
Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 81

Abstract—A pseudo-random number generator for low-cost

RFID tags is presented. The scheme is simple, sequential and
secure, yet has a high performance. Despite its lowest hardware
complexity, our proposal represents a better alternative than
previous proposals for low-cost tags. The scheme is based on
the well-founded pseudo random number generator, Mersenne
Twister. The proposed generator takes low-entropy seeds
extracted from a physical characteristic of the tag and
produces outputs that pass popular randomness tests.
Contrarily, previous proposal tests are based on random
number inputs from a popular online source, which are simply
unavailable to tags. The high performance and satisfactory
randomness of present work are supported by extensive test
results and compared with similar previous works.
Comparison using proven estimation formulae indicates that
our proposal has the best hardware complexity, power
consumption, and the least cost.

Index Terms—information security, radio frequency
identification, random number generation, RFID tags,
ubiquitous computing.

I. INTRODUCTION

Consumer goods in supply chains have identification
stickers on them, which are used to track their journey up to
the consumer bags. The paper barcode stickers are being
replaced by Radio Frequency Identification (RFID) stickers
(tags) [1]. According to a report, RFID is a booming
technology, acting as part of the ubiquitous systems [2]. The
boom is due to advantages gained by using RFID, since
paper barcodes suffer from wear and tear. Degraded
barcodes cause erroneous reading and when intentionally
switched or over-written by fakes, big losses occur. On the
other hand, RFID tags provide some security in addition to a
unique identification number; by employing pseudo random
number (PRN) based protocols. PRNs are widely used in
computer and mobile device authentication protocols,
relying on the very important characteristic of being
random. But, producing good quality PRNs in cheap tags is
not easy, as it will be revealed next.

A. RFID Technology: Properties, Advantages, and
Shortcomings

RFID rests upon wireless technology, where a tiny tag
consists of an integrated circuit (IC). The IC is remotely
energized by the reader through electromagnetic field of
antenna coils, as shown in Fig. 1. The unique and sensitive
identification number (ID) information in the memory of the
tag is obtained and sent to a remote server by the reader, to

be matched to an entry in the database. In a nutshell, RFID
"is capable of identifying items of different types and
distinguishing between items of the same type, not requiring
physical or visual contact" [3]. While paper barcodes are
read one at a time, up to 1000 tags/sec can be read. The
reading distance of a barcode is a few centimeters, whereas
a UHF tag’s is a few meters. The low-cost, passive, UHF
tags are the most popular [2] and take part in the pervasive
networks that surround us [4]. However, their computational
capacity and power electronics are limited, forcing little
hardware to be spared for security; hence, causing
vulnerabilities [5-6]. Therefore, UHF tags have been defined
as resource constrained devices and the cryptographic
solutions offered to remedy security vulnerabilities have
been studied, in detail [7].

Figure 1. The flow of RFID authentication process

The communication between the reader and the server
shown in Fig. 1 is considered secure; whereas
communication through air, between the reader and the tag
is assumed insecure. Security issues arise when the tag tries
to pass its sensitive ID or Electronic Product Code (EPC).
The properties ratified in ISO-18000-6 [8] and recently
released EPCglobal Class-1 Generation-2 version 2 (Gen-2)
standards [9] fail to provide the necessary security.
According to the standards, every queried tag transmits 16
bits of generated random numbers (RNs), starting with RN-
1. The reader acknowledges by returning a reply with the
same RN and the tag replies with its EPC. The commands
consist of words XORed with random number RN-2. A
malicious listener can capture the RNs and extract the EPC.
The only effort to decrypt a command is to XOR it with the
recorded RN-2 [3]. Once the ID is captured, the least
damage can be the exposure of personal privacy. The UHF
tags should not be confused with the high cost tags, such as
those used in e-passports.

An Ultra-light PRNG Passing Strict
Randomness Tests and Suitable for Low Cost

Tags

Mehmet Hilal ÖZCANHAN1, Mehmet Suleyman UNLUTURK2, Gökhan DALKILIÇ1
1Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey

2Department of Software Engineering, Yasar University, Izmir, Turkey
dalkilic@cs.deu.edu.tr

1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.03012

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 82

B. Random Number Generation and Randomness Tests

Pseudo random number generator (PRNG) function is a
fundamental primitive of most cryptographic algorithms and
security protocols. The Gen-2 standard supports 16-bit
PRNs basically for collision prevention. But, neither the
period (216), nor the random number generation standard of
Gen-2 is satisfactory for cryptographic randomness. In
addition, low-cost tags have limited capacity and can
dedicate only a few thousand gates for security [3, 10]. The
above disadvantages are worsened with the following Gen-2
PRN property guidelines:
1. The probability that any value j of a generated 16-bit

random number (RN16), where RN16 = j shall be
bounded by: 0.8/216 < P(RN16=j) < 1.25/216.

2. For a tag population of up to 10,000 tags, the
probability that any of two or more tags simultaneously
generate the same sequence shall be less than 0.1%,
regardless of when the tags are energized.

3. An RN16 drawn from a tag's PRNG 10 ms after the end
of tag power-up rise time, shall not be predictable with
a probability greater than 0.025%.

Many random number generation proposals made for
tags, consider meeting the above guidelines as adequate.
However, Gen-2 guidelines are not as strict as the criteria of
well-established PRN tests. More serious effort is needed to
provide good quality random numbers. Efforts of generating
random numbers can be divided into three categories. The
first category is true random number (TRN) generators
(TRNGs), where randomness is extracted from physical
phenomena like thermal noise, frequency instability of an
oscillator or the unstable power-up state of SRAM memory
cells [11, 12]. For example, work [11] uses chaotic
oscillations of a designed electronic circuit. Although the
proposed solution passes statistical randomness tests, the
hardware implementation exceeds allowed power
consumption restrictions, with 26100 nW performance.
TRNGs rely on physical characteristics and mostly fail to
provide good quality random numbers; even tend to output
the same numbers - if physical conditions are reproduced
[13]. Therefore, TRNGs are widely regarded as sources of
entropy, only.

The second category is PRNGs, where a deterministic
algorithm is used [3, 10]. PRNGs use mathematical
formulae or pre-calculated tables to generate sequences that
appear random. The third category is a blend of the first and
second categories; where output obtained from a TRNG is
used to seed a PRNG [12-14]. This strategy has been
developed because, if the assumed seed of a PRNG is
guessed, the generated RN of the mathematically
deterministic algorithm can be predicted. Therefore, a
PRNG by itself is sometimes declared insecure without
good sources for seeding [15, 16]. But, work [14]
demonstrates weakness in a previous PRNG design, even
though the TRNG seeds are truly random. It follows that the
PRNG algorithms providing the final output must be strong.
To obtain high quality random numbers, another option is
the entropy amplification of low entropy TRN seeds. For
example, work [15] tries to increase the quality of generated
TRNs, via hardware based multi-phase timing of bistables.

