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INTRODUCTION

Temperature is a primary driver of all aspects of the
physiology of ectotherms, including growth dynam-
ics. Evaluation of the direct and indirect impacts of
climate change on the growth dynamics of fish is an
important issue, because mean annual temperature
has already increased by 2°C in the past century and
the projections of European climate predict an
increase of 1.4 to 5.8°C within the next 50 yr (IPCC
2001). Furthermore, European climate is predicted to

oscillate more frequently between normal and ex -
treme climatic conditions. Extreme climatic events,
such as the 2003 heat wave that was ob served in
western Europe, may cause disruption in the life his-
tories of organisms (Jolly et al. 2005).

The European eel Anguilla anguilla has a large
temperate distribution, from northern Africa to
northern Europe during its growth phase (Tesch
2003). This migratory fish spawns in the Sargasso
Sea and un dertakes 2 transoceanic migrations across
the Atlantic Ocean during its larval phase and pre-
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ABSTRACT: Although the average growth rate of European eel is known to be generally depend-
ent on temperature and habitat at the population scale, large variation in growth among eels in a
single river basin can also be widely observed. In this study, individual growth trajectories of
female European eels in the Gironde River basin, France, were modeled with habitat-use histories
and thermal variations in relation to regional climatic events such as the heat wave in 2003
observed in SW Europe. A mixed-effects model was used to take into account the repeated meas-
ures of individual growth of 173 female eels in 1993 to 2003, obtained from otolith structure and
chemistry. Temperature effect was tested using a proxy of efficient temperature for growth
between 2 thermal thresholds in a year. The models with thresholds for growth between 12 and
15°C (lower) and 18°C (higher) were selected considering Akaike’s information criterion. Individ-
ual annual growth estimates were higher in the estuary habitat than in the river habitat. Estimated
growth was higher when eels shifted habitats between freshwater and brackish water or sea -
water. The years 1999 and 2001 had, respectively, the lowest and highest temperature proxy
value, showing that a longer growing season (moderate summer/warm winter) had a positive
effect on growth. The 2003 heat wave had a negative effect on eel growth, reflected by the lower
temperature proxy value. The same approach could be used in the future to estimate the effect of
global climate change on the growth and distribution of eels at local and regional scales.

KEY WORDS:  Anguilla anguilla · Inter-annual temperature variation · Habitat-use history ·
Mixed-effects model

Resale or republication not permitted without written consent of the publisher



Aquat Biol 19: 185–193, 2013

reproductive stage. The European eel forms a unique
population from a genetic perspective (reviewed by
Tesch 2003, Aoyama 2009), making the eel a model
of choice to study the effects of environment on life-
history traits. Thus, one can expect that eel growth
traits respond to drivers such as temperature and
habitat productivity, which can be partly determined
by the passive transport of larvae from the spawning
ground to the continental growth habitat. The growth
phase of eels is very plastic, as eels may occupy many
different environments along a large latitudinal
 gradient (Daverat et al. 2012).

Anguillid eels have several habitat-use patterns as
shown by otolith microchemistry. While some eels
spend their whole growth phase in freshwater, others
remain in brackish or seawater (Tsukamoto et al.
1998). In addition, some eels change habitats during
their growth phase (e.g. Tsukamoto et al. 1998, Tsu -
kamoto & Arai 2001, Jessop et al. 2004, 2008, Daverat
& Tomas 2006, Kaifu et al. 2010, Yokouchi et al.
2012). Studies on growth of anguillid eels showed
that eels living in brackish habitats had a higher
growth rate than eels living in freshwater habitats
(e.g. Helfman et al. 1987, Morrison & Secor 2003,
Melia et al. 2006, Yokouchi et al. 2008, Cairns et al.
2009). Models of eel growth at the population level
confirmed that growth was also dependent on the
age of the fish and habitat characteristics (Daverat et
al. 2012).

A latitudinal cline in the growth rate of eels was
observed in the continental habitats of temperate
eels (Vøllestad 1992, Jessop 2010, Daverat et al.
2012). This latitudinal cline was at least partly
explained by a temperature effect. The effect of tem-
perature on eel growth was established from experi-
ments. It was demonstrated that an optimal rearing
temperature for the eel is 23 to 25°C, and eel growth
in culture ceased under a temperature of 12°C
(Sadler 1979, Dosoretz & Degani 1987, Holmgren
1996, Ciccotti & Fontenelle 2001).

