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Abstract—A pseudo-random number generator for low-cost 

RFID tags is presented. The scheme is simple, sequential and 
secure, yet has a high performance. Despite its lowest hardware 
complexity, our proposal represents a better alternative than 
previous proposals for low-cost tags. The scheme is based on 
the well-founded pseudo random number generator, Mersenne 
Twister. The proposed generator takes low-entropy seeds 
extracted from a physical characteristic of the tag and 
produces outputs that pass popular randomness tests. 
Contrarily, previous proposal tests are based on random 
number inputs from a popular online source, which are simply 
unavailable to tags. The high performance and satisfactory 
randomness of present work are supported by extensive test 
results and compared with similar previous works. 
Comparison using proven estimation formulae indicates that 
our proposal has the best hardware complexity, power 
consumption, and the least cost. 
 

Index Terms—information security, radio frequency 
identification, random number generation, RFID tags, 
ubiquitous computing.  

I. INTRODUCTION 

Consumer goods in supply chains have identification 
stickers on them, which are used to track their journey up to 
the consumer bags. The paper barcode stickers are being 
replaced by Radio Frequency Identification (RFID) stickers 
(tags) [1]. According to a report, RFID is a booming 
technology, acting as part of the ubiquitous systems [2]. The 
boom is due to advantages gained by using RFID, since 
paper barcodes suffer from wear and tear. Degraded 
barcodes cause erroneous reading and when intentionally 
switched or over-written by fakes, big losses occur. On the 
other hand, RFID tags provide some security in addition to a 
unique identification number; by employing pseudo random 
number (PRN) based protocols. PRNs are widely used in 
computer and mobile device authentication protocols, 
relying on the very important characteristic of being 
random. But, producing good quality PRNs in cheap tags is 
not easy, as it will be revealed next. 

A. RFID Technology: Properties, Advantages, and 
Shortcomings 

RFID rests upon wireless technology, where a tiny tag 
consists of an integrated circuit (IC). The IC is remotely 
energized by the reader through electromagnetic field of 
antenna coils, as shown in Fig. 1. The unique and sensitive 
identification number (ID) information in the memory of the 
tag is obtained and sent to a remote server by the reader, to 

be matched to an entry in the database. In a nutshell, RFID 
"is capable of identifying items of different types and 
distinguishing between items of the same type, not requiring 
physical or visual contact" [3]. While paper barcodes are 
read one at a time, up to 1000 tags/sec can be read. The 
reading distance of a barcode is a few centimeters, whereas 
a UHF tag’s is a few meters. The low-cost, passive, UHF 
tags are the most popular [2] and take part in the pervasive 
networks that surround us [4]. However, their computational 
capacity and power electronics are limited, forcing little 
hardware to be spared for security; hence, causing 
vulnerabilities [5-6]. Therefore, UHF tags have been defined 
as resource constrained devices and the cryptographic 
solutions offered to remedy security vulnerabilities have 
been studied, in detail [7].  

 
Figure 1. The flow of RFID authentication process 
 

The communication between the reader and the server 
shown in Fig. 1 is considered secure; whereas 
communication through air, between the reader and the tag 
is assumed insecure. Security issues arise when the tag tries 
to pass its sensitive ID or Electronic Product Code (EPC). 
The properties ratified in ISO-18000-6 [8] and recently 
released EPCglobal Class-1 Generation-2 version 2 (Gen-2) 
standards [9] fail to provide the necessary security. 
According to the standards, every queried tag transmits 16 
bits of generated random numbers (RNs), starting with RN-
1. The reader acknowledges by returning a reply with the 
same RN and the tag replies with its EPC. The commands 
consist of words XORed with random number RN-2. A 
malicious listener can capture the RNs and extract the EPC. 
The only effort to decrypt a command is to XOR it with the 
recorded RN-2 [3]. Once the ID is captured, the least 
damage can be the exposure of personal privacy. The UHF 
tags should not be confused with the high cost tags, such as 
those used in e-passports. 
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B. Random Number Generation and Randomness Tests 

Pseudo random number generator (PRNG) function is a 
fundamental primitive of most cryptographic algorithms and 
security protocols. The Gen-2 standard supports 16-bit 
PRNs basically for collision prevention. But, neither the 
period (216), nor the random number generation standard of 
Gen-2 is satisfactory for cryptographic randomness. In 
addition, low-cost tags have limited capacity and can 
dedicate only a few thousand gates for security [3, 10]. The 
above disadvantages are worsened with the following Gen-2 
PRN property guidelines: 
1. The probability that any value j of a generated 16-bit 

random number (RN16), where RN16 = j shall be 
bounded by: 0.8/216 < P(RN16=j) < 1.25/216. 

2. For a tag population of up to 10,000 tags, the 
probability that any of two or more tags simultaneously 
generate the same sequence shall be less than 0.1%, 
regardless of when the tags are energized. 

3. An RN16 drawn from a tag's PRNG 10 ms after the end 
of tag power-up rise time, shall not be predictable with 
a probability greater than 0.025%. 

Many random number generation proposals made for 
tags, consider meeting the above guidelines as adequate. 
However, Gen-2 guidelines are not as strict as the criteria of 
well-established PRN tests. More serious effort is needed to 
provide good quality random numbers. Efforts of generating 
random numbers can be divided into three categories. The 
first category is true random number (TRN) generators 
(TRNGs), where randomness is extracted from physical 
phenomena like thermal noise, frequency instability of an 
oscillator or the unstable power-up state of SRAM memory 
cells [11, 12]. For example, work [11] uses chaotic 
oscillations of a designed electronic circuit. Although the 
proposed solution passes statistical randomness tests, the 
hardware implementation exceeds allowed power 
consumption restrictions, with 26100 nW performance. 
TRNGs rely on physical characteristics and mostly fail to 
provide good quality random numbers; even tend to output 
the same numbers - if physical conditions are reproduced 
[13]. Therefore, TRNGs are widely regarded as sources of 
entropy, only.  

