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Failure analysis of multiple delaminated composite plates due to  
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Abstract. The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily 
located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation 
is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using 
eight-noded isoparametric quadratic elements to develop the finite element analysis procedure. Composite 
plates are assumed to contain both single and multiple delaminations. For the case of impact, Newmark time  
integration algorithm is employed for solving the time dependent multiple equations of the plate and the impac-
tor. Tsai-Wu failure criterion is used to check for failure of the laminate for both the cases. To investigate the 
first ply failure, parametric studies are made for different cases by varying the size and number of delamina-
tions as well as the stacking sequences and boundary conditions. 
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1. Introduction 
 
Laminated composite plates are extensively used in the 
construction of aerospace, civil, marine, automotive and 
other high performance structures due to their high spe-
cific stiffness and strength, excellent fatigue resistance, 
long durability and many other superior properties com-
pared to the conventional metallic materials. In general, 
these structures require high reliability assurance for 
which, the prediction of the maximum load that the struc-
ture can withstand as well as the failure process is very 
crucial. Due to the anisotropy of composite laminates and 
non-uniform distribution of stresses in laminae under 
flexural bending as well as other types of static/dynamic 
loading, the failure process of laminates is very complex. 
Large differences in strength and stiffness values of the 
fibre and the matrix lead to various forms of defect/  
damage caused during manufacturing process as well as 
service conditions. Delamination or separation of two 
adjacent plies in a composite laminate is one of the most 
common modes of damage. The presence of delamination 
may reduce the overall stiffness as well as the residual 
strength leading to structural failure. A clear understand-
ing of the influence of delamination on the performance 
of the laminates is very essential to use them efficiently in 
structural design applications. Although several studies are 
available in the literature in the field of delamination pre-
diction and growth, effect of delamination on buckling, 
post-buckling deformation and delamination propagation 
under fatigue loading, etc the work on the effect of  

delamination on the first ply failure of the laminate is 
scarce. A few important studies related to delaminated 
composite laminates are presented as follows. Tracy and 
Pardoen (1989), Paolozzi and Peroni (1990) and Shen and 
Grady (1992) investigated the effects of single delamina-
tion on the natural frequencies and modes of composite 
beams using the ‘four-region approach’. Tenek et al 
(1993) used a similar approach for simply supported 
plates. Saravanos and Hopkins (1996) investigated the 
damped free vibration of delaminated beams and lami-
nates. Krawczuk et al (1997) analysed the influence of  
the fatigue cracks and delaminations on the dynamic cha-
racteristics of composite laminates. Yin et al (1986) ana-
lysed the delamination buckling of composite plates using 
one-dimensional beam plate theory. Lee et al (1992, 
1995) studied the buckling and postbuckling of axially 
loaded composite beam plates with multiple delamina-
tions. Parhi et al (1999) presented the free and forced 
vibration analysis of laminated composite plates with mul-
tiple delaminations. 

The present work is undertaken to analyse the first ply 
failure of composite plates subjected to transverse bend-
ing as well as low velocity impact. Both single and multi-
ple delaminations of varying sizes placed at any location 
of the laminate are considered. Numerical results are gene-
rated for different parametric variations like stacking  
sequences, boundary conditions, etc for analysis of both 
the cases.  

2. Finite element formulation 

A laminated composite plate of length a, breadth b and h 
with n arbitrarily oriented layers is considered. The plate 
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axes and the layer details are illustrated in figure 1. The 
x–y plane coincides with the middle plane of the plate and 
the z axis is oriented along the thickness direction. The 
displacements u, v and w at any point (x, y, z) in the lami-
nate are given by 
 

u(x, y, z) = uθ(x, y) + zθx(x, y), 

v(x, y, z) = vθ(x, y) + zθy(x, y), 

w(x, y, z) = wθ(x, y),  (1) 
 
 
where uθ, vθ and wθ denote the mid-plane displacements 
and θx and θy denote the rotations along the x and y axes, 
respectively. Considering first order shear deformation, 
the strain components in a lamina for an eight noded 
isoparametric quadratic plate element with five degrees of 
freedom per node are expressed as 

εx = 
x
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where ε x

0  , ε y
0   and γ x

0  
y are mid-plane strains, kx, ky and kxy, 

the plate curvatures and γ x
0  

z and γ y
0  

z are the transverse 
shear strains, respectively. 