Obviously, the randomness of the sequences generated by
PRNGs has to be proven. There are various mathematical

and statistical proofs for randomness, but today’s popular
method is to get approval from universally accepted
randomness checkers (tests). A large amount of input is
given as seed to the proposed generators and their output
number sequences are submitted to the randomness tests.
Each test suite has its own submission rules, randomness
checks and result interpretations. Discussing the rules, test
suits and interpretation of randomness tests are beyond the
scope of this paper. The ENT, Diehard (versions 1, 2) and
NIST randomness tests (detailed in Section 4.2) are highly
esteemed, by the random number community. But, any non-
obscure algorithm producing output that passes the NIST
tests is widely accepted. Therefore, our results have been
tested using the above three tests. Today’s most randomness
tests are designed for 32-bit RNs, because the use of 16-bit
RNs in computers is now considered to be too primitive.
Hashing and encryption algorithms like SHA-1, DES, AES
etc. are known to produce good quality random numbers;
however, they overwhelm the low-cost RFID tags [6, 17].

In the rest of this paper, Section 2 accounts for the
previous related work in PRNG design and the properties of
our inspired algorithm. In Section 3, there are the details of
our proposed scheme. Section 4 contains the performance
and testing results, followed by evaluation and comparison
of the results with similar works. We conclude and list
future work, in Section 5.

II. RELATED WORKS

There aren’t many works on PRNGs, employed in tags.
Among the few, - only in [3] and [10] - the proposed
schemes are supported with popular randomness tests and
provide detailed design-performance information. Two other
works [13-14] do not provide the same information, but
propose a linear feedback shift register (LFSR) with a TRN
bit, as input. In fact, in [13] the authors attack work [14] and
try to correct the suggested weak LFSR.

Our work falls into the third category described in Section
1.B, which uses the power-up contents of the SRAM
memory of a tag to form a TRN input to its PRNG function.
It has been demonstrated that some SRAM memory bits
always settle to the same “0” or “1” voltage level, while
others settle to either low or high level, randomly. The
randomness is due to semiconductor lithography variations
and thermal noise. This SRAM cell characteristic has led to
the proposal of Fingerprint Extraction and Random
Numbers in SRAM (FERNS) [12]. A length of memory
containing random bits provides a low source of entropy in
FERNS, which by themselves fail the randomness tests. The
biggest advantage of FERNS is that it requires no dedicated
circuitry. In [12] the TRNs are input to a well-known hash
function for privacy amplification, to attain good quality
random numbers. Randomness test results indicate that the
randomness of the original TRNs is not acceptable, but the
hashing algorithm produces random numbers that pass
randomness tests. Our proposal replaces the hashing
algorithm of the work [12] with an affordable, ultra-light
scheme (described in detail in Section 3). In tags, ultra-light
means a scheme or protocol where only bitwise AND, OR,
XOR, shift and addition modulo 2m are used [3, 5]. The
main reason of replacing the hash function is due to the fact
that present hash functions cannot fit in low-cost tags.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 83

Moreover, hashing needs considerable amount of input bits.
Both factors raise the cost of the tags. One of the most
known works on tag PRNGs is Lamed [3], but it has some
undesired characteristics that can be summarized as follows:
 Lamed is a computation intense algorithm with 8

addition, 6 XOR and 10 rotation operations, requiring a
32-bit parallel architecture to finish computations,
within required time. Its clock cycle delay for PRN
generation is compared to our design in Section 4.A.

 The authors of Lamed declare that the public
initialization vector (IV) should never be used with the
same pre-shared secret key (PSK). In addition, the
notion of programming a constant PSK into the tag - at
the time of manufacture - is not defined in Gen-2.
Meanwhile, the probability of using the same key with a
known public IV is merely 1/216. Therefore, the key
space of different IVs against different keys is not
enough for low-cost tags, produced in millions.

 The authors of Lamed declare the security weakness of
the scheme’s state variables as tied down to only 32,
related to the public IV.

 Apart from using random numbers from a popular
source as seeds to the PRNG in their tests, the authors
also change the fitness function and produce invalid
results. The presented explanation given for the change
is unsatisfactory.

A. The Inspired PRNG: Mersenne Twister

Our proposal is based on the Mersenne Twister (MT)
[18]; which has properties that are feasible in low-cost tags.
MT is a well-known algorithm, classified as a good PRNG
[19]. A Mersenne prime is used as the period of the
algorithm for fast generation of pseudo random numbers,
free from long-term correlations. The algorithm is based on
linear recurrences in F2 (finite field with two elements, 0
and 1) and arithmetic modulo 2m operations [20].
Incidentally, binary recurrences and bitwise operations are
easily implementable in resource stricken, low-cost tags.
Briefly, MT is a specially twisted, generalized feedback
shift register (TGFSR) that takes an incomplete array to
realize a Mersenne prime, as its period. It uses an inversive-
decimation method for testing the primitivity of a
characteristic polynomial of linear recurrence with a
computational complexity O(p2), where p is the degree of
the polynomial.

Mathematical arguments show that MT is a special case
of well equidistributed long-period linear (WELL)
generators [20]. Omitting the details of the argument, MT
has a long period of 219937-1, with a 623 dimensional
equidistribution up to 32-bit accuracy. In fact, MT has better
equidistribution and “bit-mixing” properties than its
predecessor PRNGs with equivalent period length and
speed. Many variants of MT have been introduced for
cryptographic security at better speeds [19-20].

The successful randomness test results of MT draw the
attention of PRNG researchers. The steps of MT are also of
interest to tag producers, because a tag can accommodate
their simple bitwise operations. Looking at the steps closely,
MT works in a recurring part and a tempering part. The
simplified MT steps and the tempering stage are:

Step 0: Create bitmask for upper and lower bits,

Step 1: Initialize an x[i] array with nonzero seed values,
Step 2: Concatenate the upper bits of previous array x[i]
with the lower bits of iterated array x[i+1],
Step 3: Calculate the next state array x[i],
Step 4: Carry out tempering as follows:
y x[i]
y y (y u)
y y ((y s) & b)
y y ((y t) & c)
z y (y l)
(‘<<’ is a bitwise left shift, ‘>>’ is a bitwise right shift,
and ‘&’ is a bitwise AND),
Step 5: Increment i by 1:
i (i+1)mod n, where n is the degree of recursion,
Step 6: Go to step 2, repeat until i equals n.

The first three steps, initializes and concatenates an array.

Tempering is carried out in Step 4 to improve the
distribution of the sequences generated from the recursions.
Parameters u, s, t, l are tempering bit shifts, b and c are
tempering bit-masks. The parameters are experimentally
tested values for maximally-equidistributed generators [20].

The MT algorithm has some known disadvantages, which
were eliminated in our work. Firstly, the initial state of MT
has too many zeros, therefore the generated sequences also
contain many zeros for more than 10000 generations. This is
the reason of the problem indicated previously, in the fitness
function of [3]. Our work removes this weakness by
supplying non-zero, random initial inputs and by completely
removing the matrix recurrences. For seeds chosen
systematically as 0, 20, 30 a second weakness appears as
correlated output sequences; which does not happen in our
proposal. Finally, MT is not preferred for cryptographic
purposes because it is easy to predict the next state if the
present output is known.