The second category is PRNGs, where a deterministic 
algorithm is used [3, 10]. PRNGs use mathematical 
formulae or pre-calculated tables to generate sequences that 
appear random. The third category is a blend of the first and 
second categories; where output obtained from a TRNG is 
used to seed a PRNG [12-14]. This strategy has been 
developed because, if the assumed seed of a PRNG is 
guessed, the generated RN of the mathematically 
deterministic algorithm can be predicted. Therefore, a 
PRNG by itself is sometimes declared insecure without 
good sources for seeding [15, 16]. But, work [14] 
demonstrates weakness in a previous PRNG design, even 
though the TRNG seeds are truly random. It follows that the 
PRNG algorithms providing the final output must be strong. 
To obtain high quality random numbers, another option is 
the entropy amplification of low entropy TRN seeds. For 
example, work [15] tries to increase the quality of generated 
TRNs, via hardware based multi-phase timing of bistables. 

Obviously, the randomness of the sequences generated by 
PRNGs has to be proven. There are various mathematical 

and statistical proofs for randomness, but today’s popular 
method is to get approval from universally accepted 
randomness checkers (tests). A large amount of input is 
given as seed to the proposed generators and their output 
number sequences are submitted to the randomness tests. 
Each test suite has its own submission rules, randomness 
checks and result interpretations. Discussing the rules, test 
suits and interpretation of randomness tests are beyond the 
scope of this paper. The ENT, Diehard (versions 1, 2) and 
NIST randomness tests (detailed in Section 4.2) are highly 
esteemed, by the random number community. But, any non-
obscure algorithm producing output that passes the NIST 
tests is widely accepted. Therefore, our results have been 
tested using the above three tests. Today’s most randomness 
tests are designed for 32-bit RNs, because the use of 16-bit 
RNs in computers is now considered to be too primitive. 
Hashing and encryption algorithms like SHA-1, DES, AES 
etc. are known to produce good quality random numbers; 
however, they overwhelm the low-cost RFID tags [6, 17].  

In the rest of this paper, Section 2 accounts for the 
previous related work in PRNG design and the properties of 
our inspired algorithm. In Section 3, there are the details of 
our proposed scheme. Section 4 contains the performance 
and testing results, followed by evaluation and comparison 
of the results with similar works. We conclude and list 
future work, in Section 5. 

II. RELATED WORKS 

There aren’t many works on PRNGs, employed in tags. 
Among the few, - only in [3] and [10] - the proposed 
schemes are supported with popular randomness tests and 
provide detailed design-performance information. Two other 
works [13-14] do not provide the same information, but 
propose a linear feedback shift register (LFSR) with a TRN 
bit, as input. In fact, in [13] the authors attack work [14] and 
try to correct the suggested weak LFSR. 

Our work falls into the third category described in Section 
1.B, which uses the power-up contents of the SRAM 
memory of a tag to form a TRN input to its PRNG function. 
It has been demonstrated that some SRAM memory bits 
always settle to the same “0” or “1” voltage level, while 
others settle to either low or high level, randomly. The 
randomness is due to semiconductor lithography variations 
and thermal noise. This SRAM cell characteristic has led to 
the proposal of Fingerprint Extraction and Random 
Numbers in SRAM (FERNS) [12]. A length of memory 
containing random bits provides a low source of entropy in 
FERNS, which by themselves fail the randomness tests. The 
biggest advantage of FERNS is that it requires no dedicated 
circuitry. In [12] the TRNs are input to a well-known hash 
function for privacy amplification, to attain good quality 
random numbers. Randomness test results indicate that the 
randomness of the original TRNs is not acceptable, but the 
hashing algorithm produces random numbers that pass 
randomness tests. Our proposal replaces the hashing 
algorithm of the work [12] with an affordable, ultra-light 
scheme (described in detail in Section 3). In tags, ultra-light 
means a scheme or protocol where only bitwise AND, OR, 
XOR, shift and addition modulo 2m are used [3, 5]. The 
main reason of replacing the hash function is due to the fact 
that present hash functions cannot fit in low-cost tags. 
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Moreover, hashing needs considerable amount of input bits. 
Both factors raise the cost of the tags. One of the most 
known works on tag PRNGs is Lamed [3], but it has some 
undesired characteristics that can be summarized as follows: 
 Lamed is a computation intense algorithm with 8 

addition, 6 XOR and 10 rotation operations, requiring a 
32-bit parallel architecture to finish computations, 
within required time. Its clock cycle delay for PRN 
generation is compared to our design in Section 4.A.  

 The authors of Lamed declare that the public 
initialization vector (IV) should never be used with the 
same pre-shared secret key (PSK). In addition, the 
notion of programming a constant PSK into the tag - at 
the time of manufacture - is not defined in Gen-2. 
Meanwhile, the probability of using the same key with a 
known public IV is merely 1/216. Therefore, the key 
space of different IVs against different keys is not 
enough for low-cost tags, produced in millions.  

 The authors of Lamed declare the security weakness of 
the scheme’s state variables as tied down to only 32, 
related to the public IV. 

 Apart from using random numbers from a popular 
source as seeds to the PRNG in their tests, the authors 
also change the fitness function and produce invalid 
results. The presented explanation given for the change 
is unsatisfactory. 

A. The Inspired PRNG: Mersenne Twister 

Our proposal is based on the Mersenne Twister (MT) 
[18]; which has properties that are feasible in low-cost tags. 
MT is a well-known algorithm, classified as a good PRNG 
[19]. A Mersenne prime is used as the period of the 
algorithm for fast generation of pseudo random numbers, 
free from long-term correlations. The algorithm is based on 
linear recurrences in F2 (finite field with two elements, 0 
and 1) and arithmetic modulo 2m operations [20]. 
Incidentally, binary recurrences and bitwise operations are 
easily implementable in resource stricken, low-cost tags. 
Briefly, MT is a specially twisted, generalized feedback 
shift register (TGFSR) that takes an incomplete array to 
realize a Mersenne prime, as its period. It uses an inversive-
decimation method for testing the primitivity of a 
characteristic polynomial of linear recurrence with a 
computational complexity O(p2), where p is the degree of 
the polynomial. 

Mathematical arguments show that MT is a special case 
of well equidistributed long-period linear (WELL) 
generators [20]. Omitting the details of the argument, MT 
has a long period of 219937-1, with a 623 dimensional 
equidistribution up to 32-bit accuracy. In fact, MT has better 
equidistribution and “bit-mixing” properties than its 
predecessor PRNGs with equivalent period length and 
speed. Many variants of MT have been introduced for 
cryptographic security at better speeds [19-20].  

