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Abstract. In this paper we consider the zeros of the differential polynomials
2 4+ af®) — ¢ where k is a positive integer, and a, ¢ are non-zero constants.
Our result improves a result of H.H. Chen and corrects an error of Y. Xu whose
result related to H.H. Chen.

1. Introduction and results

Let C be the open complex plane and D € C be a domain. Let f be a mero-
morphic function in the complex plane, we assumed that the reader is familiar with
the notations of Nevanlinna theory(see, [5, 12, 11]). We say that f is a Yosida
function if there exists a positive number M such that f#(z) < M for all z € C,

where
|f'(2)]

P& = )P

denotes the spherical derivative.
One of the most important results in the value distribution theory is the follow-
ing theorem of Hayman.

Theorem A. If g is a transcendental meromorphic function, then either g itself
assumes every finite complex value infinitely often, or ¢g*) assumes every finite
non-zero value infinitely often for any positive integer k.

As a consequence of Theorem A, we have

Theorem B. If f is a transcendental integral function, then f? + af’ has infin-
itely many zeros for finite non-zero complex value a.

In fact, for an integral function f, g = 1/f has no zeros and the zeros of ¢' — 1/a
are zeros of f2 +af’.

Ye [13], Chen and Hua [2] independently proved that Theorem B can be gener-
alized by substituting f*) for f’. In 1996, Chen [1] proved a stronger conclusion
for k = 2 in the case that f is not a Yosida function.

Theorem C. Let f be a transcendental integral function. If f is not a Yosida
function(in particular, if f is a function of order greater than 1), then for any finite
non-zero complex number a and any positive integer k, f2 + af® assumes every
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finite complex value infinitely often.

Xu [10] removed the restriction that f is not a Yosida function in Theorem
C, but there is a gap in his proof(the formula (6) does not always hold). In fact,
Doeringer [4] gave an example to show that there may exist some exceptional cases.

Example 1. If w ia a transcendental solution of w* = —2ac(w — ¢) with a, ¢ non-

zero constants, then w® + aw? may omit altogether the value ac?.

In this note, we shall prove that Doeringer’s example is unique in some sense.

Theorem 1.1. Let f be a transcendental integral function, for any finite non-zero
complex number a and any positive integer k. Set F = f2+af® — ¢, then for any
non-zero complex number c: either (i)

T(r, ) < (k + DN, ) + 0, ). (1.1)

or (ii) f = —d + Ce**, where C, \ are non-zero constants and \ satisfies the
equation az® —2d = 0, d satisfies d*> — c = 0.

Corollary 1.2. Let f be a transcendental integral function, for any finite non-zero
complex number a and any positive integer k. If f does not satisfy the case (ii) in
Theorem 1.1, then f? 4+ af® — ¢ has infinitely many zeros.

Remark 1. If ¢ = 0, Chen ([1], Theorem 1) has proved that f2 + af*) has infin-
itely many zeros. If ¢ # 0, we know there exists an additional condition f is not
Yosida function(the order great than 1) in Theorem C provided that f2 +af®*) —¢
has infinitely many zeros. Theorem 1.1 shows the condition of Theorem C is not
necessary and gives a quantitative estimate in the case (i). We will give some ex-
amples to show our results sharp in some sense.

Example 2. If f = —d + Ce**, where d, C, X satisfy the condition of case (ii) in
Theorem 1.1 and set k = 1, then

fPraf® —c = [d?—2dCe* + Ce® ] + aCe* — ¢
= 0 4 () —2d)CeN 4+ d* — ¢
Ce2>\z.

Obviously, f2+ af®*) — ¢ has no zero and does not satisfy the case (i).

Example 3. If f = —d 4+ Ce*?, where d,C, \ don’t satisfy the condition of case
(ii) in Theorem 1.1 and set k& = 1, then
P4af® —c = [d%—2dCe™ + Ce®*] + aCe™ — ¢
Ce®* + (aX —2d)Ce™ + d? — c.
For a\ —2d # 0, we can see f2+ af*®) — ¢ has infinitely many zeros and satisfy the

inequality of (1.1), but the order of f not great than 1. The example also shows
the condition of Theorem C is not necessary.
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Remark 2. Chen’s proof used the theory of normal family, here we will take the
standard notation of Nevanlinna theory, and Wiman-Valiron theory (cf. [7, 9]).
Some ideas come from the proof of Hua in [8].

2. Some Lemmas

If the coefficients of differential polynomials M[f] are a;,j = 0,1,--- ,n, which
satisfy
m(r,a;) = S(r, f), (2.1)
then differential polynomials M|[f] is called a quasi-differential polynomials in f.
The following Lemma is nothing but an easy variant of standard Clunie lemma ([3],
Lemma 1).

Lemma 2.1. Let f be a non-constant meromorphic in the complex plane, Q1[f], Q2[f]
are quasi-differential polynomials in f, satisfy f"Q1[f] = Qz2[f], if the total degree
of Q2 < n, then

m(ran[f]) = S(T’, f)

Lemma 2.2 ([5]). Suppose that F(z) is meromorphic in a domain D and set

_F(2).
f(z) = mv
Then we have forn > 1
F(n (Z) _ fmn n(n — 1) n— !/ n— 1 n— 12
o) Tt 2 anf T b T Paa(f), (22)

where a, = gn(n —1)(n —2), b, = gn(n — 1)(n — 2)(n — 3), and P,_5(f) is
a differential polynomial with constant coefficients ,which vanishes identically for

n < 3 and has degree n — 3 when n > 3.

