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ABSTRACT: We investigated the effects of seawater equilibrated with CO,-enriched air (2000 ppm,
pH 7.4) on the early development of the mussel Mytilus galloprovincialis. Mussel embryos were incu-
bated for 144 h (6 d) in control and high-CO, seawater to compare embryogenesis, larval growth and
morphology with ordinary light, polarized light, and scanning electron microscopy. Embryogenesis
was unaffected by exposure to high-CO, seawater up to the trochophore stage, but development at
the trochophore stage was delayed when the shell began to form. All veliger larvae of the high-CO,
group showed morphological abnormalities such as convex hinge, protrusion of the mantle and mal-
formation of shells. Larval height and length were 26 + 1.9% and 20 + 1.1 % smaller, respectively, in
the high-CO, group than in the control at 144 h. These results are consistent with our previous find-
ings of CO, effects on early development of the oyster Crassostrea gigas, although the severity of CO,
damage appears to be less in M. galloprovincialis, possibly due to differing spawning seasons (oys-
ter: summer; mussel: winter). Results from this and the previous study indicate that high CO, (2000
ppm) interferes with early development, particularly with larval shell synthesis, of bivalves; however,
vulnerability to high CO, differs between species. Taken together with recent studies demonstrating
negative impacts of high CO, on adult mussels and oysters, results imply a future decrease of bivalve

Published online December 23, 2008

populations in the oceans, unless acclimation to the predicted environmental alteration occurs.
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INTRODUCTION

Anthropogenic emissions of atmospheric carbon di-
oxide (CO,) have increased and led to a rapid increase
in atmospheric CO, concentration (Canadell et al.
2007). Atmospheric CO, concentration is expected to
rise to 550-1000 ppm by the end of this century (sce-
narios B1-A1F1; IPCC 2007), and reach 2000 ppm
(projected emission of 5000 pg C) by the year 2300
(Caldeira & Wickett 2003). By diffusion into ocean sur-
face waters, the increasing atmospheric CO, increases
seawater pCO, (partial pressure of CO,); this leads to
dissociation of carbonic acid, which decreases both
seawater pH (termed ocean acidification) and carbon-
ate ion concentration [CO5%7] (Caldeira & Wickett
2003, Feely et al. 2008). The [CO;27] largely deter-
mines the calcium carbonate (CaCOs;) saturation state
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of seawater, since [Ca2*] varies little under given salin-
ity conditions:

Q = [COz*][Ca* /K™, (1)

where [Ca?'] is the calcium ion concentration and K*,
is the stoichiometric solubility product of CaCOs.
Models predict that the intensification of ocean acid-
ification will make the entire ocean surface undersatu-
rated with respect to aragonite (the more soluble crys-
talline form of common biogenic CaCOj3; minerals) by
the year 2300 (Feely et al. 2004, Caldeira & Wickett
2005). Hence, the predicted increase in seawater pCO,
may have catastrophic impacts on marine organisms,
especially marine calcifiers (Orr et al. 2005, Raven et
al. 2005, Fabry et al. 2008, Doney et al. 2009).
Research into the effects of elevated seawater pCO,
on marine organisms has so far focused on corals, and
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has demonstrated that high seawater pCO, reduces
calcification rates of coccolithophores (Riebesell et al.
2000) and corals (Kleypas et al. 1999, Leclercq et al.
2000, 2002, Langdon & Atkinson 2005, Guinotte et al.
2006, Kleypas et al. 2006, Hoegh-Guldberg et al. 2007,
Cooper et al. 2008). Several studies have also shown
reduced calcification under elevated CO, conditions in
other marine calcifiers such as molluscs (Orr et al.
2005, Gazeau et al. 2007, Kurihara et al. 2007), echino-
derms (Miles et al. 2007) and crustaceans (Spicer et
al. 2007), although 2 recent studies demonstrated the
opposite, i.e. increased calcification under elevated
CO, conditions in the coccolithophore Emiliania hux-
leyi (Iglesias-Rodriguez et al. 2008) and the ophiuroid
brittlestar Amphiura filiformis (Wood et al. 2008). Fur-
thermore, increases in seawater CO, disrupt physio-
logical processes other than calcification: acid—base
regulation, metabolism, growth, and immune responses
in marine bivalves (Michaelidis et al. 2005, Berge et al.
2006, Bibby et al. 2008). Thus, high CO, appears to
interfere with a spectrum of homeostatic and develop-
mental processes of affected animals, with both direc-
tion and intensity of a response varying from species to
species.