Individual growth models are particularly suited to
distinguish between individual growth variation and
the influence of environment factors. Annual incre-
ments in otoliths were found to respond to climate
effects (Black 2009) in the same way as sea shells and
trees do, making otolith annual increments a tool of
choice to study the impact of climate on fish growth
traits. Otoliths can be used to estimate the growth
chronology of a fish by estimating the size-at-age,
inferred by back-calculation methods (Francis 1990).
These techniques have also been applied to estimate
the growth patterns of eels (e.g. Tzeng et al. 2000,
Oliveira & McCleave 2002, Jessop et al. 2004, Dav-

erat & Tomas 2006, Lamson et al. 2009). However,
classic back-calculation methods do not take into
account the fact that annual increments are repeated
measures of size of an individual fish. Recently,
mixed-effects models were developed for the estima-
tion of fish growth (Weisberg et al. 2010), to over-
come the lack of independence among the data from
the same individual to classic models by considering
the random effect of individuals in  addition to the
fixed effects of the objective model parameters.

The aim of the present study was to investigate the
effect of temperature and habitat on individual eel
growth chronologies at a small spatial and temporal
scale, in order to evaluate the impact of local envi-
ronmental effects on eel, such as the 2003 summer
heat wave. To do this, we modelled individual growth
chronologies of eels looking at the influence of
 habitat and annual temperature on individual yearly
growth. For this approach, we used otolith micro-
chemistry proxies for habitat (otolith Sr/Ca) and a
thermal proxy in the growth period. The model was
fitted on published data (Daverat & Tomas 2006) of
the yellow-phase female European eel in the Gironde
River system, France.

MATERIALS AND METHODS

Dataset and study site

The present work relies on published data for 171
female European eels Anguilla anguilla collected in
the Gironde−Garonne−Dordogne River system, France
(45° 10’ N, 0° 45’ W) from 2001 to 2004 by a small-
meshed benthic trawl and fyke nets (see details in
Daverat & Tomas 2006). The overall sample was com-
posed of only 4% male eels. Therefore, we did not
include males in the analyses, to avoid irregularities
due to the skewed sex ratio of eels among habitats
and insufficient number of males in this system.

The Gironde estuary—the largest in Europa—is
76 km long and the salinity gradient varies up stream
between 33 and 0 psu, changing with tidal cycle and
season. Data sets of yellow-phase female Anguilla
anguilla were comprised of date of capture, total
length (TL, mm), age (yr), radius of otolith annuli
(mm) and Sr/Ca ratio (derived from Daverat & Tomas
2006). Ages-at-capture of female A. anguilla ranged
from 2 to 14 yr (n = 171), and significant linear
 relationships between TL and otolith radius of A.
anguilla have already been confirmed prior to the
analyses. Sr/Ca ratios were analyzed along a transect
from the primordium to the postrostrum of otoliths
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using a wave-length dispersive X-ray electron micro-
probe. Along this transect, the number of otolith
annuli was read and the size of each annulus was
recorded.

Assessment of the data structure and subsampling
were conducted prior to modeling. In order to bal-
ance the number of cohorts per year, dataset was
subsampled to reduce bias, as it would affect the
structure of the data for modeling, if a certain year
contained only younger or older eels. We selected
years that contained >30 data points or not only
younger eels (i.e. 1993 to 2003). Only individual
growth chronologies containing yellow eels from 1
to 8 yr were selected, as after 8 yr the maturation
into silver eel was highly probable in the European
silver eel otolith database of the EELREP project
(http://cordis.europa.eu/projects/rcn/91640_en.html)
It is well known that the silvering of eels is affected
by attained body size rather than age (e.g. Vøllestad
1992, Svedäng et al. 1996). Oliveira & McCleave
(2002) noted that faster-growing yellow eels might
metamorphose to silver eels and leave the growth
habitat at an earlier age than slower-growing eels.