The successful randomness test results of MT draw the 
attention of PRNG researchers. The steps of MT are also of 
interest to tag producers, because a tag can accommodate 
their simple bitwise operations. Looking at the steps closely, 
MT works in a recurring part and a tempering part. The 
simplified MT steps and the tempering stage are:  

Step 0: Create bitmask for upper and lower bits, 

Step 1: Initialize an x[i] array with nonzero seed values, 
Step 2: Concatenate the upper bits of previous array x[i] 
with the lower bits of iterated array x[i+1], 
Step 3: Calculate the next state array x[i], 
Step 4: Carry out tempering as follows:  
y x[i]
y y (y u) 
y y ((y s) & b) 
y y ((y t) & c) 
z y (y l)   
(‘<<’ is a bitwise left shift, ‘>>’ is a bitwise right shift, 
and ‘&’ is a bitwise AND), 
Step 5: Increment i by 1: 
i (i+1)mod n, where n is the degree of recursion, 
Step 6: Go to step 2, repeat until i equals n. 
 
The first three steps, initializes and concatenates an array. 

Tempering is carried out in Step 4 to improve the 
distribution of the sequences generated from the recursions. 
Parameters u, s, t, l are tempering bit shifts, b and c are 
tempering bit-masks. The parameters are experimentally 
tested values for maximally-equidistributed generators [20].  

The MT algorithm has some known disadvantages, which 
were eliminated in our work. Firstly, the initial state of MT 
has too many zeros, therefore the generated sequences also 
contain many zeros for more than 10000 generations. This is 
the reason of the problem indicated previously, in the fitness 
function of [3]. Our work removes this weakness by 
supplying non-zero, random initial inputs and by completely 
removing the matrix recurrences. For seeds chosen 
systematically as 0, 20, 30 a second weakness appears as 
correlated output sequences; which does not happen in our 
proposal. Finally, MT is not preferred for cryptographic 
purposes because it is easy to predict the next state if the 
present output is known.  

To fix the above weaknesses many variations of MT have 
been proposed. One of the suggestions is to have the outputs 
of MT go through a function. For example, TRNs can be fed 
into a hash function [14]. It is clear that if the generator is 
initialized with uniform random bits, the probability of 
getting many zero bits or correlated output is quite small. 
Thus, seeding MT with TRNs and fine-tuning tempering 
parameters can improve the distribution of the generated 
PRNs [20]. This is the achievement of the present work, 
obtained without using a burdensome hash function. 

III. THE PROPOSED SCHEME 

Although the promising FERNS technique is the starting 
point of our proposal, any scheme qualifying as a TRNG can 
be the input stage of our proposed PRNG. Our design 
requires a TRN to be present in one of the registers, before 
the PRN generation starts. However, it is not difficult to 
meet this important pre-requisite. In both [12] and [21], 
Gen-2 compliant Wireless Identification Sensing Platform 
(WISP) [22] tags are used. WISP uses 16-bit Texas 
Instruments, reduced instruction set computer (RISC) 
architecture, MSP430 microcontrollers, which have 256/512 
bytes of RAM. Both works use external tools to read the 
contents of the internal memory of the microcontroller. Our 
work however, involves the reading of the SRAM memory 
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into one of the 12 registers of the microcontroller, during the 
initialization of the tag. Prior to answering the request of a 
reader, the microcontroller can read an unused memory 
location into one of the 12 registers, with the MOV 
instruction. Next, the value in the register is rotated and 
XORed with the next memory contents. After a number of 
recursions, the result is a non-zero TRN, in one of the 
registers. The probability of a zero TRN value is 1/216. 

 

Figure 2. The proposed scheme 
 

The proposed scheme is shown in Fig. 2. The 
deterministic, iterative part of MT is replaced with the 
TRNG seeding. The remaining operations are basically step 
4 of Mersenne Twister, described in Section 2.1. The main 
challenge is to find the tempering parameters and mask 
values (u, s, t, l, p, b, c) that yield the best randomness 
results. The scheme consists of only simple bitwise XOR, 
AND and rotation (circular shift) operations, which replaces 
the hash function of previous works.  

At the start, the TRN seed is already in the main register 
x. The value in x is copied to secondary register z, for 
preservation of the original TRN value until the first XOR 
operation. The first rotation to the left (ROTl) improves the 
entropy of the seed, as the TRNs are known to have low 
entropy. The ROTl (x, z) operation is a simple bitwise 
operation, which shifts x to the left, depending on the 
number of “1” values in z; where the most significant bit 
(MSB) is wrapped around to the least significant bit (LSB), 
through carry bit. The opposite is true for the rotate right 
(ROTr) operation, as well. Our scheme employs rotation 
operations, instead of shift operations, because rotation 
removes the misbalance introduced by the XOR operation 
between left-most and right-most bits [23]. In the next step, 
first the improved TRN in x is copied into y, then u is loaded 
into z. In the second rotation, as u’s hamming weight 

(number of “1” values in u) is 7, y is rotated 7 times to the 
right. The rotated value is XORed with the value in the main 
register x, ending the first tempering. In the next two steps, 
the value in the main register x is copied to y, and parameter 
s is loaded to z. In the next four steps, tempering 2 is carried 
out. The next six steps process the third tempering. Next 
step is MT tempering step 4, where the previously tempered 
value is rotated right by 18 times (l’s hamming weight) and 
the result is XORed with the unrotated value. Finally, 
tempering 5 is our contribution which is intended for 
increasing the randomness of the output.  

Overall, the rotation operation executes permutation and 
XOR-AND operations provide substitution effect, on their 
operands. Thus, the input goes through a sequence of 
permutations and substitutions, as in modern hashing and 
encryption algorithms. In the steps labeled as MT tempering 
1, 2, 3, 4, 5 the original TRN is transformed. After our 
additional tempering, the obtained PRN is in the main 
register, ready to be used in the authentication of the tag. 
Different number of rotation operations and directions 
against different u, s, t, l, p, b and c values have been tested. 
The scheme with the best results has been chosen. Since 
Mersenne Twister is explained abundantly in mathematical 
literature, no further mathematical discussion will be 
pursued, in present study.  