Molluscs play an important role in coastal ecosys-
tems as ecosystem engineers (Gutiérrez et al. 2003),
food source for other marine organisms (Nagarajan et
al. 2006), and carbonate producers. Marine benthic
molluscs produce 50 to 1000 g CaCO; m~2 yr !, with the
value for oyster as high as 90000 g CaCO3; m™2 yr!
(Gutiérrez et al. 2003). These facts make marine mol-
luscs one of the key groups of animals in investigations
on the biological impacts of ocean acidification. Inves-
tigation on early life stages is particularly of impor-
tance since mortality during early life stages is the
decisive factor regulating subsequent adult population
size of benthic marine invertebrates (Gosselin & Qian
1997). Most previous studies on the effect of ocean
acidification have dealt with adult individuals; little is
known about CO, impacts on marine organisms during
early development. In addition, several toxicity studies
rank bivalve life stages in terms of relative sensitivity
to sublethal and lethal effects as: embryos > veligers
(D-larvae) > metamorphosing larvae > pediveligers >
adults (Beiras & His 1994, His et al. 1999). Shell synthe-
sis is significantly suppressed when larvae of the oyster
Crassostrea gigas are exposed to seawater equilibrated
with CO,-enriched (2000 ppm) air (pH 7.4; Kurihara et
al. 2007). Green et al. (2004) indicated that aragonite
undersaturation of seawater led to significant mortality
of just-settled juveniles of Mercenaria mercenaria.
These results suggest that embryos and larvae of bi-
valves are critically sensitive to elevations of seawater
pCOs,. In the present study, we aimed to evaluate the
effect of high-CO, seawater (2000 ppm) on the early

development of the mussel Mytilus galloprovincialis,
and compare CO, sensitivity of mussels and oysters, to
examine the generality of the previous findings among
bivalves and to evaluate interspecific differences in
CO, vulnerability.

MATERIALS AND METHODS

Test animals. For each experimental run, 8 to 10 adult
mussels Mytilus galloprovincialis (30 to 40 mm shell
length) were collected by hand from buoys of aquacul-
ture cages placed in the harbor fronting the Institute
for East China Sea Research, Nagasaki University,
Japan (32°48'34.21"N, 129°46'15.07"E). Seawater
temperature and salinity at the time of collection ranged
from 13 to 15°C and 33 to 34, respectively. The mussels
were brought to the laboratory after collection and
immediately used for the experiments, which were
conducted 5 times from February through March 2007
at 14°C.

Seawater. Filtered (GF/C 1.2 pm) and sterilized
(121°C, 15 min) seawater (FSW) was placed in two
1 liter beakers, and was bubbled with air (control, CO,
concentration: 380 ppm) or CO,-enriched air (CO,-
seawater). By regulating flow rates of air and CO, gas
with flow meters (Kofloc 250) and monitoring with a
CO, gas analyzer (Telaire 7001), the CO, concentra-
tion of the gas mixture was adjusted to 2000 ppm. The
pH (NBS scale) and the O, saturation (%) of the test
seawater were measured before each experiment with
a pH electrode (Mettler Toledo InLab413SG-IP67) con-
nected to a pH meter (Mettler Toledo MP125) and with
an O, electrode (TOA OE-270AA) connected to an O,
meter (TOA DO14-P), respectively. Seawater salinity
(35.5) was determined with a refractometer (Atago
100-S), alkalinity with a pH meter (PHM290, Radiome-
ter) and an autoburette (ABU901, Radiometer), and
[Ca?*] with a calcium electrode (Thermo, Orion model
9720BN) connected to an ion analyzer (Orion EA 920).
Dissolved carbon dioxide [CO,], bicarbonate [HCO;7]
and carbonate [CO5%7] concentrations were calculated
using the first and second dissociation constants of car-
bonic acid (Mehrbach et al. 1973), and calcite (Q.qc)
and aragonite (Q,.4) saturation using stoichiometric
solubility products for respective crystalline forms
(Mucci 1983) (Table 1).