To fix the above weaknesses many variations of MT have
been proposed. One of the suggestions is to have the outputs
of MT go through a function. For example, TRNs can be fed
into a hash function [14]. It is clear that if the generator is
initialized with uniform random bits, the probability of
getting many zero bits or correlated output is quite small.
Thus, seeding MT with TRNs and fine-tuning tempering
parameters can improve the distribution of the generated
PRNs [20]. This is the achievement of the present work,
obtained without using a burdensome hash function.

III. THE PROPOSED SCHEME

Although the promising FERNS technique is the starting
point of our proposal, any scheme qualifying as a TRNG can
be the input stage of our proposed PRNG. Our design
requires a TRN to be present in one of the registers, before
the PRN generation starts. However, it is not difficult to
meet this important pre-requisite. In both [12] and [21],
Gen-2 compliant Wireless Identification Sensing Platform
(WISP) [22] tags are used. WISP uses 16-bit Texas
Instruments, reduced instruction set computer (RISC)
architecture, MSP430 microcontrollers, which have 256/512
bytes of RAM. Both works use external tools to read the
contents of the internal memory of the microcontroller. Our
work however, involves the reading of the SRAM memory

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 84

into one of the 12 registers of the microcontroller, during the
initialization of the tag. Prior to answering the request of a
reader, the microcontroller can read an unused memory
location into one of the 12 registers, with the MOV
instruction. Next, the value in the register is rotated and
XORed with the next memory contents. After a number of
recursions, the result is a non-zero TRN, in one of the
registers. The probability of a zero TRN value is 1/216.

Figure 2. The proposed scheme

The proposed scheme is shown in Fig. 2. The
deterministic, iterative part of MT is replaced with the
TRNG seeding. The remaining operations are basically step
4 of Mersenne Twister, described in Section 2.1. The main
challenge is to find the tempering parameters and mask
values (u, s, t, l, p, b, c) that yield the best randomness
results. The scheme consists of only simple bitwise XOR,
AND and rotation (circular shift) operations, which replaces
the hash function of previous works.

At the start, the TRN seed is already in the main register
x. The value in x is copied to secondary register z, for
preservation of the original TRN value until the first XOR
operation. The first rotation to the left (ROTl) improves the
entropy of the seed, as the TRNs are known to have low
entropy. The ROTl (x, z) operation is a simple bitwise
operation, which shifts x to the left, depending on the
number of “1” values in z; where the most significant bit
(MSB) is wrapped around to the least significant bit (LSB),
through carry bit. The opposite is true for the rotate right
(ROTr) operation, as well. Our scheme employs rotation
operations, instead of shift operations, because rotation
removes the misbalance introduced by the XOR operation
between left-most and right-most bits [23]. In the next step,
first the improved TRN in x is copied into y, then u is loaded
into z. In the second rotation, as u’s hamming weight

(number of “1” values in u) is 7, y is rotated 7 times to the
right. The rotated value is XORed with the value in the main
register x, ending the first tempering. In the next two steps,
the value in the main register x is copied to y, and parameter
s is loaded to z. In the next four steps, tempering 2 is carried
out. The next six steps process the third tempering. Next
step is MT tempering step 4, where the previously tempered
value is rotated right by 18 times (l’s hamming weight) and
the result is XORed with the unrotated value. Finally,
tempering 5 is our contribution which is intended for
increasing the randomness of the output.

Overall, the rotation operation executes permutation and
XOR-AND operations provide substitution effect, on their
operands. Thus, the input goes through a sequence of
permutations and substitutions, as in modern hashing and
encryption algorithms. In the steps labeled as MT tempering
1, 2, 3, 4, 5 the original TRN is transformed. After our
additional tempering, the obtained PRN is in the main
register, ready to be used in the authentication of the tag.
Different number of rotation operations and directions
against different u, s, t, l, p, b and c values have been tested.
The scheme with the best results has been chosen. Since
Mersenne Twister is explained abundantly in mathematical
literature, no further mathematical discussion will be
pursued, in present study.

The scheme has a sequential format which can be
implemented as sequential code inside the tag, where the
coefficients are given as immediate constant operands. This
removes the need for a complex finite state machine (FSM),
inside the tag. The registers and operators (XOR, AND,
ROT) can also be used in the authentication algorithm;
which in fact are not necessarily additional circuitries
needed for producing a PRN. This is a true argument for the
WISP tag’s MSP430.

Running time for algorithms is modeled as a power law,
given as T(N) = a×Nb (where a and b are constants, N is the
input data size) [24]. The CPU, memory, cache, compiler,
interpreter, garbage collector, operating system, network and
other applications determine the constant a, in power law
equation. Algorithm design and input data determines
exponent b. In general, the measure of the running time
involved in the algorithm designs is equal to the number of
multiplications and recordings, because most of the work
consists of multiplications and recording the numbers. In our
algorithm presented in Fig. 2, most of the work comes from
the 6 rotations. For the x:=ROTl (x, z) operation, the code
snippet is given below:
 int i;
 for(i=0;i<N;i++)
 if(z[i]==1)

 ROTl (x,1) // Rotate left 1 time only

Running time for the above rotate function is O(N). Since
there are 6 rotations in the proposed algorithm, the
approximate model of our algorithm is ~6N and the order of
growth is linear. Therefore, the proposed algorithm can be
an effective tool to generate PRN for RFID tags.

Our design can be simulated and tested, easily. A set of
numbers is fabricated as a file, to be used as seeds to our
PRNG scheme. It is important that the numbers are
manipulated, so that their overall entropy is low. The
proposed design steps are coded in the order they appear in
Fig. 2, as a PRNG sub-routine. Three registers are defined

x:=TRN ;initialization
z:=x ;x is copied to z

x:=ROTl(x,z) ;for improving the seed
y:=x ;x is copied to y
z:=u ;u is loaded into z
y:=ROTr(y,z) ;MT tempering 1
x:=xy ;end of MT tempering 1
y:=x ;x is copied to y
z:=s ;s is loaded into z
y:=ROTl(y,z) ;MT tempering 2
z:=b ;b is loaded into z
y:=y AND z ;MT tempering 2
x:=xy ;end of MT tempering 2
y:=x ;x is copied to y
z:=t ;t is loaded into z
y:=ROTl(y,z) ;MT tempering 3
z:=c ;c is loaded into z
y:=y AND z ;MT tempering 3
x:=xy ;end of MT tempering 3
y:=x ;x is copied to y
z:=l ;l is loaded into z
y:=ROTr(y,z) ;MT tempering 4
x:=xy ;end of MT tempering 4
y:=x ;x is copied to y
z:=b ;b is loaded into z
y:=y AND z ;added tempering 5
z:=p ;p is loaded into z
y:=ROTl(y,z) ;added tempering 5
x:=xy ;end of added tempering 5

u = 7FH,s = 07H,t = 1FH,l = 3FFFFH, p = 7FH,
b =9D2C5680H, c =EFC60000H.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 85

where all the calculations take place. Simulation consists of
reading values from the fabricated input table, running them
in the PRNG sub-routine and storing the outputs into
another file. The output file contains the PRNs generated by
our design, which is used as input to the randomness test
suites. The code is available upon request from the authors.