The strains in the kth lamina at a distance z from the 
mid-plane in the matrix form are given by 
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Here kxz and kyz are considered as zero. The shape func-

tions N1 (Cook et al 1989) used for different nodes are as 
follows. 
 

Ni = 0⋅25(1 + ξiξ)(1 + ηiη)(ξiξ + ηiη – 1), i = 1 to 4, 

Ni = 0⋅5(1 – ξ2)(1 + ηiη),  i = 5, 7, 

Ni = 0⋅5(1 – η2)(1 + ξiξ),  i = 6, 8, 
 
with ξ and η, the local natural axes of the element and  
ξi and ηi, the natural coordinates at node i. Strain–
displacement relations are expressed in the form of mid-
plane nodal degrees of freedom as 
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Here, Bd is the strain–displacement matrix. The stresses 

at any point in the kth lamina are 
 

{σ} = },{][ ikijQ ε  i, j = 1 . . . 6, 

{σ} = [σxσyσzτxzτyzτxy]
Τ, {ε1} = {εxεyεzγxzγzyγxy}

Τ.  (5) 
 

kijQ ][ is the off-axis stiffness of the kth lamina. Here, εz 
is zero. The elasticity matrix of the undelaminated 
composite plate is given by 
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Here α is the shear correction factor considered as 5/6. Figure 1. Plate axes and layer details. 
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The element stiffness and mass matrices are given by 
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the mass per unit volume of the kth lamina. 

Assembling the element mass and stiffness matrices and 
the force vector with respect to the common global axes, 
the resulting equilibrium equation for bending is 

[K]{u} = {F}. (9) 

For forced vibration,  

[M]{u} + [K]{u} = {F}, (10) 

where {u} and {u} are global displacement and accelera-
tion vector, respectively. 

For the impact problem, {F} is given by 

{F} = [000 . . . Fc . . . 000]T,  (11) 

where, Fc (Yang and Sun 1982) is the contact force corres-
ponding to the contact point. 

The dynamic equilibrium of the impactor is given by 

miwi + Fc = 0, (12) 

where mi and wi are impactor mass and acceleration,  
respectively. 

Newmark’s constant average acceleration method is 
employed to solve the dynamic forced vibration equations 
of the plate and the impactor in each time-step during  
impact. 
 

3. Multiple delamination modelling 

A typical laminate with P number of delaminations is 
considered as shown in figure 2. The nodal displacements 
within the sublaminate t are expressed as 

ut = ut
0  
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0  )θy,  (13) 

where ut
0  , vt

0   are the mid-plane displacements of the  
tth sub-laminate and zt

0   (t = 1 to p + 1) is the distance  
between the mid-plane of the original laminate and the 
mid-plane of the tth sub-laminate. Applying constraint 
conditions that at any delamination boundary, the trans-
verse displacements and rotations must have the same 
values at a common node, we get 
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Combining of (13) and (14) results in 
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which can be written as 

{εθ}t = {εθ}i + Zt
0  {k}. (16) 

Figure 2. Laminate geometry with multiple delaminations. 
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From (16), the stress and the stress resultant matrices 
for the tth sub-laminate are calculated. The stress resultant 
matrices for the tth sub-laminate are finally expressed as 
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Here ht is the thickness of the tth sub-laminate. 

4. Failure criteria 

The stresses in an individual lamina are fundamental to 
control the failure initiation and progression in the lami-
nate. The strength of each individual lamina was assessed 
separately by considering the stresses acting on it along 
material axes. The initial failure of a lamina (first ply  
failure) was governed by exceeding the maximum limit pres-
cribed by a failure criterion. The determination of first ply 
failure load was very essential in understanding the failure 
process as well as the reliability of structures. The load 
that makes the first ply to fail was calculated based on one 
of the five commonly used failure criteria like (i) maxi-
mum stress criterion, (ii) maximum strain criterion,  
(iii) Hoffman’s criterion, (iv) Tsai-Hill criterion and  
(v) Tsai-Wu criterion. Out of these, the most general and 
versatile one is the tensor polynomial proposed by Tsai 
and Hahn (1980). It was considered to be a reasonably 
accurate and consistent representation of failure of a  
lamina under biaxial stresses. The failure surface for this 
quadratic polynomial criterion was of the form of an ellip-
soid, was independent of the ply orientations and thick-
ness of a laminate. The Tsai-Wu failure envelope is 
expressed as 

Fiσi + Fijσiσj ≥ 1, (19) 

where σi is the stress tensor component in the material 
coordinates and Fi, Fij are the strength tensor components. 