Bioassay. Eggs and sperm were obtained as follows:
collected individuals were kept individually in 200 ml
beakers containing control FSW, the temperature of
which was adjusted to be ~5° higher (18°C) than the
natural seawater temperature (13-14°C) until the mus-
sels released eggs or sperm into the FSW (~1 h). Each
beaker with released eggs and sperm was inspected
visually under a light microscope to check the number
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Table 1. Carbon chemistry and calcite and aragonite satura-
tion state of experimental seawater in control and high-CO,
groups. Data are mean + SD

Control High CO,
Temperature (°C) 13.0+£0.2 13.0+£0.2
pH (NBS scale) 8.13 £ 0.03 7.42 + 0.03
Alkalinity (umol kg~' SW) 1956 + 21 1942 + 26
Salinity 35.5 +0.67
TCO, (umol kg™ 1757 + 7 1971 + 24
[CO,] (nmol kg™ 14.3 £0.2 83.3+1.1
[HCO;7] (nmol kg™Y) 1645 + 22 1873 £ 25
[CO5*7] (mmol kg™t 120.0 + 1.7 26.8 +0.3
Ca? (mmol 1) 12 12
Calcite saturation Q4 3.37 0.75
Aragonite saturation Qg4 2.23 0.49

of eggs and sperm motility, and the batches with the
largest quantity of eggs or the highest motility of sperm
were used. Thus, sperm from 1 male and eggs from 1
female were used in each of 5 experimental runs. The
eggs were rinsed several times with FSW, and trans-
ferred into Petri dishes containing control- or CO,-
seawater. After rechecking sperm mobility under a
microscope, a few drops of the sperm suspension in
FSW was added to the Petri dishes containing eggs.
After 15 min, the fertilized eggs were rinsed with con-
trol or CO,-seawater to remove excess sperm. A pre-
liminary test confirmed the constancy of seawater pH
during the 15 min fertilization period. Thereafter, ~400
embryos were transferred from each dish into six 50 ml
vials for each experimental group (control or high-CO,
group) keeping the egg density at <10 eggs ml™.
The vials were completely filled with control or CO,-
seawater and sealed to prevent CO, exchange with the
ambient air. All vials were incubated at 13°C. The test
seawater of the vials was renewed at 55, 96 and 121 h.

At2,4,24,54,120 and 144 h after fertilization, half of
the seawater was removed from one vial of each group
using a pipette with a mesh attached on its tip to pre-
vent sucking embryos, then developing embryos and
larvae were fixed by adding 10 % neutralized formalin-
seawater solution to attain the final formalin concen-
tration of 5%, for ordinary light and polarized light
microscopy. At 120 and 144 h, some larvae were
transferred into 2 % glutaraldehyde-paraformaldehyde
in 0.2 M cacodylate buffer in seawater at pH 8.1, for
scanning electron microscopy (SEM). Immediately be-
fore fixing, pH of the control and CO,-seawater was
rechecked to ensure that no significant changes oc-
curred during the incubation (Fig. 1). Oxygen satura-
tion was determined at 55, 96 and 121 h, and remained
above 90 %.

A total of 100 embryos or larvae from each 50 ml
vial were observed under a light microscope, and the

number of individuals in each developmental stage was
counted. Morphological criteria proposed by His et al.
(1997) were adopted to differentiate normal D-shaped
larvae. To determine the effects of CO, on shell growth,
D-shaped larvae were mounted on a glass slide, photo-
graphed and measured for shell length (anterior to pos-
terior dimension of the shell parallel to the hinge line)
and height (dorsal to ventral dimension perpendicular
to the hinge) under a microscope with an ocular mi-
crometer. Larvae incubated for 54, 120 and 144 h were
also observed with a polarized light microscope to eval-
uate the degree of shell mineralization, which we esti-
mated based on the observed birefringence due to the
mineral phase (Weiss et al. 2002; see Kurihara et al.
2007 for further information). For SEM, embryos were
dehydrated through a series of ethanol, freeze-dried in
t-butylalcohol and mounted onto SEM stubs. Embryos
were coated with platinum and then examined using a
scanning electron microscope (JEOL model JSM-6460).
Statistics. Statistical analyses were performed using
JMP software package, version 7 (SAS Institute, Cary,
NC). Data are based on 5 replicate experimental runs,
each with eggs from 1 female and sperm from 1 male.
Three-way ANOVA was used to compare the percent-
age of each developmental stage between treatments
(control vs. CO,-seawater) and time (2 to 144 h after
fertilization). Paired t-test was used to compare the
percentage of (1) embryos at each developmental
stage between control and CO,-seawater at 2, 4, 24,
54,120 and 144 h after fertilization, and (2) normal and
abnormal D-shaped larvae at 122 and 144 h. Repeated
measures ANOVA and Tukey-Kramer tests were run
to compare shell length and height of control and
CO,-seawater individuals at 54, 120 and 144 h.

