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Abstract A decomposition-based optimization algorithm
is proposed for solving large job shop scheduling problems
with the objective of minimizing the maximum lateness.
First, we use the constraint propagation theory to
derive the orientation of a portion of disjunctive arcs.
Then we use a simulated annealing algorithm to find
a decomposition policy which satisfies the maximum
number of oriented disjunctive arcs. Subsequently, each
subproblem (corresponding to a subset of operations as
determined by the decomposition policy) is successively
solved with a simulated annealing algorithm, which leads
to a feasible solution to the original job shop scheduling
problem. Computational experiments are carried out for
adapted benchmark problems, and the results show the
proposed algorithm is effective and efficient in terms of
solution quality and time performance.

Keywords Job Shop Scheduling, Simulated Annealing,
Optimization Algorithm, Lateness

1. Introduction

Scheduling has been an important research field in robotics
and computer-integrated manufacturing [1, 2]. The job

www.intechopen.com

shop scheduling problem (JSSP) is one of the most
frequently adopted models in the area of scheduling
research [3-6]. However, most variants of JSSP are
NP-hard in the strong sense and thus defy ordinary
solution methods. Enumerative approaches, such as
the branch-and-bound algorithm [7], can only conquer
small-scale problem instances. = The most common
heuristic methods devised in the early days include
dispatching rules [8-10] and shifting bottleneck [11-13]. In
recent years, meta-heuristic algorithms, such as simulated
annealing (SA) [14], genetic algorithms (GA) [15], scatter
search (SS) [16], tabu search (TS) [17] and particle
swarm optimization (PSO) [18], have clearly become
the research focus in practical optimization methods for
solving ordinary-scale JSSPs.

However, the size of JSSPs in practical manufacturing
environments is much larger than in theoretical research.
In this case, the solution space is too large to be searched
effectively by simple meta-heuristics. To address this
difficulty, several decomposition-based algorithms have
been proposed [19-23], which decompose the original
large-scale problem into a series of smaller problems
(subproblems) and finally obtain a solution to the original
problem after these subproblems are solved respectively.
But there are some drawbacks with these existing
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approaches. The decomposition algorithm proposed in
[19, 22] has exponential complexity and thus cannot be
directly applied to large-scale problems; the algorithm in
[20] encounters deterioration in solution quality because
it adds extra constraints to each subproblem; the method
presented in [21] does not guarantee the feasibility of
subproblem solutions for the original problem and relies
on a heuristic coordination algorithm to construct a
feasible solution for the original problem.

In this paper, we propose a decomposition-optimization
algorithm based on simulated annealing (DOASA) to
solve large-scale JSSPs with the objective of minimizing
maximum lateness. In DOASA, the original problem
will be divided into several subproblems, each of which
corresponds to a subset of operations. The subproblems
are first determined and then successively solved by two
optimization processes, both of which are implemented
with simulated annealing in order to save computational
time. Before decomposition, the constraint propagation
technique is applied as a preprocessor on the original
problem so that some disjunctive arcs can be resolved. This
information provides guidance for the determination of
decomposition policy and subproblems.

The paper is organized as follows. The discussed job shop
scheduling problem is formulated in Section 2. Section 3
introduces the important tools that are used by our
algorithm. Section 4 describes the DOASA in detail. The
computational results are provided in Section 5. Finally,
some conclusions are given in Section 6.

2. Problem formulation

In a JSSP instance, a set of 1 jobs {]; 7:1 are to be processed

on a set of m machines { My }}" ; such that each machine
can process only one job at a time, and each job may be
processed by only one machine at a time. Each job has
a fixed processing route which traverses all the machines
in a predetermined order. A preset due date is given
for each job. Since due date related criteria are of much
greater concern in practical scheduling, maximum lateness
is adopted as the optimization objective.

JSSP can be described by a disjunctive graph G(N,C, D)
[23]. N = OU{0,x} is the set of nodes where O =
{1,2,...,n x m} are associated with the n x m operations
of the JSSP instance. 0 and * denote the dummy source
node and the dummy sink node, respectively. C is the set
of conjunctive arcs which connect successive operations
of the same job. Thus, C models the technological
constraints in the JSSP instance. D = U, Dy is
the set of disjunctive arcs if Dy is used to denote the
disjunctive arcs that correspond to the operations on
machine k. Dj contains the arcs that connect each pair
of operations to be processed by machine k and require
that these operations cannot be processed simultaneously.
Therefore, the directions of the disjunctive arcs are yet
to be determined. Finding a feasible schedule for JSSP
is equivalent to orienting all the disjunctive arcs without
causing any directed cycles in the resulting graph. The
weight of each arc equals the processing time of the
operation that is associated with the tail of the arc.
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The discussed JSSP can be formulated as follows:

min Lmax = 1?113?5) {ti +pi— di}

s.t.
ti+pi<t, (i,j)€C,
ti + pi Sf] Orf]'—FP]' <t (i,j) eD,
t; > 0, i€0.