The scheme has a sequential format which can be 
implemented as sequential code inside the tag, where the 
coefficients are given as immediate constant operands. This 
removes the need for a complex finite state machine (FSM), 
inside the tag. The registers and operators (XOR, AND, 
ROT) can also be used in the authentication algorithm; 
which in fact are not necessarily additional circuitries 
needed for producing a PRN. This is a true argument for the 
WISP tag’s MSP430.  

Running time for algorithms is modeled as a power law, 
given as T(N) = a×Nb (where a and b are constants, N is the 
input data size) [24]. The CPU, memory, cache, compiler, 
interpreter, garbage collector, operating system, network and 
other applications determine the constant a, in power law 
equation. Algorithm design and input data determines 
exponent b. In general, the measure of the running time 
involved in the algorithm designs is equal to the number of 
multiplications and recordings, because most of the work 
consists of multiplications and recording the numbers. In our 
algorithm presented in Fig. 2, most of the work comes from 
the 6 rotations. For the x:=ROTl (x, z) operation, the code 
snippet is given below: 
 int i; 
 for(i=0;i<N;i++) 
   if(z[i]==1) 

 ROTl (x,1) // Rotate left 1 time only 

Running time for the above rotate function is O(N). Since 
there are 6 rotations in the proposed algorithm, the 
approximate model of our algorithm is ~6N and the order of 
growth is linear. Therefore, the proposed algorithm can be 
an effective tool to generate PRN for RFID tags.  

Our design can be simulated and tested, easily. A set of 
numbers is fabricated as a file, to be used as seeds to our 
PRNG scheme. It is important that the numbers are 
manipulated, so that their overall entropy is low. The 
proposed design steps are coded in the order they appear in 
Fig. 2, as a PRNG sub-routine. Three registers are defined 

x:=TRN  ;initialization 
z:=x  ;x is copied to z 

x:=ROTl(x,z) ;for improving the seed 
y:=x  ;x is copied to y 
z:=u  ;u is loaded into z 
y:=ROTr(y,z) ;MT tempering 1 
x:=xy   ;end of MT tempering 1 
y:=x  ;x is copied to y 
z:=s  ;s is loaded into z 
y:=ROTl(y,z) ;MT tempering 2 
z:=b  ;b is loaded into z 
y:=y AND z ;MT tempering 2  
x:=xy  ;end of MT tempering 2 
y:=x  ;x is copied to y 
z:=t  ;t is loaded into z 
y:=ROTl(y,z) ;MT tempering 3 
z:=c  ;c is loaded into z 
y:=y AND z ;MT tempering 3  
x:=xy  ;end of MT tempering 3 
y:=x  ;x is copied to y 
z:=l  ;l is loaded into z 
y:=ROTr(y,z) ;MT tempering 4 
x:=xy  ;end of MT tempering 4 
y:=x  ;x is copied to y 
z:=b  ;b is loaded into z 
y:=y AND z ;added tempering 5 
z:=p  ;p is loaded into z 
y:=ROTl(y,z) ;added tempering 5 
x:=xy  ;end of added tempering 5 
 

u = 7FH,s = 07H,t = 1FH,l = 3FFFFH, p = 7FH,  
b =9D2C5680H, c =EFC60000H. 
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where all the calculations take place. Simulation consists of 
reading values from the fabricated input table, running them 
in the PRNG sub-routine and storing the outputs into 
another file. The output file contains the PRNs generated by 
our design, which is used as input to the randomness test 
suites. The code is available upon request from the authors. 

IV. PERFORMANCE, TESTING AND EVALUATION OF 

RESULTS 

The hardware efficiency of a proposed scheme - 
measured in length of data path, die area, clock cycles spent, 
consumed power, throughput etc. - is a good indicator of its 
performance. Our proposal uses 16-bit tag architecture to 
obtain a 32-bit PRN because of a number of reasons. The 
latest 32 or 64-bit, state of the art technologies for 
microprocessor production cannot be used in low-cost tag 
production. One proof of our choice is the aforementioned 
MSP430 microcontroller of the WISP family of tags. 
Besides, the common comparison ground is the 16-bit 
design results, provided by previous works. We assume that 
16-bit PRNs of Gen-2 can be obtained from our 32-bit PRNs 
by either taking the lower 16 bits, or by XORing the higher 
16 bits with the lower 16 bits, as in previous works [3, 10]. 
But it can be claimed that 32-bit, good quality PRNGs that 
pass the popular randomness tests are possible in tags, as 
shown in Section 4.A. The “access” and “kill” commands of 
Gen-2 are 32-bit and require multi steps to finish. The 
availability of our 32-bit RNs is an advantage that can 
simplify the commands. Moreover, only 32-bit randomness 
tests are accepted, by the community. According to Gen-2 
specifications, the tag is expected to provide only a 16-bit 
PRNG whose period is much shorter than that of a 32-bit 
generator. The short period of a 16-bit PRN means reduced 
randomness that causes the security of Gen-2 to be classified 
as inadequate [3, 10].  

The maximum number of gates and clock cycles allocated 
for security is a few thousands gates and 1800 clocks [7, 
25]. These resources cannot be used for only generating a 
random number, because space and time must be left for 
other tasks and authentication steps. The above guidelines 
are commonly used in comparing the performance and 
randomness test results of similar works. 

A. Performance Results 

Our scheme (Fig. 2) requires only XOR, AND and 
circular shift operators. Table 1 shows the operation types 
used in the previous schemes against ours. Obviously, the 
multiplication and the finite state machine requirements of 
Akari-x [10] put overwhelming load on the tag. The Lamed 
scheme uses three simple operations like ours, but requires 
input, control and rotation units for iterative work. While 
Akari-x schemes require memory for an IV, Lamed [3] 
requires two 32-bit space. Ours requires one 32-bit and five 
16-bit space. Memory requirement of each scheme is given 
in bits, in the final column of Table 1. All schemes’ memory 
space requirements can be met by WISP. 

In order to estimate the die area of integrated circuits, 
independent of the used technology, gate equivalents (GEs) 
can be utilized [26]. One GE is equivalent to the area 
required by a two input NAND gate. The GE of each logic 
gate and thus the total GE for all bitwise operators are 

known and widely accepted [27]. The total GE required for 
our scheme is calculated to be 527 gates, as shown in Table 
2. The GE values of our scheme and the declared values of 
previous works are shown in Table 3a. Our GE value is the 
lowest among the compared. The lowest GE, at the same 
time means lowest cost; because every 1000 GE adds $0.01 
to the cost [29]. As an example for the calculations, one bit 
of a shifter uses one flip flop that costs 5.33 GE. For 16 bits, 
the total GE required for a shifter is 85.28. Our scheme is in 
the low-cost category, since it is well below 1000 gates [7]. 