For plane stress condition, the failure envelope reduces to  
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Here XT, XC are lamina normal strengths in tension, XC, 

YC are normal strengths in compression and S is the  
in-plane shear strength, respectively in the material  
coordinates. 

4.1 Ply stresses 

The stresses in the fibre direction 1–2 in the kth lamina 
were found by multiplying the transformation matrix as 
given with the stresses determined at different points of 
the lamina in the x–y coordinates. 
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Here, m and n denote cos and sin of the angle φ made 
by the fibres with the x axis in each lamina. The lamina 
stresses along material axes in each ply were applied to 
the failure criterion to check for ply failure. 

5. Numerical results and discussion 

Computer codes were developed to generate the numeri-
cal results to study the first ply failure in a laminate for 
transverse bending and impact. The accuracy of the pre-
sent formulation was checked for bending, free and forced 
vibration as well as the first ply failure results available in 
the literature. For computing the numerical results, the 
centrally located single and multiple delaminations were 
considered. For single mid-plane delamination, delamina-
tions of 6⋅25%, 25% and 56⋅25%, respectively of the total 
plate area were assumed. 

The effect of multiple delaminations on the first ply 
failure was analysed considering three types of delamina-
tions, i.e. (i) a single mid-plane delamination, (ii) three 
uniform delaminations located below the 8th, 10th and 
12th plies and (iii) five uniform delaminations located 
below the 6th, 8th, 10th, 12th and 14th plies, respectively 
along the thickness of the laminate. The area of delamina-
tion considered in each delamination interface was the 
same for each case. 
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The graphite–epoxy lamina properties and the plate  
geometry used are given here. E1 = 172⋅5 GPa, E2 = 
E3 = 6⋅9 GPa, G12 = G13 = 3⋅45 GPa, G23 = 1⋅38 GPa,  
v12 = 0⋅25, X1 = XC = 1450 MPa, YT = XC = 1450 MPa, 
YT = 36 MPa, YC = 230 MPa, S = 62 MPa, a = b = 0⋅5 m, 
h = 5 mm. 
 

5.1 Transverse bending 

The first ply failure loads were computed for the square 
composite plates having single and multiple delaminations 
of varying sizes for simply supported and clamped 

boundaries with a central point load. From the deflection 
values, stresses were calculated at every point in each 
layer of the laminate and applied to the Tsai-Wu failure 
criterion to check for failure. The first ply failure load for 
the various central mid-plane single delaminations are 
presented in tables 1 and 2 for the simply supported  
and clamped ends, respectively. Four different stacking  
sequences are considered here. From the tables, it was 
observed that the first ply failure load was reduced with 
the increase in the area of delamination. 

Tables 3 and 4 show the first ply failure loads for  
increasing the number of central delaminations with 
56⋅25% delamination area in each delamination interface 

Table 2. First ply failure load for clamped laminate (single-delamination). 
    
  First ply failure load (N) 

 
Delamination (O5/(± 30)5/O5) (O5/(± 45)5/O5) (O5/(± 60)5/O5) (O5/(± 90)10/O5)           
Zero  1847⋅0  2280⋅0  2748⋅0  3150⋅0 
6⋅25%  883⋅0  952⋅0  849⋅0  7052⋅0 
25%  778⋅0  844⋅8  753⋅5  586⋅0 
56⋅25%  722⋅0  779⋅0  668⋅0  513⋅2 
          
 

Table 1. First ply failure load for simply supported laminate (single delamination). 
    
  First ply failure load (N) 

 
Delamination (O5/(± 30)5/O5) (O5/(± 45)5/O5) (O5/(± 60)5/O5) (O5/(± 90)10/O5)           
Zero  1533⋅5  1898⋅3  2257⋅0  2533⋅0 
6⋅25%  722⋅0  792⋅5  726⋅0  602⋅0 
25%  629⋅0  698⋅0  626⋅0  490⋅0 
56⋅25%  579⋅5  639⋅0  560⋅0  416⋅8 
          

Table 3. First ply failure load for simply supported laminate (multiple delamination). 
    