Retrospective growth estimation

Back-calculation analysis was undertaken using the
biological intercept procedure (Campana 1990). It
was recognized that there are several potential
sources of error for the accuracy of otolith aging ex-
periments and back-calculation methods (experimen-
tal limitations and measurement errors on the otolith).
The additional problems of data structures might be
caused by obtaining a data series from an individual
fish. In this study, we had been critical of the accuracy
of the method for obtaining estimates of somatic
growth in any steps of the estimation (as mentioned in
‘Statistical modeling’). Of the otolith radius datasets
used in this study, readability of the otolith structures
by micrographs were carefully confirmed. The biolog-
ical intercept method uses a biologically determined
intercept in the back-calculation equation using the
mean size of the body and the otolith at the elver
stage. This is robust to any variations in the fish−
otolith relationship using the following equation:

Li = L + (Oi − O) (L − Lint) (O − Oint)−1 (1)

where Li is the back-calculated length of the fish at
age i, Oi is the size of the otolith at age i, L and O are
the size of the fish and otolith, respectively, at cap-
ture, and Lint and Oint are the size of the fish and
otolith at the biological intercept, respectively. In this

study, the mean TL of glass eels when they recruit to
coasts (Lint) was set to 70 mm (Svedäng et al. 1996).
Annual somatic growth at age i (Gi : mm) was calcu-
lated as Gi = Li − Li−1.

Habitat estimation

Annual habitat occupied was defined following Fa-
blet et al. (2007), using a proxy of the habitat obtained
from Sr/Ca measures along a life-history transect. For
a detailed description of the method, please refer to
Fablet et al. (2007). Originally, in the description by
Fablet et al. (2007), 1 habitat is allocated at a temporal
scale of 1 mo, based on the Sr/Ca value acquired
along the life-history transect and based on the previ-
ous and next values (probability to move or to stay in 1
habitat). The eels in the present study were found to
use 3 different habitats: the lower estuary (M), the es-
tuary (E) and the freshwater river (R). For the present
study, we retrieved the  individual monthly habitat-
use chronologies (e.g. RREEEEEEEEEE) from Fablet
et al. (2007). We transformed them into individual
yearly habitat use: If habitat shift occurred at a certain
year, the most dominant habitat was used as the indi-
vidual yearly habitat (e.g. R, E, or M). The presence/
absence of a habitat shift (S) in a particular year was
described as 0 for absence and 1 for presence.

Among calculated classifications of the annual
habitat-use patterns of individuals (Fig. 1), residence
in 1 habitat of Anguilla anguilla comprised 73%
of the dataset, whereas habitat shifts contributed
27% to the dataset. According to resident years
within 1 habitat, residences of A. anguilla in rivers
(R: 37%) and estuaries (E: 45%) were relatively
abundant.
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Proxy for temperature

Annual growing degree-days were used in the
present study as a proxy for the thermal environ-
ment of the river system. Our aim was to represent
inter-annual variation of the thermal environment
at a whole-river-system scale, so we deployed
monthly average air temperatures as reliable and
certified values obtained from a local weather sta-
tion (Fig. 2). In the study system, monthly average
air temperature (Mitchell & Jones 2005) and river
water temperature (provided by Centre Nucléaire
de Production d’Électricité du Blayais) were signifi-
cantly correlated during the period from 1999 to
2002 (r2 = 0.95, p < 0.001). There was an average
 difference in water temperature of 10% between
the estuary (provided by Électricité de France) and
the freshwater sites 100 km away from the salt -
water limit (provided by Association Migrateurs Ga -
ronne Dordogne during 1993 and 2003). In the
modeling of this study, these differences in temper-
ature between habitats were originally involved in
the habitat proxy.

Our thermal proxy (D) was calculated from the sum
of the monthly average air temperatures between the
lower and higher threshold temperatures as follows:

(2)

where Dy is the thermal proxy for temperature at
year y. Fty,i is the average forcing temperature in year
y and month i calculated as:

Fty,i, = (Ty,i − Tlow) for Thigh > Ty,i > Tlow (3)

Fty,i, = 0 otherwise (4)

where Tlow is the lower threshold of temperature and
Thigh is the higher threshold of temperature.

Eight values of Tlow from 9 to 16°C and 7 values of
Thigh from 17 to 23°C were tested in the following sta-
tistical modeling section.