It is important to indicate that present work’s total GE has 
been increased to accommodate the 3 registers. The heavy 
cost of hashing algorithms, like the 8,120 GE value of SHA-
1 [29] has not been included in our comparisons. 

 
TABLE I. COMPARISON OF OPERATION TYPES AND MEMORY USED IN 

DIFFERENT PRNGS 

Scheme Operation Types Used Iteration Memory
Memory 

Usage (Bits)

Akari1A
SUM, OR, MULTIPLY, 

SHIFT 
For loop, 

FSM 
iv 96 

Akari1B 
SUM, OR, MULTIPLY, 

SHIFT 
For loop, 

FSM 
iv 96 

Akari2A
SUM, OR, MULTIPLY, 

SHIFT, XOR 
For loop, 

FSM 
iv 96 

Akari2B 
SUM, OR, MULTIPLY, 

SHIFT, XOR 
For loop, 

FSM 
iv 96 

Akari2C 
SUM, OR, MULTIPLY, 

SHIFT, XOR 
For loop, 

FSM 
iv 96 

Lamed SUM, XOR, SHIFT 
Control 
Units 

iv, key 160 

Ours XOR, AND, SHIFT Sequential u, s, t, l, p 112 

 
TABLE II. GATE EQUIVALENTS AND THE TOTAL GATE EQUIVALENTS OF 

OUR PROPOSAL 

Operator 
Operation Types 

Used # Used 
Logic GE 16-bit Total 

Register 3 FlipFlop 5.33 255.84 
Shifter 1 FlipFlop 5.33 85.28 
AND 1 Gates 1.33 21.28 
XOR 1 Gates 2.67 42.72 
Total    405.12 

Control 1 Gates 30% 121.54 
Grand Total    526.66 

 
TABLE III. COMPARISON OF OUR PERFORMANCE RESULTS WITH (A) 

DECLARED (UPPER) AND (B) CALCULATED RESULTS OF PREVIOUS SIMILAR 

WORKS 

Scheme 
Area 
(GE)

Die 
Area 
(µm2) 

Delay 
Cycles 

Complexity 
GE×Delay 

Pow. 
Cons. 
(nW) 

Throug
hput 

(Kbps)

Op. 
Types 
& Ctrl

Akari-1A 1018 3191 66 67,188 89.95 48.48 2C 
Akari-1B 922 2892 450 414,900 95.71 7.11 2C 
Akari-2A 1861 5837 51 94,911 109.88 31.37 2C 
Akari-2B 1650 5173 290 478,500 135.81 5.50 2C 
Akari-2C 1620 5081 530 858,600 126.02 3.01 2C 

Lamed 1566 1 186 291,276 1 8.20 2C 
Ours 527 1665 118 62,186 113.80 13.56 3S 

Akari-1A 1018 3217 389 396,002 219.89 4.11 2C 
Akari-1B 922 2914 389 358,658 199.15 4.11 2C 
Akari-2A 1861 5881 333 619,713 401.98 4.81 2C 
Akari-2B 1650 5214 333 549,450 356.40 4.81 2C 
Akari-2C 1620 5119 333 539,460 349.92 4.81 2C 

Lamed 1566 4949 186 291,276 338.26 8.20 2C 
Ours 527 1665 118 62,186 113.80 13.56 3S 

1: Not provided; 2: Complex; 3: Simple  
The die area of a two-input NAND gate is given as 3.16 

µm2, in UMC90 nm semiconductor production technology 
[30]. Hence the die area in µm2 of a bitwise operator can be 
obtained by multiplying the GE of the operator by 3.16. The 
die area of our design is 3.16 × 527 = 1665 µm2. The die 
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area values of the Akari-x schemes have been quoted (Table 
3a) from the 16-bit architecture columns of the authors’ own 
tables [31]. The values are in agreement with the equation (1 
GE = 3.16 µm2), but are not exact. Lamed’s die area has not 
been declared; therefore, it had to be calculated. 

The timing metric, on the other hand, is the clock cycles 
used for performing a specific function. A 16-bit ALU 
requires one clock cycle to finish a 16-bit register copy, 
AND or XOR operation. But, 16 clocks are needed for 
rotation since it requires the testing of the contents of a 16-
bit register bit by bit and circularly shifting the contents of 
another register, depending on the outcome of the test. To 
calculate the number of clock cycles spent for obtaining a 
random number in our scheme, the total of copying/loading 
operations of registers, XOR/AND operations and the 
rotation (ROT) operations in Fig. 2 are counted. The TRN is 
already in one of the registers before the PRNG starts. The 
register copying and XOR/AND operations can be 
completed in a single cycle. Assuming the constants u, s, t, l, 
p, b, c are immediately after the instructions (immediate 
addressing), loading them into a register (e.g. MOV Rx, u) 
also takes one clock cycle. ROT operations test the bits of 
one register and shift the contents of another if the tested bit 
is a “1”; wrapping around the overflowing bit through carry. 
Therefore, a clock cycle is spent for each bit test. Thus, 
clock cycles equal to the number of architectural bit length 
(16 in our case) are consumed for each rotation. In total, 
there are 6 register copying, 8 register loading, 5 XOR, 3 
AND and 6 ROT operations. Hence, the total clock cycles 
consumed is 6 + 8 + 5 + 3 + 6 × 16 = 118 clocks. When 
checked against the declared limit 1800, the proposed 118 
clock cycles scheme is definitely in the ultra-light category 
[7]. This value is shown in Table 3a, together with the 
declared values of previous works. However, if the same 
clock cycle calculation method is applied to the previous 
works, their declared values appear optimistic. For fair 
comparison conditions, a second table of calculated 
performance values is necessary. To prove the point, 
examining the Akari-1 design suffices. Akari-1 has an 
iteration loop of 64 times. Inside the iteration, there are 2 
single shift and 3 addition (modulo 2) operations. Thus, the 
iteration costs 5 × 64 = 320 clock cycles. Outside the 
iteration, there are 2 addition, 2 OR, 1 register copying and 
2 multiplication operations. Assuming the traditional shift 
left and add method for multiplication, each multiplication 
costs 2 × architectural bit length; for 16-bit Akari-1, single 
multiplication costs 2 × 16 = 32 clocks. Thus, outside the 
iteration there are 2 + 2 + 1 + 64 = 69 clock cycles. Overall, 
Akari-1 has a clock cycle delay of 389 clocks, for producing 
the lower half (16 bits) of its PRN. The Akari-2 design has 
two 24 round iteration loops. Outside iteration, Akari-2 also 
uses 69 clocks; but first iteration costs 5 × 24 and the second 
6 × 24 clocks. Overall, Akari-2 has a 333 clock cycles delay. 
Authors of Akari-x have a superseding work with new 
results for their previous work [31]. Although there are 
changes in the architectural bit lengths, the declared clock 
cycles are the same as in the previous work. On the other 
hand; although Lamed has a parallel architecture, it still has 
a high declared clock cycle delay of 186. The calculated 
results of previous work are compared with our results in 
Table 3b. The area-delay product (GE × clock cycles) is 