RESULTS

The pH of control seawater varied from 8.00 to 8.14
(mean 8.05 + 0.05 SD) during the experiment, whereas
that of CO,-seawater ranged from 7.41 to 7.46 (mean
7.43 = 0.02, Fig. 1). There were significant interactions
between Treatment (control vs. CO,-seawater), Devel-
opmental stage and Time (3-way ANOVA, F = 37.9,
df = 35,385, p < 0.001). There was no significant differ-
ence in the percentage distribution of each stage
between control and CO,-seawater embryos until the
gastrula stage (Fig. 2). However, at 54 h after fertiliza-
tion, all individuals developed into D-shaped larvae in
the control, in contrast to only 20% in the high-CO,
group (paired t-test, p < 0.005; Fig. 2). Approximately
70% of the CO,-seawater larvae remained at the tro-
chophore stage, demonstrating a development delay.
At 120 and 144 h, all CO,-seawater individuals devel-
oped into D-shaped larvae, but nearly all (>99 %) had
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Fig. 1. Change in seawater pH of control and high-CO,
groups. Values are the average of 5 replicate experiments.
Error bar = SD

abnormal morphology compared to <1% of control
larvae (paired t-test, p < 0.005; Figs. 2 & 3). The abnor-
malities in CO,-seawater embryos included indenta-
tion of the shell margin (1 to 2 %; Fig. 3b), protrusion of
the mantle from the shell (23 to 24 %; Fig. 3c), convex-
ation of the hinge (8 to 11 %; Fig. 3d) and a combina-
tion of the latter 2 conditions (64 to 65 %; Fig. 3e).

Both shell length (repeated measures ANOVA, F =
988, df = 1,8, p < 0.001) and height (repeated measures
ANOVA, F = 326, df = 1,8, p < 0.001) of the CO,-
seawater larvae were significantly smaller than those
of control larvae at 54, 120 and 144 h (Tukey-Kramer
test, p < 0.05; Fig. 4). Fig. 5 compares D-shaped larvae
of the control and high-CO, groups at 120 h (Fig. 5a-f)
and 144 h after fertilization (Fig. 5g-1) under ordinary
light (Fig. 5a,d,qg,j), polarized light (Fig. 5b,eh,k) and
SEM (Fig. 5¢,fil). All D-shaped larvae of both control
(Fig. 5b,h) and high-CO, (Fig. 5ek) groups show
birefringence over the entire shell area, indicating
complete shell mineralization. Control larvae at 120
and 144 h clearly showed prodissoconch I and pro-
dissoconch II (Fig. 5c,i), while the CO,-seawater lar-
vae did not show the prodissoconch I/II boundary and
commarginal growth lines (Fig. 5f,1). The shell surface
of CO,-seawater larvae was rugged and had an ir-
regular contour. The 2 valves differed in size, leaving
a gap between them, from which the mantle often
protruded.

DISCUSSION

The present results demonstrate that exposure to
seawater acidified by equilibrating with air containing
2000 ppm CO, (pH 7.4) leads to morphological abnor-

100
2h

80 m Control o
60 O co, L

4h

24 h

54 h

120 h *
80 B

60 - -
40 - L
20 - L

Percentage at each stage

*
807144h B

60 - =
40 - L

*

4-cell Morula Gastrula Trocho- D-larva Abnormal
phore

1-cell  2-cell

Fig. 2. Mytilus galloprovincialis. Percentage distribution at
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CO,-seawater (grey bars) at 2 to 144 h after fertilization. Each

bar is the average of 5 replicate experiments. Error bar = SD,

(*) significant difference between the control and CO, groups
by paired t-test (p < 0.005)

malities and a significant size reduction in D-shaped
larvae of the mussel Mytilus galloprovincialis. The ob-
servations under polarized light and SEM provided
evidences of disrupted shell formation and dissolution
in the CO,-seawater larvae: the rugged shell surface,
and the absence of the prodissoconch I/II boundary
and commarginal growth lines. Other morphological
abnormalities include convex hinge and protrusion of
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Fig. 4. Mytilus galloprovincialis. Comparison of shell length and height of D-shaped larvae in the control and in high-CO, groups
at 54, 120 and 144 h after fertilization. Each value is the average of 5 replicate experiments. Error bar = SD, (*) significant
difference between control and high-CO, groups (paired t-test, p < 0.05)

the mantle, both of which are typical criteria used to protruded mantle, which could reduce environmental
distinguish between normal and abnormal develop- fitness.