IV. PERFORMANCE, TESTING AND EVALUATION OF

RESULTS

The hardware efficiency of a proposed scheme -
measured in length of data path, die area, clock cycles spent,
consumed power, throughput etc. - is a good indicator of its
performance. Our proposal uses 16-bit tag architecture to
obtain a 32-bit PRN because of a number of reasons. The
latest 32 or 64-bit, state of the art technologies for
microprocessor production cannot be used in low-cost tag
production. One proof of our choice is the aforementioned
MSP430 microcontroller of the WISP family of tags.
Besides, the common comparison ground is the 16-bit
design results, provided by previous works. We assume that
16-bit PRNs of Gen-2 can be obtained from our 32-bit PRNs
by either taking the lower 16 bits, or by XORing the higher
16 bits with the lower 16 bits, as in previous works [3, 10].
But it can be claimed that 32-bit, good quality PRNGs that
pass the popular randomness tests are possible in tags, as
shown in Section 4.A. The “access” and “kill” commands of
Gen-2 are 32-bit and require multi steps to finish. The
availability of our 32-bit RNs is an advantage that can
simplify the commands. Moreover, only 32-bit randomness
tests are accepted, by the community. According to Gen-2
specifications, the tag is expected to provide only a 16-bit
PRNG whose period is much shorter than that of a 32-bit
generator. The short period of a 16-bit PRN means reduced
randomness that causes the security of Gen-2 to be classified
as inadequate [3, 10].

The maximum number of gates and clock cycles allocated
for security is a few thousands gates and 1800 clocks [7,
25]. These resources cannot be used for only generating a
random number, because space and time must be left for
other tasks and authentication steps. The above guidelines
are commonly used in comparing the performance and
randomness test results of similar works.

A. Performance Results

Our scheme (Fig. 2) requires only XOR, AND and
circular shift operators. Table 1 shows the operation types
used in the previous schemes against ours. Obviously, the
multiplication and the finite state machine requirements of
Akari-x [10] put overwhelming load on the tag. The Lamed
scheme uses three simple operations like ours, but requires
input, control and rotation units for iterative work. While
Akari-x schemes require memory for an IV, Lamed [3]
requires two 32-bit space. Ours requires one 32-bit and five
16-bit space. Memory requirement of each scheme is given
in bits, in the final column of Table 1. All schemes’ memory
space requirements can be met by WISP.

In order to estimate the die area of integrated circuits,
independent of the used technology, gate equivalents (GEs)
can be utilized [26]. One GE is equivalent to the area
required by a two input NAND gate. The GE of each logic
gate and thus the total GE for all bitwise operators are

known and widely accepted [27]. The total GE required for
our scheme is calculated to be 527 gates, as shown in Table
2. The GE values of our scheme and the declared values of
previous works are shown in Table 3a. Our GE value is the
lowest among the compared. The lowest GE, at the same
time means lowest cost; because every 1000 GE adds $0.01
to the cost [29]. As an example for the calculations, one bit
of a shifter uses one flip flop that costs 5.33 GE. For 16 bits,
the total GE required for a shifter is 85.28. Our scheme is in
the low-cost category, since it is well below 1000 gates [7].

It is important to indicate that present work’s total GE has
been increased to accommodate the 3 registers. The heavy
cost of hashing algorithms, like the 8,120 GE value of SHA-
1 [29] has not been included in our comparisons.

TABLE I. COMPARISON OF OPERATION TYPES AND MEMORY USED IN

DIFFERENT PRNGS

Scheme Operation Types Used Iteration Memory
Memory

Usage (Bits)

Akari1A
SUM, OR, MULTIPLY,

SHIFT
For loop,

FSM
iv 96

Akari1B
SUM, OR, MULTIPLY,

SHIFT
For loop,

FSM
iv 96

Akari2A
SUM, OR, MULTIPLY,

SHIFT, XOR
For loop,

FSM
iv 96

Akari2B
SUM, OR, MULTIPLY,

SHIFT, XOR
For loop,

FSM
iv 96

Akari2C
SUM, OR, MULTIPLY,

SHIFT, XOR
For loop,

FSM
iv 96

Lamed SUM, XOR, SHIFT
Control
Units

iv, key 160

Ours XOR, AND, SHIFT Sequential u, s, t, l, p 112

TABLE II. GATE EQUIVALENTS AND THE TOTAL GATE EQUIVALENTS OF

OUR PROPOSAL

Operator
Operation Types

Used # Used
Logic GE 16-bit Total

Register 3 FlipFlop 5.33 255.84
Shifter 1 FlipFlop 5.33 85.28
AND 1 Gates 1.33 21.28
XOR 1 Gates 2.67 42.72
Total 405.12

Control 1 Gates 30% 121.54
Grand Total 526.66

TABLE III. COMPARISON OF OUR PERFORMANCE RESULTS WITH (A)

DECLARED (UPPER) AND (B) CALCULATED RESULTS OF PREVIOUS SIMILAR

WORKS

Scheme
Area
(GE)

Die
Area
(µm2)

Delay
Cycles

Complexity
GE×Delay

Pow.
Cons.
(nW)

Throug
hput

(Kbps)

Op.
Types
& Ctrl

Akari-1A 1018 3191 66 67,188 89.95 48.48 2C
Akari-1B 922 2892 450 414,900 95.71 7.11 2C
Akari-2A 1861 5837 51 94,911 109.88 31.37 2C
Akari-2B 1650 5173 290 478,500 135.81 5.50 2C
Akari-2C 1620 5081 530 858,600 126.02 3.01 2C

Lamed 1566 1 186 291,276 1 8.20 2C
Ours 527 1665 118 62,186 113.80 13.56 3S

Akari-1A 1018 3217 389 396,002 219.89 4.11 2C
Akari-1B 922 2914 389 358,658 199.15 4.11 2C
Akari-2A 1861 5881 333 619,713 401.98 4.81 2C
Akari-2B 1650 5214 333 549,450 356.40 4.81 2C
Akari-2C 1620 5119 333 539,460 349.92 4.81 2C

Lamed 1566 4949 186 291,276 338.26 8.20 2C
Ours 527 1665 118 62,186 113.80 13.56 3S

1: Not provided; 2: Complex; 3: Simple
The die area of a two-input NAND gate is given as 3.16

µm2, in UMC90 nm semiconductor production technology
[30]. Hence the die area in µm2 of a bitwise operator can be
obtained by multiplying the GE of the operator by 3.16. The
die area of our design is 3.16 × 527 = 1665 µm2. The die

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 86

area values of the Akari-x schemes have been quoted (Table
3a) from the 16-bit architecture columns of the authors’ own
tables [31]. The values are in agreement with the equation (1
GE = 3.16 µm2), but are not exact. Lamed’s die area has not
been declared; therefore, it had to be calculated.

