f ] are aj , j = 0, 1, · · · , n, which
satisfy

m(r, aj) = S(r, f), (2.1)
then differential polynomials M [f ] is called a quasi-differential polynomials in f .
The following Lemma is nothing but an easy variant of standard Clunie lemma ([3],
Lemma 1).

Lemma 2.1. Let f be a non-constant meromorphic in the complex plane, Q1[f ], Q2[f ]
are quasi-differential polynomials in f , satisfy fnQ1[f ] = Q2[f ], if the total degree
of Q2 ≤ n, then

m(r, Q1[f ]) = S(r, f).

Lemma 2.2 ([5]). Suppose that F (z) is meromorphic in a domain D and set

f(z) =
F ′(z)
F (z)

;

Then we have for n ≥ 1

F (n)(z)
F (z)

= fn +
n(n− 1)

2
fn−2f ′ + anfn−3f ′′ + bnfn−4f ′

2 + Pn−3(f), (2.2)

where an = 1
6n(n − 1)(n − 2), bn = 1

8n(n − 1)(n − 2)(n − 3), and Pn−3(f) is
a differential polynomial with constant coefficients ,which vanishes identically for
n ≤ 3 and has degree n− 3 when n > 3.

Lemma 2.3 (Wiman-Valiron [6, 9]). Let f(z) be a transcendental entire function
and 0 < δ < 1

4 . Suppose that at the point z with |z| = r the inequality

|f(z)| > M(r, f)ν(r, f)−
1
4+δ.

hold. Then there exists a set E in R+ and of finite logarithmic measure,i.e.,∫
E

dt/t < ∞, such that

f (m)(z)
f(z)

=
(νf (r)

z

)m

(1 + o(1)) (2.3)

holds whenever m is a fixed nonnegative integer and r 6∈ E.

3. Proof of Theorem 1.1

Proof. We know that
F = f2 + af (k) − c. (3.1)

By differentiating the equation (3.1), we get

2fA = Q (3.2)

with

A = f ′ − F ′

2F
f, Q =

F ′

F
f (k) − f (k+1), (3.3)
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where A and Q are the quasi-differential polynomials in f . Then deg Q ≤ 1. By
applying Lemma 2.1 we get

m(r, A) = S(r, f).
Now put

g =
1
2

F ′

F
. (3.4)

Then from (3.3) we obtain
f ′ = gf + A.

Differentiating this equality we have

f ′′ = g′f + gf ′ + A′ = g′f + g(gf + A) + A′

= T2(g)f + A2,

where T2(g) = g′ + g2 and A2 = gA + A′. By induction, we deduce that

f (k) = Tk(g)f + Ak(g,A). (3.5)

where Tk(g) = gk + · · ·+ g(k−1) by Lemma 2.2 and Ak(g,A) is a differential poly-
nomial in g and A which satisfy (2.1). Also, by (3.4) and calculation we obtain

Tk(g) =
(F 1/2)(k)

F 1/2
. (3.6)

Substituting (3.5) into (3.1) and letting

d =
1
2
Tk(g), h = f + d, P [h] = Ak(g,A)− d2 − c, (3.7)

we have m(r, d) = S(r, f), m(r, P [h]) = S(r, f) and

F = h2 + P [h]. (3.8)

Differentiating (3.8) we get
hQ1 = Q2 (3.9)

with

Q1 = 2h′ − F ′

F
h, Q2 =

F ′

F
P [h]− P ′[h].

If Q1 ≡ 0, then there exists a constant b such that F = bh2 = b(f + d)2. This
and (3.1) give

(1− b)f2 = 2bdf − af (k) + c + bd2.

If b 6= 1, then Lemma 2.1 gives T (r, f) = m(r, f) = S(r, f), a contradiction. Thus
b = 1 and

af (k) − 2df − c− d2 = 0. (3.10)
From (3.10) we see that d is entire, which results in T (r, d) = S(r, f). It follows

from (3.6) and (3.7) that F has no zeros. Thus there exists an entire function α(z)
such that f + d = eα. This and (3.10) imply

d2 − ad(k) − c = P (d, α′, · · · , α(k))eα,

where P is a differential polynomial in d and α(j),j = 0, 1, · · · , k. Since T (r, d) =
S(r, f) = S(r, eα), we must have d2 − ad(k) − c ≡ 0. Thus

d = a
d(k)

d
+

c

d
. (3.11)
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If d is transcendental, then by Lemma 2.3 we choose rn 6∈ E and zn such that
rn →∞(n →∞), |zn| = rn, |d(zn)| = M(r, dn) and obtain

d(k)(zn)
d(zn)

=
(ν(rn, d)

rn

)k

(1 + o(1)), lim
n→∞

c

d(zn)
= 0.

From this and (3.11), we have

M(r, dn) =
(ν(rn, d)

rn

)k

(1 + o(1)), rn →∞. (3.12)

Note that the fact that outside of r-values of finite logarithmic measure, we have

ν(r, d) < (log M(r, d))2,

see Hayman [6], p. 344. From the fact and (3.12), we can get a contradiction.
If d is a non-constant polynomial, by a degree argument, we also get a contra-

diction. Thus we conclude that d is a constant satisfying d2 − c = 0.
Solving the equation (3.10), we have

f +
c + d2

2d
=

s∑
i=1

Pi(z)eλiz, (3.13)

where 1 ≤ s ≤ k, λi(i = 1, 2, · · · , s) are some distinct roots of the characteristic
equation azk − 2d = 0, and Pi(z)(6≡ 0)(i = 1, 2, · · · , s) are polynomials.

From d2 = c, we know (3.13) can be written into

f + d =
s∑

i=1

Pi(z)eλiz, (3.14)

Note that F has no zeros, this is, f +d has no zeros. We know s = 1 and P1(z) ≡ C,
where C is a non-zero constant. Hence we obtain f = −d + Ceλz, where λ satisfies
the equation azk − 2d = 0 and d satisfies d2 − c = 0.

If Q1 6≡ 0. We see from h = f + 1
2

F ′

F that the poles of h only occur at zeros of
F . The expressions of Tk and g yield

N(r, h) ≤ kN(r,
1
F

). (3.15)

Note that T (r, F ) ≤ 2T (r, f) + S(r, f) and m(r, h) = m(r, f) + S(r, f), we deduce
from (3.15) that T (r, h) ≤ (2k + 1)T (r, f) + S(r, f), and so

S(r, h) = S(r, f).

Using (3.15) again we deduce from the expression of Q1 and Q2 that

N(r, Q1) ≤ (k + 1)N(r,
1
F

). (3.16)

m(r, hQ1) = m(r, Q2) = S(r, f).

On the other hand, it follows from (3.9) and Lemma 2.1 that

m(r, Q1) = S(r, f).
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Thus by (3.16),

T (r, f) = m(r, f) = m(h− d) ≤ m(r, h) + S(r, f)

= m(r, hQ1) + m(r,
1

Q1
) + S(r, f)

= m(, hQ1) + m(r, Q1) + N(r, Q1)−N(r,
1

Q1
) + S(r, f)

≤ N(r, Q1) + S(r, f)

≤ (k + 1)N(r,
1
F

) + S(r, f).

This completes the proof of Theorem 1.1. �
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