ment of veliger larvae in embryotoxicology bioassay The present results are consistent with our earlier
(His et al. 1997). Although no observations were made findings on CO, effects in the oyster Crassostrea

on larval behaviour in the present study, Beiras & gigas larvae (Kurihara et al. 2007). In both Mytilus
His (1994) reported swimming inhibition in larvae with galloprovincialis and C. gigas, morphological differ-



Light

Polarized light

SEM

230

Aquat Biol 4: 225-233, 2008

120 h control

120 h CO,

kT
W

144 h control

Fig. 5. Mytilus galloprovincialis. Morphology of larvae incubated for 120 h and 144 h control or in CO,-seawater; same individual
larva in each column. (*) Convex hinges; (black arrows) prodissoconch I/II boundary found only in control larvae; (white arrows) gap
between left and right shells. Abbreviations: p1, prodissoconch I; p2, prodissoconch II; ml, mantle. Scale bars in upper 2 rows: 50 pm

ences between control and experimental larvae be-
came manifest at stages when the larval shell starts
to form (trochophore stage), and only 0.2 and 4 % of
high-CO, exposed Mytilus galloprovincialis and C.
gigas larvae, respectively, developed into normal D-
shaped larvae. Since no effects were detected before
the trochophore stage, the most vulnerable process
during larval development appears to be shell syn-
thesis. Shell formation in molluscs is a complex pro-
cess, the mechanisms of which are still not well
understood. The larval shell is thought to be formed
in the early embryos by a specialized group of ecto-
dermal cells called the shell gland, the inner part of
which is subsequently transformed into the larval
mantle epithelium (Wilt 2005, Weiss & Schoénitzer
2006). Hayakaze & Tanabe (1999) showed that the
organic shell in M. galloprovincialis larvae begins to
be secreted by the shell gland at the late trochophore
stage, and that calcification was initiated underneath
the organic shell in the early veliger stage. Since the
CO,-seawater used in the present study was under-
saturated for both aragonite and calcite (Table 1), we
suspect that CaCOj;, even if normally deposited,
incurred dissolution from the larval shell. We also
speculate that elevated seawater CO, influenced bio-

logical processes responsible for larval shell calcifica-
tion. In a study of molecular mechanisms of larval
shell formation, Weiss & Schonitzer (2006) demon-
strated the presence of chitinous material in the lar-
val shell of M. galloprovincialis; in a subsequent
study, Schonitzer & Weiss (2007) showed that larval
shell formation was radically impaired by treatment of
the M. galloprovincialis larvae with a chitin synthesis
inhibitor, Nikkomycin Z. Observed types of larval
shell malformation at the organism scale included
asymmetry of the 2 shell valves, reduced size, shell
undulation, and convex hinge, which are similar to
our observations in high-CO, exposed embryos. At
present, we have only started to list phenotypic alter-
ations in high-CO, exposed marine bivalves; further
research is needed to understand underlying mecha-
nisms of the CO, effects.

Despite the overall similarity of CO, effects on the
early development of the 2 bivalve species, the effect
of CO, on larval shell mineralization is less severe in
Mytilus galloprovincialis than in Crassostrea gigas,
suggesting interspecific differences in CO, tolerance.
All high-CO, exposed mussel larvae were fully miner-
alized in spite of the morphological abnormalities,
while only 30% of high-CO, exposed oysters were
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fully mineralized, with the rest either completely lack-
ing a shell or developing only a partially mineralized
shell (Kurihara et al. 2007). In contrast to our findings
on larval individuals, Gazeau et al. (2007) demon-
strated that the net calcification of adult C. gigas was
less sensitive to elevated seawater pCO, than that of
adult M. edulis, suggesting ontogenetic changes in
CO, vulnerability. Gazeau et al. (2007) ascribed the
observed difference in calcification under elevated
CO, conditions to differences in shell mineralogy be-
tween the species. Adult oyster shells are mainly com-
posed of calcite (Stenzel 1964), while adult mussel
shells contain up to 83% aragonite (M. edulis; Hub-
bard et al. 1981). Since the K*, is larger for aragonite
than for calcite, aragonite is less stable and therefore
more soluble than calcite (Zeebe & Wolf-Gladrow
2001). On the other hand, aragonite has been identi-
fied as the CaCO3; mineralization form in the larval
shells of 2 bivalve species, the hard clam Mercenaria
merceneria and the Eastern oyster C. virginica (Sten-
zel 1964, Weiss et al. 2002), which raises the possibility
that the larval shell of other bivalves including mussels
may also consist of aragonite. If so, the observed dif-
ference in CO, sensitivity of calcification in mussel
and oyster larvae cannot be explained by mineralogi-
cal considerations.