The timing metric, on the other hand, is the clock cycles
used for performing a specific function. A 16-bit ALU
requires one clock cycle to finish a 16-bit register copy,
AND or XOR operation. But, 16 clocks are needed for
rotation since it requires the testing of the contents of a 16-
bit register bit by bit and circularly shifting the contents of
another register, depending on the outcome of the test. To
calculate the number of clock cycles spent for obtaining a
random number in our scheme, the total of copying/loading
operations of registers, XOR/AND operations and the
rotation (ROT) operations in Fig. 2 are counted. The TRN is
already in one of the registers before the PRNG starts. The
register copying and XOR/AND operations can be
completed in a single cycle. Assuming the constants u, s, t, l,
p, b, c are immediately after the instructions (immediate
addressing), loading them into a register (e.g. MOV Rx, u)
also takes one clock cycle. ROT operations test the bits of
one register and shift the contents of another if the tested bit
is a “1”; wrapping around the overflowing bit through carry.
Therefore, a clock cycle is spent for each bit test. Thus,
clock cycles equal to the number of architectural bit length
(16 in our case) are consumed for each rotation. In total,
there are 6 register copying, 8 register loading, 5 XOR, 3
AND and 6 ROT operations. Hence, the total clock cycles
consumed is 6 + 8 + 5 + 3 + 6 × 16 = 118 clocks. When
checked against the declared limit 1800, the proposed 118
clock cycles scheme is definitely in the ultra-light category
[7]. This value is shown in Table 3a, together with the
declared values of previous works. However, if the same
clock cycle calculation method is applied to the previous
works, their declared values appear optimistic. For fair
comparison conditions, a second table of calculated
performance values is necessary. To prove the point,
examining the Akari-1 design suffices. Akari-1 has an
iteration loop of 64 times. Inside the iteration, there are 2
single shift and 3 addition (modulo 2) operations. Thus, the
iteration costs 5 × 64 = 320 clock cycles. Outside the
iteration, there are 2 addition, 2 OR, 1 register copying and
2 multiplication operations. Assuming the traditional shift
left and add method for multiplication, each multiplication
costs 2 × architectural bit length; for 16-bit Akari-1, single
multiplication costs 2 × 16 = 32 clocks. Thus, outside the
iteration there are 2 + 2 + 1 + 64 = 69 clock cycles. Overall,
Akari-1 has a clock cycle delay of 389 clocks, for producing
the lower half (16 bits) of its PRN. The Akari-2 design has
two 24 round iteration loops. Outside iteration, Akari-2 also
uses 69 clocks; but first iteration costs 5 × 24 and the second
6 × 24 clocks. Overall, Akari-2 has a 333 clock cycles delay.
Authors of Akari-x have a superseding work with new
results for their previous work [31]. Although there are
changes in the architectural bit lengths, the declared clock
cycles are the same as in the previous work. On the other
hand; although Lamed has a parallel architecture, it still has
a high declared clock cycle delay of 186. The calculated
results of previous work are compared with our results in
Table 3b. The area-delay product (GE × clock cycles) is

defined as hardware complexity (complexity) of an operator
[29]. The complexity of previous works is compared with
ours in Tables 3 and 4. For Akari-x works, the GE values of
16-bit architectures have been accepted in Table 3a. From
both Table 3a and 3b, it follows that our scheme has the
lowest complexity, leaving enough space for other security
functions as well. The area-delay product for hashing
functions is very high; around 8 to 10 million GE clocks for
32-bit architectures [25, 29]. Their complexity values clearly
indicate that encryption and hashing schemes are not in the
ultra-light category. Therefore, the work of [12] has not
been included in comparisons.

The power consumption is critical in remotely energized
RFID tags, therefore the power required for generating a
random number should be minimal. It is natural to observe
that power consumption is proportional to the number of
gates; because the more the number of the gates to be
powered, the more supply energy is required [28].

clk
2
DDL10 fVCP=P (1)

(1) is used to estimate the power consumed by a hardware
design and denotes the dynamic power dissipation by
estimating the power loss according to the capacitance
charge and discharge [33]. Logic state transition of the gates
from 0 to 1 or 1 to 0 in one clock cycle is denoted by p01.
CL represents the load capacitance and it is commonly
approximated to 310-15 F. The drain supply voltage (VDD)
in our 90 nm design is 1.2 V. The system clock frequency
(fclk) is typically 100 kHz, in RFID architectures. The above
values are the same in Akari-x and Lamed, making equal
conditions of comparison. The total GE of our proposal is
527, since approximately half of these gates are switched in
1 clock cycle, p01 value is 263.5. It follows that the P value
of our design is 113.8 nW. The power consumption of
Akari-x family PRNGs has been quoted in Table 3a, using
the new publication [31]. The declared Akari-x consumption
values are also estimations, obtained by using a software
design tool. Lamed’s power consumption was not provided;
therefore, it was calculated by using (1). The calculated
power consumption values are given in Table 3b. If the
number of switched gates is considered as a true indication
of the power consumed, then our design has the lowest
power consumption, in Table 3b. Our design’s power
consumption is better than the Akari-2x family of designs,
in Table 3a.

The last metric to consider is the throughput of the
designed hardware. Throughput is a measure of the number
of bits output per second, by the designed scheme. This
metric is not as critical as the above considered parameters
in low-cost devices like RFID tags [25-27], [29].
Nevertheless, low throughput values of a design show that
low power consumption and die area were aimed, instead of
high output per second. Throughput can be calculated by
(output data size per second) / (the number of clock cycles it
takes to output each data × time of each clock cycle). The
data size of the compared architectures is 16 bits. The period
(1/working frequency) of each clock is 1/100 kHz. Hence,
the throughput in kilobits per second (kbps) of a typical 16-
bit RFID tag, working at 100 kHz system clock frequency,
is simplified to (2). The nCC value is the number of clock
cycles consumed for outputting a single PRN, by the

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 87

designed hardware.

nCC
=T

1600
 (2)

The throughput of our design is 1600/118 = 13.56 kbps.
When compared with the results quoted from the other
proposals in Table 3a, it is observed that our design’s
throughput is positioned in the middle of the compared
designs. Among the calculated values in Table 3b, the
throughput of our design is the highest, compared to the
other 16-bit PRNG versions. Having the highest throughput,
yet the lowest GE and power consumption is a solid proof
that our scheme is indeed a high-throughput, ultra-
lightweight design.

Taking universally accepted performance estimations into
consideration, Table 3b shows that the overall performance
of our design is the best among the enlisted PRNGs. The 32-
bit and parallel architectures of the other designs are not
very realistic for RFID tags and their declared performance
values are inconsistent. For example, the Akari-1x designs
which have lower power consumptions than our design in
Table 3a, have GE values two times higher than ours. Akari-
2B, has a GE almost 3 times bigger than our design,
obviously contradicting condition (1). Our clock delay
estimation of 16-bit versions of Akari-x is not in
contradiction with the high number of iterations and the
multiplication operations, in the design. All of the hardware
architectural arguments indicate that our performance results
are realistic and not optimistic for 16-bit PRNG designs.

B. Verilog & WISP Implementations

Figure 3. Sample Verilog implementation code of proposed PRNG

The popular Verilog hardware description language
(HDL) has been used to model the proposed PRNG system.
Verilog syntax is very similar to the C programming

language syntax. Fig. 3 shows the PRNG code snippet that
was simulated using the Icarus Verilog simulation engine.
The code is a proof of the simplicity of our design.