defined as hardware complexity (complexity) of an operator 
[29]. The complexity of previous works is compared with 
ours in Tables 3 and 4. For Akari-x works, the GE values of 
16-bit architectures have been accepted in Table 3a. From 
both Table 3a and 3b, it follows that our scheme has the 
lowest complexity, leaving enough space for other security 
functions as well. The area-delay product for hashing 
functions is very high; around 8 to 10 million GE clocks for 
32-bit architectures [25, 29]. Their complexity values clearly 
indicate that encryption and hashing schemes are not in the 
ultra-light category. Therefore, the work of [12] has not 
been included in comparisons.  

The power consumption is critical in remotely energized 
RFID tags, therefore the power required for generating a 
random number should be minimal. It is natural to observe 
that power consumption is proportional to the number of 
gates; because the more the number of the gates to be 
powered, the more supply energy is required [28]. 

clk
2
DDL10 fVCP=P     (1) 

(1) is used to estimate the power consumed by a hardware 
design and denotes the dynamic power dissipation by 
estimating the power loss according to the capacitance 
charge and discharge [33]. Logic state transition of the gates 
from 0 to 1 or 1 to 0 in one clock cycle is denoted by p01. 
CL represents the load capacitance and it is commonly 
approximated to 310-15 F. The drain supply voltage (VDD) 
in our 90 nm design is 1.2 V. The system clock frequency 
(fclk) is typically 100 kHz, in RFID architectures. The above 
values are the same in Akari-x and Lamed, making equal 
conditions of comparison. The total GE of our proposal is 
527, since approximately half of these gates are switched in 
1 clock cycle, p01 value is 263.5. It follows that the P value 
of our design is 113.8 nW. The power consumption of 
Akari-x family PRNGs has been quoted in Table 3a, using 
the new publication [31]. The declared Akari-x consumption 
values are also estimations, obtained by using a software 
design tool. Lamed’s power consumption was not provided; 
therefore, it was calculated by using (1). The calculated 
power consumption values are given in Table 3b. If the 
number of switched gates is considered as a true indication 
of the power consumed, then our design has the lowest 
power consumption, in Table 3b. Our design’s power 
consumption is better than the Akari-2x family of designs, 
in Table 3a.  

The last metric to consider is the throughput of the 
designed hardware. Throughput is a measure of the number 
of bits output per second, by the designed scheme. This 
metric is not as critical as the above considered parameters 
in low-cost devices like RFID tags [25-27], [29]. 
Nevertheless, low throughput values of a design show that 
low power consumption and die area were aimed, instead of 
high output per second. Throughput can be calculated by 
(output data size per second) / (the number of clock cycles it 
takes to output each data × time of each clock cycle). The 
data size of the compared architectures is 16 bits. The period 
(1/working frequency) of each clock is 1/100 kHz. Hence, 
the throughput in kilobits per second (kbps) of a typical 16-
bit RFID tag, working at 100 kHz system clock frequency, 
is simplified to (2). The nCC value is the number of clock 
cycles consumed for outputting a single PRN, by the 
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designed hardware. 

nCC
=T

1600
     (2) 

The throughput of our design is 1600/118 = 13.56 kbps. 
When compared with the results quoted from the other 
proposals in Table 3a, it is observed that our design’s 
throughput is positioned in the middle of the compared 
designs. Among the calculated values in Table 3b, the 
throughput of our design is the highest, compared to the 
other 16-bit PRNG versions. Having the highest throughput, 
yet the lowest GE and power consumption is a solid proof 
that our scheme is indeed a high-throughput, ultra-
lightweight design.  

Taking universally accepted performance estimations into 
consideration, Table 3b shows that the overall performance 
of our design is the best among the enlisted PRNGs. The 32-
bit and parallel architectures of the other designs are not 
very realistic for RFID tags and their declared performance 
values are inconsistent. For example, the Akari-1x designs 
which have lower power consumptions than our design in 
Table 3a, have GE values two times higher than ours. Akari-
2B, has a GE almost 3 times bigger than our design, 
obviously contradicting condition (1). Our clock delay 
estimation of 16-bit versions of Akari-x is not in 
contradiction with the high number of iterations and the 
multiplication operations, in the design. All of the hardware 
architectural arguments indicate that our performance results 
are realistic and not optimistic for 16-bit PRNG designs. 

B. Verilog & WISP Implementations 

 
Figure 3. Sample Verilog implementation code of proposed PRNG 

 

The popular Verilog hardware description language 
(HDL) has been used to model the proposed PRNG system. 
Verilog syntax is very similar to the C programming 

language syntax. Fig. 3 shows the PRNG code snippet that 
was simulated using the Icarus Verilog simulation engine. 
The code is a proof of the simplicity of our design.  