  First ply failure load (N) 

 
Delamination (O5/(± 30)5/O5) (O5/(± 45)5/O5) (O5/(± 60)5/O5) (O5/(± 90)10/O5)           
Zero  1533⋅5  1898⋅3  2257⋅0  2533⋅0 
One  579⋅5  639⋅0  560⋅0  416⋅8 
Three  303⋅0  350⋅0  338⋅0  290⋅0 
Five  122⋅0  144⋅0  162⋅0  173⋅0 
          
 

Table 4. First ply failure load for clamped laminate (multiple delamination). 
    
  First ply failure load (N) 

 
Delamination (O5/(± 30)5/O5) (O5/(± 45)5/O5) (O5/(± 60)5/O5) (O5/(± 90)10/O5)           
Zero  1847⋅5  2280⋅0  2748⋅0  3150⋅0 
One  722⋅0  779⋅0  668⋅0  513⋅2 
Three  372⋅0  419⋅0  402⋅0  356⋅0 
Five  143⋅0  167⋅0  189⋅5  209⋅0 
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for the simply supported and clamped ends, respectively. 
It was found that the increase in the number of delamina-
tions sharply reduced the first ply failure load. 
 For all the single and multiple delaminations consi-
dered above, the first ply failure took place in the bottom 
most layer. 

5.2 Transverse impact 

Transient response was obtained for different plates using 
the converged time-step value of 1 µsec. For the present 
low velocity impact response analysis, an isotropic 
spherical impactor was considered for a centrally impac-
ted composite plate. The impactor (spherical) properties 
are as follows  

Ei = 210 GPa, vi = 0⋅3, diameter = 1⋅27 cm. 

For the first ply failure analysis, four different cases 
were considered here, where case 1 denotes no delamina-
tion, case 2 with a single delamination of 6⋅25% of the 
total plate area, case 3 with three delaminations and case 
4 with five delaminations of same area in each delamina-
tion interface as in case 2. 

For each case, the Tsai-Wu tensor polynomial value (T) 
was calculated for every time-step during the impact. 
When this value just exceeded one, the velocity of impac-
tor was denoted as critical impactor velocity, Vc. Accord-
ingly, Vc was determined for the laminates with different 
stacking sequences and delaminations. It gave a general 
inference about the delaminated laminates which could 
face an impactor without failure. For all the cases consi-
dered here, the first ply failure took place in the bottom 
most layer. 

Figure 3 shows the variation of T with respect to time 
for the top and bottom layers separately for a cross-ply 

laminate. In (20), F1 value was zero and all other terms 
except the term F2σ2 yielded positive values. Hence the 
value of σ2, which was of opposite sign in the top and 
bottom zones, controls the value of T for different layers. 
So when the value of T reaches towards positive value of 
1 in the bottom layer, it was of the opposite sign for the 
top layer. 

The plots for Tsai-Wu tensor polynomial value (T) vs 
time for multiple delaminations are shown in figures 4 and 
5 for simply supported cross-ply and angle-ply laminates, 
respectively. From these figures, it was very clear that the 

Figure 3. T value for top and bottom layers for simply 
supported (O5/(90)10/O5) plate. 
 

Figure 4. Critical impactor velocity (Vc) for different cases of 
simply supported  (O5/(90)10/O5) plate. 
 

Figure 5. Critical impactor velocity (Vc) for different cases of 
simply supported  (O5/(45/– 45)5/O5) plate. 
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critical impactor velocity was minimum for case 4 (five 
delaminations) for all the laminates. For a laminate with-
out delamination, Vc was maximum for a cross-ply, which 
was due to its higher stiffness value. The effect of change 
in boundary condition on the critical impactor velocity 
was also considered taking a clamped plate as shown in 
figure 6. There was no distinct change in the value of  
Vc to cause first ply failure with a change in boundary 
condition. 

6. Conclusion 

It was observed that the delaminations were found to  
influence the first ply failure of the laminated composite 
plates significantly. For all the cases considered here the 

first ply failure took place in the bottom most layer only. 
From the analysis of the numerical results, it was observed 
that an increase in the number of delaminations resulted in 
a decrease in the transverse load for bending. In the case 
of impact, it resulted in a decrease in the critical impactor 
velocity to cause first ply failure. First ply failure load as 
well as the critical impactor velocity was found to be rela-
tively more for a cross-ply laminate in comparison to an 
angle-ply laminate. It was also to be noted that the failure 
of the first ply was very sensitive to the strength constants 
and their variation in tension and compression. Hence, the 
performance of the laminates could be properly tailored 
by controlling the strength parameters for the design 
against failure. 
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