Figure 4. Sample WISP implementation code of the proposed PRNG

The proposed scheme has also been implemented on
WISP to prove that the design requires resources that can be
met on real 16-bit tag platforms. The 16-bit, programmable,
passive, UHF, WISP version 5.0, RFID tag is a good testing
hardware platform. WISP has a MSP430FR5969 low power
microcontroller that can easily be programmed through a
simple programming interface. Part of the WISP
implementation code corresponding to the Verilog
implementation code of Fig. 3 is given in Fig. 4. The
similarity in the syntax of the two implementations is
obvious. Both implementations verify the hardware design
shown in Fig. 5.

uint32_t one = 1;
// Returns ith bit of an integer
uint32_t extractBit(uint32_t value, int pos)
{
 return((value & (one<<pos)) >> pos);
}

// Rotates left "n" bits
uint32_t rotl(uint32_t value, int n) {
 return (value << n) | (value >>
(sizeof(value)*8 - n));
}
// Rotates right "n" bits
uint32_t rotr(uint32_t value, int n) {
 return (value >> n) | (value <<
(sizeof(value)*8 - n));
}

int main(void)
{

 uint32_t x, y, z;
 uint32_t u= 127, s=7;
 uint32_t t= 31, l= 262143;
 uint32_t p= 127, b= 2636928640;
 uint16_t i;
 uint32_t c = 4022730752;

 x = 3735928559;
 z = x;

 for (i=32;i>0;i--){
 x=extractBit(z,32-i)?rotl(x,1):x;

}

 y = x;
 z = u;

 for (i=32;i>0;i--){
 y=extractBit(z,32-i)?rotr(y,1):y;
 }

 x = x ^ y;
 y = x;
 z = s;

 for (i=32;i>0;i--){
 y=extractBit(z,32-i)?rotl(y,1):y;
 }

 z = b;
 y = y & z;
 x = x ^ y;

module prng;

reg[31:0] x;
reg[31:0] z, y;
parameter u = 32'h0000_007F, s = 32'h0000_0007,
t = 32'h0000_001F, l = 32'h0003_FFFF, p=
32'h0000_007F, b=32'h9D2C_5680;
parameter c=32'hEFC6_0000;
integer i;

initial begin
x = 32'hDEAD_BEEF;
z = x;
for (i=0;i<=31;i=i+1)
begin: BLOCK_1
 if(z[i]) x = {x[30:0],x[31]};
end
y = x;
z = u;
for (i=0;i<=31;i=i+1)
begin: BLOCK_2
 if(z[i]) y = {y[0],y[31:1]};
end
x = x ^ y;
y = x;
z = s;
for (i=0;i<=31;i=i+1)
begin: BLOCK_3
 if(z[i]) y = {y[30:0],y[31]};
end
z = b;
y = y & z;
x = x ^ y;

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 88

Figure 5. Hardware implementation of the proposed PRNG scheme

C. Hardware Implementation

The block diagram of a hardware implementation of the
proposed PRNG scheme of Fig. 2 is given in Fig. 5. The
tempering constants u, s, t, l, p, b, and c are shown as distinct
inputs of multiplexer MUX_B, timed by the PRNG Control
Unit through the S3-S4-S5 control path. In fact, the PRNG
Control Unit generates the necessary control signals S0
through S11 to control the multiplexers, bidirectional shift
registers and other control circuits of the proposed scheme.
For example, when S0=0, S1=1 and S2=1, TRN is loaded
into Register X (x:=TRN step of Fig. 2). In the next step
when S3=0, S4=0, S5=0, MUX_B selects input X. When
S6=1 and S7=1, X is loaded into Register Z (z:=x step of Fig.
2). The combinational control circuit for Register Y and
multiplexer MUX_D are controlled via S9-S10 and S11
respectively, to decide the direction of rotation of the
bidirectional rotational shift Register Y, as either left or right
direction. For example, when S11=0 and the tested MSB
Z[31]=1, Register Y is one bit left shifted and the MSB of
Register Y is rotated to LSB. Hence, the shift register is used
as a rotational register. When S11=0 and Z[31]=0, then there
is no change in Register Y (Hold). When S11=1 and
Z[31]=1, then Register Y is one bit right shifted and the LSB
of Register Y is rotated to MSB. The direction of the rotation
of Register X is controlled in a similar method, using control
path S1, S2 and the tested Z[31] bit.

D. Testing Results

Starting with the three requirements of generating random
numbers given in Gen-2 (Section 1.2), it can be observed that
they are met by our proposed scheme. The results satisfying
the Gen-2 requirements can be summarized, as follows. The
first requirement is satisfied in the constraint 0.923/216 <
P(RN16 = j) < 1.071/216. The second requirement is satisfied
with a result value of 0.04. The third requirement is satisfied
with a 0.000008 serial correlation result, which ensures that
the probability of predictability is not greater than 0.025%
[3]. The inputs, detailed generated random number files and
the results of the calculations can be found on the web page
at http://srg.cs.deu.edu.tr/ publications/2012/prng/.

In the randomness tests, two types of inputs were used to
reach the best scheme. At first, an input-set from
http://random.org was used to identify the schemes which
fail to produce good random numbers. Then, a second set of
inputs with low entropy (0.00) was used to equate the
entropy of the inputs to that of work [12]. But, many
schemes that performed well with RN inputs produced poor
test results with low entropy inputs, so they were dropped
too. Only those schemes that passed the randomness tests
with low entropy inputs were selected and further improved,
finally to reach the best solution. It should not be missed that
Lamed and Akari-X use RNs from http://random.org inputs
for obtaining RNs, but RN seeds are simply not readily
available, in tags.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 89

TABLE IV. NIST TEST VERSION 2.1, “PROPORTION” RESULTS COMPARED

WITH PREVIOUS
Test Name Lamed Ours

Frequency 0.98 1.00
Block-frequency 0.98 0.99
Cumulative-sums 0.98,0.98 1.00,1.00
Runs 1.00 1.00
Longest-run 1.00 0.98
Rank 0.98 0.00*
Fft 0.99 0.99
Overlapping-
Templates

0.98 1.00

Universal 0.96 1.00*
Apen 0.99 0.98
Serial 0.97, 1.00 1.00,0.99
Linear-complexity 0.99 0.99
Random-
excursions

0.97, 0.98, 1.00, 0.97,
1.00, 1.00, 0.97, 1.00

1.00, 1.00, 1.00, 1.00,
1.00, 0.92*, 1.00,1.00

Random-
excursions-variant

1.00, 1.00, 1.00, 0.98,
1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00,
1.00, 0.98, 0.97, 0.98,
1.00, 0.97

1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00, 1.00

Test Name Akari 1A/B Akari 2A/B/C
Frequency 0.98 0.98
Block-frequency 0.99 0.99
Cumulative-sums 0.97, 0.97 0.99, 0.97
Runs 0.99 0.99
Longest-run 1.00 0.99
Rank 0.99 0.99
Fft 0.99 0.99
Overlapping-
Templates