Lemma 2.3 (Wiman-Valiron [6, 9]). Let f(z) be a transcendental entire function
and 0 < § < i. Suppose that at the point z with |z| = r the inequality
_1
[f(2)] > M(r, fu(r, =270

hold. Then there exists a set E in RT and of finite logarithmic measure,i.e.,
Jdt/t < oo, such that

(m) (4 ve(r)\™
ff(z()) :( fz( )) (1+0(1)) (2.3)

holds whenever m is a fized nonnegative integer and r ¢ E.

3. Proof of Theorem 1.1
Proof. We know that

F=f2+af® —¢ (3.1)
By differentiating the equation (3.1), we get
2fA=Q (3.2)

with - -
A=f'—opf Q=510 -, (3:3)
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where A and @ are the quasi-differential polynomials in f. Then deg@ < 1. By
applying Lemma 2.1 we get
m(r, A) = S(r, f).

Now put
1F
= ——. 3.4
9=5F (3.4)
Then from (3.3) we obtain
fl=gf+A
Differentiating this equality we have
"= g frgf + A =g fglgf + A+ A
= TQ(g)f + A27
where Tx(g) = ¢’ + g% and As = gA + A’. By induction, we deduce that
F = Ti(g)f + Ar(g, A)- (3.5)

where Ty (g) = ¢* + --- + ¢~V by Lemma 2.2 and Ay (g, A) is a differential poly-
nomial in g and A which satisfy (2.1). Also, by (3.4) and calculation we obtain

P L (36)
Substituting (3.5) into (3.1) and letting
d=3Tlg), h=F+d, Plhl=Aug )~ (3.7)
we have m(r,d) = S(r, f), m(r, P[h]) = S(r, f) and
F = h* + P[h). (3.8)
Differentiating (3.8) we get
hQ1 = Q2 (3.9)

with , ,
F F
=2h" — —h = — P[h| — P'[h].
Ql Fala QQ F [ } [ ]
If Q1 = 0, then there exists a constant b such that F = bh? = b(f + d)2. This
and (3.1) give
(1—b)f? = 2bdf —af™ + ¢+ bd>.
If b # 1, then Lemma 2.1 gives T'(r, f) = m(r, f) = S(r, f), a contradiction. Thus
b=1and
af® —2df —c—d*=0. (3.10)
From (3.10) we see that d is entire, which results in T'(r,d) = S(r, f). It follows
from (3.6) and (3.7) that F' has no zeros. Thus there exists an entire function «a(z)
such that f + d = e®. This and (3.10) imply

d? —ad® —c=P(d, o, ,a®)e,

where P is a differential polynomial in d and o¥),j = 0,1,--- ,k. Since T(r,d) =
S(r, f) = S(r,e*), we must have d?> — ad®) — ¢ = 0. Thus
d® ¢

=a— + —. A1
dad—|—d (3.11)
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If d is transcendental, then by Lemma 2.3 we choose r, ¢ F and z, such that
Ty — 00(n — 00), |zn| = Ty, |d(zn)] = M(r,d,) and obtain

d®)(z,)  (v(rn,d)\* . -
From this and (3.11), we have
Aﬂn¢g:(5%%@)ﬁ1+dn% —— (3.12)

Note that the fact that outside of r-values of finite logarithmic measure, we have
v(r,d) < (log M(r,d))?,

see Hayman [6], p. 344. From the fact and (3.12), we can get a contradiction.

If d is a non-constant polynomial, by a degree argument, we also get a contra-
diction. Thus we conclude that d is a constant satisfying d?> — ¢ = 0.

Solving the equation (3.10), we have

c+d? 2 -
f+— = ; Pi(2)e, (3.13)
where 1 < s < k, X\;(i = 1,2,---,s) are some distinct roots of the characteristic

equation az® —2d = 0, and P;(z)(£ 0)(i = 1,2,--- ,s) are polynomials.
From d? = ¢, we know (3.13) can be written into

f+d= i]—’i(z)eMz, (3.14)
i=1

Note that F has no zeros, this is, f+d has no zeros. We know s = 1 and Py(z) = C,
where C is a non-zero constant. Hence we obtain f = —d + Ce*?, where \ satisfies
the equation az® — 2d = 0 and d satisfies d*> — ¢ = 0.

If @1 # 0. We see from h = f + %% that the poles of h only occur at zeros of
F'. The expressions of T} and g yield

N(r,h) < kEN(r, %). (3.15)

Note that T'(r, F) < 2T(r, f) + S(r, f) and m(r,h) = m(r, f) + S(r, f), we deduce
from (3.15) that T'(r,h) < (2k + 1)T(r, f) + S(r, f), and so
S(r,h) = S(r, f).

Using (3.15) again we deduce from the expression of 1 and Qs that

N@Qﬂ§m+nﬁm%)

m(r,hQ1) = m(r,Q2) = S(r, f).
On the other hand, it follows from (3.9) and Lemma 2.1 that
m(r, Ql) = S(T, f)

(3.16)
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T, f) = mr,f)=m(h—d) <m(r,h)+ S(r, f)

&) + 50 f)
1

m(,h@1) + m(r, Q1) + N(r, Q1) — N(r, a) +S(r, f)
N(r,Q1) +5(r, f)
< (k+ )N %) + S0, f).

= m(r,hQ1) +m(r,

IA

This completes the proof of Theorem 1.1. |
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