Statistical modeling

Individual annual somatic growth of Anguilla an -
guilla was modeled using a linear mixed-modeling
approach to overcome the problem caused by obtain-
ing data series from each individual fish. The func-
tional relationships between the annual somatic
growth (mm) as the response variable and the age of
individuals (yr), habitat variables and thermal proxy
(explanatory variables: fixed effects) were modeled
for the eel collection dataset in which multiple values
were used from the same fish as a data series (for
example, an 8 yr old eel has 8 values in each variable
of the model). Thus, the number of observations was
given by the number of individuals multiplied by the
age of each individual. Individual random effects
were included to account explicitly for individual
heterogeneity and potential correlation inherent in
datasets. Annual somatic growth was natural log
transformed to achieve normality. The regression
models used here comprised an identity link and nor-
mal error distribution, ages nested within the factors
(individuals). Therefore, we used the full model with
random effects as follows:

Gj,k = α + Xj + Aj × Xj + Hj,k + Sj,k + Dj,k + εj,k (5)

where Gj,k is the back-calculated annual somatic
growth estimate (mm) of individual j at year k = l −

D Fty y i
i

i
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(m − i), which is the year in which an eel captured at
age m and year l was of age i (1 ≤ i ≤ m). α is the inter-
cept, Xj is the random intercept of individual j with
mean zero and common variance, Aj × Xj is the age
effect (A) with the random slope of individual j, Hj,k is
the habitat index of individual j at year k, Sj,k is the
presence/absence of the habitat shift of individual j
at year k, Dj,k is the thermal proxy calculated as in
Eq. (2) for year k. The parameter εj,k is assumed to be
independent errors with mean zero and common
variance.

To test random effects structures, the models were
assessed with full fixed-effects by considering values
of the Akaike information criterion (AIC) and hypo -
thesis tests based on likelihood ratio values (Zuur et
al. 2009). A model selection procedure was applied to
determine the best model among 56 alternative ther-
mal proxies (8 Tlow × 7 Thigh) having different ranges
of temperature thresholds (e.g. from the proxy with
Tlow = 9°C, Thigh = 17°C until the proxy with Tlow =
16°C, Thigh = 23°C) assessed by considering values of
the AIC. When the difference between the AIC value
of a candidate model and the lowest AIC value of the
best model (ΔAIC) was <2, the candidate model was
not rejected. With determined structure of random
effects and range of thermal proxy, significance of
the explanatory variables (A, H, S and D) was con-
firmed by considering values of the AIC and likeli-
hood ratio values. The models were fit to the data
using the nlme package in R (Wood 2006).

RESULTS

The individual growth trajectories of female Euro-
pean eels Anguilla anguilla in relation to the inter-
annual variation of temperature (thermal proxies)
and individual habitat-use history from otolith Sr/Ca
values were successfully modeled. Individual differ-
ences as random intercept and slope had significant
effects on the model of the individual growth trajec-
tories for female A. anguilla in the Gironde River sys-
tem (likelihood-ratio test, p < 0.01). In this study, the
model with thermal proxies in the growth periods
>15°C and <18°C ranked first among the candi -
date thresholds considering AIC values (Table 1). Al -
though the model with thermal proxies >15°C in
growth periods ranked first among the 8 candidate
thresholds of Tlow, alternative lower threshold models
of 12 to 14°C tested for A. anguilla had small ΔAICs
ranging from 0.8 to 1.0, indicating that some models
were similar to the best model. The selected Tlow of
12 to 15°C corresponded to the month with a monthly

average minimum temperature of about 7 to 11°C in
a year in the temperature series from 1993 to 2004 of
this study (Fig. 2). For higher thresholds of Thigh, the
18°C model was found to be the best model among
the 7 candidate thresholds (Table 1), with relatively
larger ΔAIC values than the others. The Thigh of 18°C
corresponded to the month with a monthly average
maximum temperature of about 23 to 24°C (Fig. 2).
Thermal proxy values (D) for the growth of eels in
this river system (Tlow = 15°C and Thigh = 18°C)
ranged from 0.2 for 1999 to 6 for 2001 (Table 2). The
maximum values of degree-days above Thigh and
below Tlow were 51.4 for 1999 and 38.3 for 1993,
respectively (Table 2), in which the average maxi-
mum temperature in August 1999 was 27.9°C and
the average minimum temperature in February 1993
was 1.5°C (Fig. 2).

Annual growth modeling for Anguilla anguilla re -
vealed that age, thermal proxy in the growth period
(annual thermal variation), habitat category and the
presence of a habitat shift had significant effects on
model growth (Table 3, Fig. 3). Annual growth of A.
anguilla was significantly related to annual values of
thermal proxies in the growth period. Higher annual
growth values were observed in years of larger ther-
mal proxies in the growth periods (Fig. 3).