1.00 0.99

Universal 0.99 0.97
Apen 1.00 0.99
Serial 1.00, 0.99 0.99, 0.97
Linear-complexity 1.00 1.00
Random-
excursions

1.00, 0.99, 1.00, 0.97,
1.00, 0.99, 1.00, 1.00

1.00, 0.98, 1.00, 1.00,
0.99, 0.99, 0.98, 1.00

Random-
excursions-variant

1.00, 0.99, 0.99, 0.99,
0.99, 0.99, 0.97, 0.99,
1.00, 1.00, 1.00, 0.99,
1.00, 1.00, 1.00, 1.00,
0.99, 0.99

1.00, 1.00, 1.00, 1.00,
1.00, 0.99, 0.99, 1.00,
0.99, 0.99, 1.00, 0.99,
0.99, 0.99, 0.98, 0.98,
0.98, 0.99

1: Not provided; 2: Complex; 3: Simple

The ENT [34] and Diehard [34] are preliminary, relaxed
tests acting as indicative values, prior to running the NIST
suite [36]. To summarize the posted results briefly, the
random number outputs of our design pass the ENT and
Diehard tests with satisfactory results. Normally, the random
numbers that pass the NIST suite can easily pass the ENT
and Diehard tests.

To expose the differences in designed schemes, one has to
consider the testing results of the stricter NIST suite of tests.
The NIST tests’ output results called “p-values” and
"proportion" values are expected to be greater than 0.01 and
0.96, respectively. The “proportion” result is the proportion
of the binary sequences that passed the test (p-values > 0.01).
Any undesirable result is marked with a "*" next to the
proportion value. It is acceptable for a scheme to fail a few
tests out of 188 tests; i.e. a scheme failing one or two
individual tests cannot be considered as not passing the
overall NIST test [35]. In our work, to test the scheme given
in Fig. 2 the NIST test version 2.1. has been used. The NIST
test results are very long and detailed reports. Therefore, our
full results are posted on http://srg.cs.deu.edu.tr/
publications/2012/prng/. The NIST test results of [10] are on
http://www.lightweightcryptography.com/research/akari/

akari.html. Only the proportion results are given, in
publication [3]. Our proportion value results are summarized
in Table 4.

Only two tests individually fail the criteria. But the NIST
tests are known to be the strictest tests intended for
computers and not for tags. Failing one or two tests does not
prove our scheme to be unsuitable for tags. Work [35] openly
states that “It is acceptable for a few individual tests to fail”.
To defend the argument, first our Universal test result is
discussed. In NIST’s official document, the technical
description of Universal test is given as a compression-type
test, where a significantly compressible sequence is
considered to be non-random [36]. Although our Universal
test result fails, the ENT test results posted on our web site
shows that our proposed scheme’s output compression rate is
0%. The conflicting results cast doubt whether our output
sequence is easily compressible, or not.

E. Limitations

Failure in Binary Matrix Rank Test (Rank for short, in
Table IV) is regarded as an indication for non-randomness
[37]. Rank test “constructs binary matrices from the analyzed
data and checks for linear dependence among the rows or
columns of the constructed matrices”. Hence, failure to pass
the Rank test can be accepted as evidence of non-randomness
due to linearity problems. This is the case for the proposed
PRNG scheme of Fig. 2, as well. However, the tested output
values of the scheme are the result of very low entropy inputs
(entropy of TRN = 0.00 in Fig. 2). In other words, the input
values already have a huge linearity vulnerability and fail the
Rank test, badly. Our proposed scheme passes the Rank test
if input values from random.org are used, as in the previous
works. But, such a test or its results do not present a valid
argument, because it would mean to defend obtaining
random numbers from already proven random numbers.
Even the null function can pass the Rank test with proven
random number inputs.

Hence, there is a critical input entropy threshold when the
input values push our proposed scheme to pass the Rank test.
Although an entropy threshold of 0.20 is a good starting
point where our proposed scheme passes the Rank test,
laboratory tests have not revealed an exact threshold for
input values. This is a limitation which can be stated as “the
higher the random distribution of the input TRN values, the
lower the linearity vulnerability of the proposed PRNG
scheme in Fig. 2”. In other words, as the seeding of the
proposed PRNG scheme improves, the statistical linearity
vulnerability decreases.

V. CONCLUSION

A new random number generator that is feasible in low-
cost RFID tags has been presented. The performance results
of the present proposal are the best in terms of simplicity of
design, power consumption, die area, cost and complexity.
The results indicate that the proposed scheme does not
exceed the resource limits of the ultra-light tags. The
presented scheme takes low-entropy TRNs as seeds, without
requiring special circuitry, and produces random numbers
that passes well-known randomness test suites. This is a
critical superiority over previous works, which use random
numbers as inputs (not available in RFID tags) to produce
random numbers. Our proposal’s performance results and the

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 3, 2016

 90

favorable randomness test results are supported by the
utilized universally accepted measurement methods. Our
scheme is available now, until a hashing or encryption
algorithm is offered at the right cost, for low-cost tags.

Future work involves the design and implementation of the
proposed scheme in an integrated circuit prototype.
Theoretical work is encouraging for the hardware design,
because the scheme is sequential and ultra-light.

REFERENCES
[1] C. M. Robert, “Radio frequency identification,” Computers and

Security, vol. 25, pp. 18–26, 2006. doi:10.1016/j.cose.2005.12.003.
[2] R. Das, P. Havrop, “RFID forecasts, players and opportunities 2011-

2021,” IDTechEX, 2011. [Online]. Available:
http://www.idtechex.com/research/reports/rfid_forecasts_players_and_
opportunities_ 2011_2021_000250.asp.

[3] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Esteves-Tapiador, A.
Ribagorda, “LAMED a PRNG for EPC Class-1 Generation-2 RFID
Specification,” Computer Standards & Interfaces, vol. 31, pp. 88-97,
2009. [Online]. Available:http://dx.doi.org/10.1016/j.csi.2007.11.013.

[4] A. Manzalini, et al. “Self-optimized cognitive network of networks,”
The Computer Journal, vol. 54, pp. 189-195, 2011.
doi:10.1093/comjnl/bxq032.

[5] H. Y. Chien, “SASI: A New Ultralightweight RFID authentication
protocol providing strong authentication and strong integrity,” Trans.
on Dependable and Secure Computing, vol. 4, p. 337–340, 2007.
doi:10.1109/TDSC.2007.70226.

[6] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Esteves-Tapiador, A.
Ribagorda, “An ultra-light authentication protocol resistant to passive
attacks under the Gen-2 specification,” J. of Information Science and
Engineering, vol. 25, pp. 33-57, 2009.

[7] J. H. Kong, L. M. Ang, K. P. Seng, "A comprehensive survey of
modern symmetric cryptographic solutions for resource constrained
environments," J. of Network and Computer Applications, vol. 49, pp.
15-50, 2015. doi:10.1016/j.jnca. 2014.09.006.

[8] ISO/IEC 18000-6:2010, 2010. [Online]. Available:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber= 46149.