 

Figure 4. Sample WISP implementation code of the proposed PRNG 
 

The proposed scheme has also been implemented on 
WISP to prove that the design requires resources that can be 
met on real 16-bit tag platforms. The 16-bit, programmable, 
passive, UHF, WISP version 5.0, RFID tag is a good testing 
hardware platform. WISP has a MSP430FR5969 low power 
microcontroller that can easily be programmed through a 
simple programming interface. Part of the WISP 
implementation code corresponding to the Verilog 
implementation code of Fig. 3 is given in Fig. 4. The 
similarity in the syntax of the two implementations is 
obvious. Both implementations verify the hardware design 
shown in Fig. 5. 

uint32_t one = 1; 
// Returns ith bit of an integer 
uint32_t extractBit(uint32_t value, int pos)  
{  
 return((value & (one<<pos)) >> pos); 
} 
 
// Rotates left "n" bits 
uint32_t rotl(uint32_t value, int n) { 
  return (value << n) | (value >> 
(sizeof(value)*8 - n)); 
} 
// Rotates right "n" bits 
uint32_t rotr(uint32_t value, int n) { 
  return (value >> n) | (value << 
(sizeof(value)*8 - n)); 
} 
 
int main( void ) 
{ 
 
 uint32_t x, y, z; 
 uint32_t u= 127, s=7; 
 uint32_t t= 31, l= 262143; 
 uint32_t p= 127, b= 2636928640; 
 uint16_t i; 
 uint32_t c = 4022730752; 
  
 x = 3735928559; 
 z = x;   
 
 for (i=32;i>0;i--){ 
   x=extractBit(z,32-i)?rotl(x,1):x;  

} 
  
 y = x;  
 z = u; 
 
 for (i=32;i>0;i--){  
   y=extractBit(z,32-i)?rotr(y,1):y;  
  } 
  
 x = x ^ y;  
 y = x;  
 z = s;  
 
 for (i=32;i>0;i--){ 
   y=extractBit(z,32-i)?rotl(y,1):y;  
  }  
  
 z = b;  
 y = y & z;  
 x = x ^ y; 

module prng; 
 

reg[31:0]  x; 
reg[31:0]  z, y; 
parameter u = 32'h0000_007F, s = 32'h0000_0007, 
t = 32'h0000_001F, l = 32'h0003_FFFF, p= 
32'h0000_007F, b=32'h9D2C_5680; 
parameter c=32'hEFC6_0000; 
integer i; 
 
initial begin 
x = 32'hDEAD_BEEF; 
z = x; 
for (i=0;i<=31;i=i+1) 
begin: BLOCK_1 
        if(z[i]) x = {x[30:0],x[31]}; 
end 
y = x; 
z = u; 
for (i=0;i<=31;i=i+1) 
begin: BLOCK_2 
        if(z[i]) y = {y[0],y[31:1]}; 
end 
x = x ^ y; 
y = x; 
z = s; 
for (i=0;i<=31;i=i+1) 
begin: BLOCK_3 
        if(z[i]) y = {y[30:0],y[31]}; 
end 
z = b; 
y = y & z; 
x = x ^ y; 
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Figure 5. Hardware implementation of the proposed PRNG scheme 

C. Hardware Implementation 

The block diagram of a hardware implementation of the 
proposed PRNG scheme of Fig. 2 is given in Fig. 5. The 
tempering constants u, s, t, l, p, b, and c are shown as distinct 
inputs of multiplexer MUX_B, timed by the PRNG Control 
Unit through the S3-S4-S5 control path. In fact, the PRNG 
Control Unit generates the necessary control signals S0 
through S11 to control the multiplexers, bidirectional shift 
registers and other control circuits of the proposed scheme. 
For example, when S0=0, S1=1 and S2=1, TRN is loaded 
into Register X (x:=TRN step of Fig. 2). In the next step 
when S3=0, S4=0, S5=0, MUX_B selects input X. When 
S6=1 and S7=1, X is loaded into Register Z (z:=x step of Fig. 
2). The combinational control circuit for Register Y and 
multiplexer MUX_D are controlled via S9-S10 and S11 
respectively, to decide the direction of rotation of the 
bidirectional rotational shift Register Y, as either left or right 
direction. For example, when S11=0 and the tested MSB 
Z[31]=1, Register Y is one bit left shifted and the MSB of 
Register Y is rotated to LSB. Hence, the shift register is used 
as a rotational register. When S11=0 and Z[31]=0, then there 
is no change in Register Y (Hold). When S11=1 and 
Z[31]=1, then Register Y is one bit right shifted and the LSB 
of Register Y is rotated to MSB. The direction of the rotation 
of Register X is controlled in a similar method, using control 
path S1, S2 and the tested Z[31] bit. 

 

D. Testing Results 

Starting with the three requirements of generating random 
numbers given in Gen-2 (Section 1.2), it can be observed that 
they are met by our proposed scheme. The results satisfying 
the Gen-2 requirements can be summarized, as follows. The 
first requirement is satisfied in the constraint 0.923/216 < 
P(RN16 = j) < 1.071/216. The second requirement is satisfied 
with a result value of 0.04. The third requirement is satisfied 
with a 0.000008 serial correlation result, which ensures that 
the probability of predictability is not greater than 0.025% 
[3]. The inputs, detailed generated random number files and 
the results of the calculations can be found on the web page 
at http://srg.cs.deu.edu.tr/ publications/2012/prng/.  

In the randomness tests, two types of inputs were used to 
reach the best scheme. At first, an input-set from 
http://random.org was used to identify the schemes which 
fail to produce good random numbers. Then, a second set of 
inputs with low entropy (0.00) was used to equate the 
entropy of the inputs to that of work [12]. But, many 
schemes that performed well with RN inputs produced poor 
test results with low entropy inputs, so they were dropped 
too. Only those schemes that passed the randomness tests 
with low entropy inputs were selected and further improved, 
finally to reach the best solution. It should not be missed that 
Lamed and Akari-X use RNs from http://random.org inputs 
for obtaining RNs, but RN seeds are simply not readily 
available, in tags.  
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TABLE IV. NIST TEST VERSION 2.1, “PROPORTION” RESULTS COMPARED 

WITH PREVIOUS  
Test Name Lamed Ours 

Frequency 0.98 1.00 
Block-frequency 0.98 0.99 
Cumulative-sums 0.98,0.98 1.00,1.00 
Runs 1.00 1.00 
Longest-run 1.00 0.98 
Rank 0.98 0.00* 
Fft 0.99 0.99 
Overlapping-
Templates 

0.98 1.00 

Universal 0.96 1.00* 
Apen 0.99 0.98 
Serial 0.97, 1.00 1.00,0.99 
Linear-complexity 0.99 0.99 
Random-
excursions 