Similar species-specific responses to high pCO,
seawater are found in scleractinian corals and calci-
fying algae. Marubini et al. (2003) reported that
although 4 scleractinian corals (Acropora verweyi,
Galaxea fascicularis, Pavona cactus and Turbinaria
reniformis) cultured under 866 ppm CO, (pH 7.76)
showed significantly suppressed calcification rates,
the magnitude of microstructural crystallization re-
sponses was highly species-specific. They suggested
that these differences are due to reaction differences
of the organic matrix which produce differences in
the size and shape of growing crystal fibres. On the
other hand, in calcifying coccolithophores, the calcifi-
cation rate of some species is sensitive to high CO,,
whereas that of other species is not (Riebesell et al.
2000, Langer et al. 2006, Iglesias-Rodriguez et al.
2008). These differences in CO, sensitivity could also
be explained by genetic diversity between species
(Fabry et al. 2008).

Another possible explanation for the difference in
CO, sensitivity between Mytilus galloprovincialis and
Crassostrea gigas is the difference in experimental
temperature. Because C. gigas spawns in summer,
the experiment for C. gigas was conducted at 23°C
(Kurihara et al. 2007), which is 10°C higher than that
used in the present study. A possible temperature
dependence of CO, impact was also reported for
2 species of sea urchins by Kurihara & Shirayama
(2004), who found a greater negative effect of high

CO, on egg fertilization in Echinometra mathaei (ex-
periments conducted in June to October at 24°C)
than in Hemicentrotus pulcherrimus (January to
March at 14°C). Thus, the negative effects of high
CO, on marine animals may act synergistically with
higher temperatures. If true, the ocean ecosystem
may suffer from greater damages than have been
predicted by experiments in the context of global
warming or ocean acidification alone. In fact, Reynaud
et al. (2003) demonstrated that elevations in both CO,
and temperature synergistically reduced the calcifi-
cation rate of scleractinian corals. Conversely, Zeebe
& Wolf-Gladrow (2001) reported CaCOj3; to be more
soluble at lower temperatures. Further comparison of
CO, sensitivity is needed for marine organisms from
different latitudes.

The present study revealed that the maximum CO,
concentration predicted to occur in the next centuries
would significantly affect the early development of
mussels. As in our previous study on the oyster, we
collected eggs and sperm of the 'best’ quality for
the present experiment (see ‘Material and methods—
Bioassay'), which may have led to underestimation of
the effects on natural populations of the 2 species.
Michaelidis et al. (2005) reported that incubation of
adult mussels for 3 mo under high CO, conditions (pH
7.3) caused a decrease in metabolic rate and shell size.
Synergy effects may result in dwindling mussel popu-
lations, unless mussels acclimate to the predicted envi-
ronmental alteration. Marine mussels are dominant
competitors for space and can exclude other large ben-
thic organisms such as kelps and barnacles that
require primary space for attachment (Paine 1966).
Mussel beds provide a biogenic habitat for algae
and small-bodied invertebrates, thereby playing an
important role in structuring intertidal communities
(Suchanek 1992). Mussels also form an important
trophic link in intertidal food webs, being consumed
by whelks, crabs, lobsters, sea stars, fish, shore birds
and sea otters (Seed & Suchanek 1992), and also have
a high commercial value as food source for humans.
Hence, ocean acidification due to increasing CO, may
result in considerable ecological and economic losses
through negative effects on mussel populations.

In conclusion, the results of our present and previ-
ous studies on mussel and oyster larvae demonstrate
that high-pCO, seawater is harmful to the early
development of marine bivalves as it affects shell
synthesis. Considering the different taxonomic posi-
tions of the 2 species (Mytilus galloprovincialis:
Order Mytiloida, Crassostrea gigas: Order Ostreoida),
it is quite possible that early development of other
bivalves is similarly affected by high-CO, seawater,
although further verification is necessary for other
bivalves.
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