Predicted annual growth of eels showed higher
growth of Anguilla anguilla at a younger age and
decreased with age (Fig. 4). Habitat shifts of A. an -
guilla from river to estuary resulted in higher an nual
growth values compared to annual growth  values
obtained in freshwater residence, while habitat
shifts between estuary and marine habitat had no
additional effect on saline residence in the model
(Fig. 4).
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Tlow Thigh (°C)
(°C) 17 18 19 20 21 22 23

9 ns 679.2 ns ns ns 681.8 685.1
10 ns 678.8 ns ns ns 680.8 685.2
11 ns 676.9 ns ns ns 681.6 686.4
12 686.8 675.5 ns ns ns 681.8 ns
13 685.3 675.6 ns ns ns 682.1 ns
14 683.9 675.2 ns ns ns 682.3 ns
15 680.0 674.4 ns ns ns 682.2 ns
16 680.6 677.1 ns ns ns ns ns

Table 1. Anguilla anguilla. Comparison of Akaike’s informa-
tion criterion (AIC) for trial candidate models of eel growth
using different thresholds of temperature for thermal prox-
ies in the Gironde River system, France. Tlow: lower thresh-
old; Thigh: higher threshold of the temperature; ns: the tested
thermal proxy is not significant in the model. Bold print 

depicts selected thresholds according to lower AICs
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DISCUSSION

The results in the present study are in accor-
dance with previous works on eel growth. Estimated
growth rates of Anguilla anguilla were found to
decrease rapidly with age in the model. A decrease
of growth rate with age was also found in previous
studies on anguillids (e.g. A. anguilla: Panfili et al.
1994, A. rostrata: Jessop et al. 2004, A. japonica: Yok-
ouchi et al. 2008) and in a population-level model of
A. anguilla (Daverat et al. 2012). The model in our
study showed that habitat (potentially including ther-
mal differences among habitats) affected the growth
of A. anguilla in the Gironde River system. Previous
studies have reported annual growth rates of yellow-
phase A. anguilla of between 30 and 60 mm yr−1

(Moriarty 2003), to almost 100 mm yr−1 in Mediter-
ranean lagoons (Melia et al. 2006). Within the river-
system scale for other anguillids, growth of yellow-
phase eel was highly variable within a site of the
Hudson River system for A. rostrata (Morrison &
Secor 2003) and the Hamana Lake system for A.

japonica (Yokouchi et al. 2008). Such a significant
effect of habitat on growth was also found in studies
using otolith microchemistry for Atlantic eels in
which growth rates in brackish water were higher
than those in adjacent bodies of freshwater for A. ros-
trata (e.g. Jessop et al. 2004, 2008, Thibault et al.
2007, Lamson et al. 2009) and for A. anguilla (Dav-
erat & Tomas 2006). Temperature regime is one of the
factors that can explain why growth rates of eels are
higher in coastal systems and estuaries. The temper-
ature regime of brackish and marine systems is dif-
ferent from the temperature regime of freshwater
habitats. This was verified within the Gironde River
basin where there was a 10% difference in tempera-
tures between the estuary and river. There was a
buffer effect in the estuary with less seasonal contrast
in temperatures than in freshwater habitats, with
higher winter and lower summer temperatures. The
lower depth and absence of salt explain why temper-
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Year Sum of monthly Degree-months Thermal Number 
average beyond thresholds proxy of otolith 

temperature <15°C >18°C (D) data

1993 159.7 38.3 30.1 2.9 30
1994 174.5 28.8 34.7 3.5 46
1995 173.0 32.6 35.0 5.6 67
1996 163.0 35.8 31.9 1.9 81
1997 178.7 28.2 43.1 3.8 90
1998 167.4 35.7 40.7 2.5 102
1999 171.7 34.9 51.4 0.2 117
2000 172.6 32.0 42.0 2.6 129
2001 166.4 37.6 33.0 6 110
2002 172.8 25.8 37.7 0.9 87
2003 178.1 33.5 50.3 1.3 49
Total − − − − 908

Table 2. Anguilla anguilla. Summary of thermal proxies for model-
ing A. anguilla in the Gironde River system, France. Lower and
higher thresholds of monthly average temperature were set at 15
and 18°C, respectively, for D as the inter-annual thermal proxy for
the model considering the AIC values of candidate models. Bold: 

maximum and minimum values for each column

Variables Estimated SE df t p
coefficient

Intercept 4.140 0.039 738 106.585 <0.001
Age (A) −0.062 0.007 738 −9.167 <0.001
Habitat (H) −0.073 0.031 738 −2.382 0.017
Habitat shift (S) 0.062 0.027 738 2.312 0.021
Thermal proxy (D) 0.023 0.006 738 4.069 <0.001