0.97, 0.98, 1.00, 0.97, 
1.00, 1.00, 0.97, 1.00 

1.00, 1.00, 1.00, 1.00, 
1.00, 0.92*, 1.00,1.00 

Random-
excursions-variant 

1.00, 1.00, 1.00, 0.98, 
1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 
1.00, 0.98, 0.97, 0.98, 
1.00, 0.97 

1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 1.00

Test Name Akari 1A/B Akari 2A/B/C 
Frequency 0.98 0.98 
Block-frequency 0.99 0.99 
Cumulative-sums 0.97, 0.97 0.99, 0.97 
Runs 0.99 0.99 
Longest-run 1.00 0.99 
Rank 0.99 0.99 
Fft 0.99 0.99 
Overlapping-
Templates 

1.00 0.99 

Universal 0.99 0.97 
Apen 1.00 0.99 
Serial 1.00, 0.99 0.99, 0.97 
Linear-complexity 1.00 1.00 
Random-
excursions 

1.00, 0.99, 1.00, 0.97, 
1.00, 0.99, 1.00, 1.00 

1.00, 0.98, 1.00, 1.00, 
0.99, 0.99, 0.98, 1.00 

Random-
excursions-variant 

1.00, 0.99, 0.99, 0.99, 
0.99, 0.99, 0.97, 0.99, 
1.00, 1.00, 1.00, 0.99, 
1.00, 1.00, 1.00, 1.00, 
0.99, 0.99 

1.00, 1.00, 1.00, 1.00, 
1.00, 0.99, 0.99, 1.00, 
0.99, 0.99, 1.00, 0.99, 
0.99, 0.99, 0.98, 0.98, 
0.98, 0.99 

1: Not provided; 2: Complex; 3: Simple  
 

The ENT [34] and Diehard [34] are preliminary, relaxed 
tests acting as indicative values, prior to running the NIST 
suite [36]. To summarize the posted results briefly, the 
random number outputs of our design pass the ENT and 
Diehard tests with satisfactory results. Normally, the random 
numbers that pass the NIST suite can easily pass the ENT 
and Diehard tests. 

To expose the differences in designed schemes, one has to 
consider the testing results of the stricter NIST suite of tests. 
The NIST tests’ output results called “p-values” and 
"proportion" values are expected to be greater than 0.01 and 
0.96, respectively. The “proportion” result is the proportion 
of the binary sequences that passed the test (p-values > 0.01). 
Any undesirable result is marked with a "*" next to the 
proportion value. It is acceptable for a scheme to fail a few 
tests out of 188 tests; i.e. a scheme failing one or two 
individual tests cannot be considered as not passing the 
overall NIST test [35]. In our work, to test the scheme given 
in Fig. 2 the NIST test version 2.1. has been used. The NIST 
test results are very long and detailed reports. Therefore, our 
full results are posted on http://srg.cs.deu.edu.tr/ 
publications/2012/prng/. The NIST test results of [10] are on 
http://www.lightweightcryptography.com/research/akari/ 

akari.html. Only the proportion results are given, in 
publication [3]. Our proportion value results are summarized 
in Table 4. 

Only two tests individually fail the criteria. But the NIST 
tests are known to be the strictest tests intended for 
computers and not for tags. Failing one or two tests does not 
prove our scheme to be unsuitable for tags. Work [35] openly 
states that “It is acceptable for a few individual tests to fail”. 
To defend the argument, first our Universal test result is 
discussed. In NIST’s official document, the technical 
description of Universal test is given as a compression-type 
test, where a significantly compressible sequence is 
considered to be non-random [36]. Although our Universal 
test result fails, the ENT test results posted on our web site 
shows that our proposed scheme’s output compression rate is 
0%. The conflicting results cast doubt whether our output 
sequence is easily compressible, or not. 

E. Limitations 

Failure in Binary Matrix Rank Test (Rank for short, in 
Table IV) is regarded as an indication for non-randomness 
[37]. Rank test “constructs binary matrices from the analyzed 
data and checks for linear dependence among the rows or 
columns of the constructed matrices”. Hence, failure to pass 
the Rank test can be accepted as evidence of non-randomness 
due to linearity problems. This is the case for the proposed 
PRNG scheme of Fig. 2, as well. However, the tested output 
values of the scheme are the result of very low entropy inputs 
(entropy of TRN = 0.00 in Fig. 2). In other words, the input 
values already have a huge linearity vulnerability and fail the 
Rank test, badly. Our proposed scheme passes the Rank test 
if input values from random.org are used, as in the previous 
works. But, such a test or its results do not present a valid 
argument, because it would mean to defend obtaining 
random numbers from already proven random numbers. 
Even the null function can pass the Rank test with proven 
random number inputs.  

Hence, there is a critical input entropy threshold when the 
input values push our proposed scheme to pass the Rank test. 
Although an entropy threshold of 0.20 is a good starting 
point where our proposed scheme passes the Rank test, 
laboratory tests have not revealed an exact threshold for 
input values. This is a limitation which can be stated as “the 
higher the random distribution of the input TRN values, the 
lower the linearity vulnerability of the proposed PRNG 
scheme in Fig. 2”. In other words, as the seeding of the 
proposed PRNG scheme improves, the statistical linearity 
vulnerability decreases. 

V. CONCLUSION 

A new random number generator that is feasible in low-
cost RFID tags has been presented. The performance results 
of the present proposal are the best in terms of simplicity of 
design, power consumption, die area, cost and complexity. 
The results indicate that the proposed scheme does not 
exceed the resource limits of the ultra-light tags. The 
presented scheme takes low-entropy TRNs as seeds, without 
requiring special circuitry, and produces random numbers 
that passes well-known randomness test suites. This is a 
critical superiority over previous works, which use random 
numbers as inputs (not available in RFID tags) to produce 
random numbers. Our proposal’s performance results and the 
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favorable randomness test results are supported by the 
utilized universally accepted measurement methods. Our 
scheme is available now, until a hashing or encryption 
algorithm is offered at the right cost, for low-cost tags.  

Future work involves the design and implementation of the 
proposed scheme in an integrated circuit prototype. 
Theoretical work is encouraging for the hardware design, 
because the scheme is sequential and ultra-light. 
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