[9] Class-1 generation 2 UHF air interface protocol standard "Gen-2",
Version 2.0.0, 2013. [Online]. Available:
http://www.gs1.org/sites/default/files/docs/uhfc1g2/uhfc1g2_2_0_0_st
andard_ 20131101.pdf.

[10] H. Martin, et al. “AKARI-x: A pseudorandom number generator for
secure lightweight systems,” in Proc. 17th Int. On-Line Testing
Symposium (IOLTS), pp. 228-233, 2011.

[11] M. Park, J. C. Rodgers, D. P. Lathrop, "True random number
generation using CMOS Boolean chaotic oscillator," Microelectronics
J., vol. 46, pp. 1364-1370, 2015. doi:10.1016/j.mejo.2015.09.015.

[12] D. E. Holcomb, W. P. Burleson, K. Fu, “Power-Up SRAM state as an
identifying fingerprint and source of true random numbers,”
Transactions on Computers, vol. 58, pp. 1198-1210, 2009.
doi:10.1109/TC.2008.212.

[13] J. M. Segui, J. G. Alfaro, J. H. Joancomarti, “Analysis and
improvement of a pseudorandom number generator for EPC Gen2
tag,” in Proc. Financial Cryptography and Data Security 2010
Workshops, pp. 34-46, 2010.

[14] J. Chen, A. Miyaji, H. Sato, C. Su, "Improved lightweight pseudo-
random number generators for the low-cost RFID tags," in Proc. IEEE
Trustcom/BigDataSE/ISPA, vol. 1, pp. 17-24, 2015.
doi:10.1109/Trustcom.2015.352.

[15] P. Z. Wieczorek, "Lightweight TRNG based on multiphase timing of
bistables," IEEE Transactions on Circuits and Systems I, vol. 63,
pp.1043-1054, 2016. doi:10.1109/ TCSI.2016.2555248.

[16] A. J. Menenez, P. C. Oorschot, S. A. Vanstone, Pseudorandom bits and
sequences. Handbook of Applied Cryptography CRC Press, pp. 169-
187, 1996.

[17] B. Alomair, L. Lazos, R. Poovendran. “Passive attacks on a class of
authentication protocols for RFID,” in Proc. Int. Conf. on Information
Security and Cryptology – ICISC’07, pp. 102-115, 2007.

[18] M. Matsumoto, T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number
generator,” Transactions on Modeling and Computer Simulation, vol.
8, pp. 3–30, 1998. doi:10.1145/ 272991.272995.

[19] M. Matsumoto, et al. Cryptographic Mersenne twister and Fubuki
stream/block cipher, 2005. [Online]. Available:
http://eprint.iacr.org/2005/165.

[20] F. Panneton, P. L’Ecuyer, M. Matsumoto, “Mersenne twister:
improved long-period generators based on linear recurrences modulo
2,” Transactions on Mathematical Software, vol. 32, pp. 1–16, 2006.
doi:10.1145/1132973.1132974.

[21] N. Saxena, J. Voris, “Data remanence effects on memory-based
entropy collection for RFID systems,” Int. J. of Information Security,
vol. 10, pp. 213-222, 2011. doi:10.1007/s10207-011-0139-0.

[22] A. P. Sample, et al. “Design of an RFID-based battery-free
programmable sensing platform,” IEEE Transactions on
Instrumentation and Measurement vol. 57, pp. 2608-2615, 2008.
doi:10.1109/TIM.2008.925019.

[23] D. Khovratovich, I. Nikolic, “Rotational cryptanalysis of ARX,” Fast
Software Encryption, pp. 333-346, 2010.

[24] R. Sedgewick. Algorithms in C, Parts 1-5 (Bundle): Fundamentals,
Data Structures, Sorting, Searching, and Graph Algorithms, 3/e,
Addison-Wesley Professional, pp: 55-86, 2002.

[25] M. Feldhofer, S. Dominikus, J. Wolkerstorfer, “Strong authentication
for RFID systems using the AES algorithm,” in Proc. Cryptographic
Hardware and Embedded Systems-CHES 2004, pp. 357-370, 2004.

[26] A. Moradi, A. Poschmann, “Lightweight cryptography and DPA
countermeasures: a survey,” in Proc. 14th Int. Conf. on Financial
Cryptography and Data Security, pp. 68-79, 2010. doi:10.1007/978-3-
642-14992-4_7.

[27] C. Paar, A. Poschmann, M. J. B. Robshaw, “New designs in
lightweight symmetric encryption,” RFID Security: Techniques,
Protocols and System-on-Chip Design, pp. 349-371, 2009.

[28] P. Peris-Lopez, P. T. Lim, T. Li, “Providing stronger authentication at
a low-cost to RFID tags operating under the EPCglobal framework,” in
Proc. Embedded and Ubiquitous Computing Conference, pp. 159-167,
2008.

[29] M. Feldhofer, J. Wolkerstorfer, “Hardware implementation of
symmetric algorithms for RFID security,” RFID Security: Techniques,
Protocols and System-on-Chip Design, vol. 3, pp. 373-415, 2009.

[30] H. Martin, P. Periz-Lopez, J. E. Tapiador, E. San Millan, “An
estimator for the ASIC footprint area of lightweight cryptographic
algorithms,” IEEE Trans. on Industrial Informatics, vol. 10, pp. 1216-
1225, 2014. [Online]. Available: http://dx.doi.org/10.1109/TII.2013.
2288576.

[31] H. Martin, E. San Millan, P. Periz-Lopez, J. E. Tapiador, “Efficient
ASIC implementation and analysis of two EPC-C1G2 RFID
authentication protocols,” Sensors, vol. 13, pp. 3537-3547, 2013.
[Online]. Available: http://dx.doi.org/10.1109/JSEN.2013.2270404.

[32] J. Melia-Segui, J. Garcia-Alfaro, J. Herrera-Joancomarti, “Multiple-
polynomial LFSR based pseudorandom number generator for EPC
Gen2 RFID tags,” in Proc. 37th Annual Conference on IEEE Industrial
Electronics Society, pp. 3820-3825, 2011.
doi:10.1109/IECON.2011.6119932.

[33] J. Walker. Randomness battery, 1998. [Online]. Available:
http://www.fourmilab.ch/random/.

[34] G. Marsaglia, T. Marsaglia, “Random number CDROM including the
DIEHARD battery of tests of randomness, Diehard version 1,” 1996.
[Online]. Available: http://stat.fsu.edu/pub/diehard. Diehard version 2
2003. [Online]. Available: http://i.cs.hku.hk/~diehard/.

[35] P. Kohlbrenner, K. Gaj, “An embedded true random number generator
for fpgas,” Proc. 12th International symposium on Field programmable
gate arrays, pp. 71-78, 2004.

[36] A. Rukhin, et al. A statistical test suite for random and pseudorandom
number generators for cryptographic applications, 2010. [Online].
Available: http://csrc.nist.gov/rng/.

[37] J. Melià Seguí, "Lightweight PRNG for low-cost passive RFID
security improvement," Doctoral thesis, Universitat Oberta de
Catalunya, 2011. [Online]. Available: http://openaccess.uoc.edu/
webapps/o2/handle/10609/29341.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:34:32 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