Table 3. Anguilla anguilla. Estimates of the fixed effects in the final 
model for A. anguilla in the Gironde River system, France
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atures in freshwater habitats vary more closely with
air temperature than those in estuaries. Furthermore,
in the temperate zone, the productivities of estuaries
and coastal ecosystems are higher than those of fresh -
water habitats (Gross 1987), which has been verified
for the Gironde system (Irigoien & Castel 1997, Lobry
et al. 2003).

Thermal proxy in the growth period had a positive
effect on individual yearly growth. The thermal
proxy was representative of the ecologically optimal
temperature conditions for eel growth. The result
that the 12°C Tlow model (selected lowest Tlow consid-
ering AIC criterion) was consistent with the general
observations showing that growth ceased at temper-
atures <9°C (Moriarty 2003) and in aquaculture con-
ditions at around 13°C (Tesch 2003). The selected
Thigh of 18°C was in accordance with a conservative
range of optimum temperatures for eel growth. A
monthly average air temperature of 18°C would be
representative of a water temperature of 23 to 24°C
in the Gironde River system. Previous experimental
studies have reported the optimum temperature for
eel growth to be around 23°C for A. anguilla in cap-

tivity (Sadler 1979, Panfili et al. 1994). Previous stud-
ies indicated that growth decreased rapidly above
the optimum temperature for A. anguilla in captivity
(Sadler 1979).

The years 1999 and 2001 had the lowest and high-
est thermal proxy values, respectively. A difference
in growth between 1999 and 2001 could be explained
by a comparatively longer growing season in 2001,
due to a warmer winter and moderate summer and a
shorter growing season in 1999 due to a hot summer.
This suggested that moderate climate conditions for
both summer and winter had a positive effect on
growth. The heat wave in 2003 had a negative effect
on eel growth, as reflected by the second lowest ther-
mal proxy value in the study period. In 2003, the
value of degree-days above Thigh was also the second
highest maximum during the study period, with a
value of 50.3, indicating environmental temperatures
too high for eel growth. The average maximum tem-
perature in August 2003 reached 32°C. Under global
warming and abnormal climatic events, a gradual
shift of growing season from spring/summer to an
autumn/winter season could theoretically happen.
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Overall, in theory, eels will benefit from global
warming with an extended growing season. How-
ever, high summer temperatures would not be the
only positive effect on eel growth in the Gironde sys-
tem. In addition to the direct effect of the highest
temperatures on eel growth in this system, the high-
est thermal environments might lead to negative side
effects on eel growth from the related environmental
variables. Bevacqua et al. (2011) suggested the possi-
bility that the natural mortality rates of eels increase
with temperature. In addition to this, river flow in the
Gironde system had a strong negative relationship
with temperature in recent decades (r2 = 0.37, p <
0.001; data provided by Centre Nucléaire de Produc-
tion d’Électricité du Blayais). Large temporal varia-
tions in river flow were found in this system during
the past decade (Schäfer et al. 2002), and the lowest
river flow during the hottest summer can be ex -
plained by climate-related agricultural water use in
this region. It seems convincing that the higher tem-
peratures associated with low amounts of river dis-
charge could potentially produce adverse effects,
such as lower oxygen concentrations and higher
 contaminant concentrations. However, further in -
vestigations of the negative side effects of higher
temperatures on eel growth are needed.

The model linking yearly temperature variability,
the individual trajectories of habitat used and the
annual growth of eels could be applicable in other
systems to estimate the growth pattern of Anguilla
anguilla. The large-scale latitudinal difference
observed for eel growth (Vøllestad 1992, Jessop
2010, Daverat et al. 2012) supports the hypothesis of
a strong relation between temperature and growth
dynamics. The individual-scale model in this study
for the growth trajectory of European eel could be
used to assess the precise growth in the specific habi-
tat category and thermal environment of a certain
year in order to conduct effective eel management.
The application of this modeling framework, using
the datasets from several locations, could in future
contribute to finding the optimum spatio-temporal
zone with respect to eel growth under the constraints
of environmental changes due to anthropogenic im -
pacts and changing climate.
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