In this formulation, F(O) is the set of the last operations
of each job; d; is the due date of the job which operation
i belongs to; p; and t; are the processing time and the
starting time of operation i, respectively. The lateness
of job j is defined as L; = C; —d; where C; equals
the completion time of the last operation of job j.
The scheduling objective considered in this paper is to
determine the processing sequence of operations on each
machine such that the maximum lateness (i.e. Lmax =
max]f’zl{L]-}) is minimized. The problem is noted as

Jm||Lmax in accordance with the three-field notation.

3. Theoretical background
3.1. Simulated annealing (SA)

The SA algorithm is commonly used for solving
combinatorial optimization problems. It starts from
an initial basic solution xp and randomly generates a
neighbour solution x’ from its neighbourhood. x’ is
accepted as a new basic solution with probability P, which
is calculated as

1, i ALmax < 0
N exp{—ALmax/T}, otherwise

where ALmax = Lmax(%") — Lmax(xg) is the difference
in objective value between the two solutions, and T is
the temperature which decreases with iterations. The
searching process keeps generating a neighbour solution
and accepting it with the above probability until some
stopping criterion is met. The framework of the standard
SA algorithm can be described as follows.

Step 1: Produce an initial solution xp. Set x* = xy.
Step 2: Foriter =1,2,..., Imax

(2.1) Randomly generate a neighbour solution x’
from the neighbourhood of xy.

(2.2) If Lmax(x") < Lmax(x*), set x* = x'.

(2.3) Set xp = x' with probability P =
min{1, exp{(Lmax(%0) — Lmax(x"))/T}}.

(2.4) Reduce the temperature by setting T := T x
A, where A € (0,1) is the cooling rate.

Step 3: Return x*.

3.2. Constraint propagation (CP)

In this part, we will introduce the basic application of CP
theory to job shop scheduling.

We use P = (O, C, D, P) to denote a specific JSSP instance.
As introduced above, O = {1,...,n x m} is the set of
operations; C is the set of conjunctive arcs and (i,j) € C
indicates operation i must be processed before operation
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j; D is the set of disjunctive arcs and (i,j) € D indicates
operation 7 cannot overlap with operation j in processing;
P = {p;|i € O} is the set of operation processing times.

In order to apply CP to JSSP, it is required to first give
an upper bound UB for the optimal Lmax of the instance.
Therefore, if we use J; to denote the feasible domain of
starting times of each operation i € O, we must have
6; C [0,UB+d; — p;]. Normally, the tighter the upper
bound, the more information will be derived by CP.

The earliest starting time and the latest starting time of
operation i are respectively defined as est; = min J;, Ist; =
max ;. Thus, é; can also be expressed as §; = [est;, Ist;] =
{est;,est; +1,...,Ist; — 1,Ist;}. Meanwhile, we define the
earliest completion time and the latest completion time
of operation i respectively as ect; = est; + p; and Ict; =
Ist; + p;.

For a subset of operations A C O (which need to be
processed on the same machine), we define the following
functions: P(A) = Yica Pi, ESTmin(A) = min;¢ 4 est; and
LCTmax(A) = max;e4 Ict;.

In the following, some of the most important principles for
applying CP to JSSP are presented [24].

Theorem 1 (Conjunctive consistency test). If i,j € O and
(i,]) € C, then the following domain reduction rule is effective:

est; := max{est; est; + p;},
Ist; := min{Ist;, Ist; — p;}.

Clearly, the time complexity of revising the earliest/latest
starting times is O((nm)?).

Theorem 2 (Input/output sequence consistency test).
Assume A C Oand i & A, if the following “input condition” is
satisfied:

max Ict, —esty} < P(AU{i}),
ueA,veAu{i},u;ﬁv{ v ul ( {i})

then operation i must be completed before every operation in A.
Similarly, if the following “output condition” is satisfied:

max lcty —est,} < P(AU{i}),
ueAU{i},veA,u;&v{ ¢ M} ( {})

then operation i must be processed after every operation in A.
When |A| = 1, the above theorem can be stated as: if
i # jand Ictj —est; < p;+ pj, then the disjunctive arc

direction j — i can be fixed. Such a “pair-wise test” can be
performed in O((nm)?) time.

Theorem 3 (Output domain consistency test). If there exist
A C Oandi ¢ A which satisfy the output condition, then the
earliest starting time of operation i can be adjusted as

est; := max{est;, ESTmin(A) + P(A)}.

Naturally, a dual conclusion exists for describing the input
condition.
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Theorem 4 (Input/output negation sequence consistency
test). Assume A C O and i ¢ A, if the following “input
negation condition” is satisfied:

LCTmax(A) —est; < P(AU{i}),

then operation i cannot be completed before every operation in
A. Similarly, if the following “output negation condition” is
satisfied:

letj — ESTmin(A) < P(AU{i}),
then operation i cannot be processed after every operation in A.

Theorem 5 (Input negation domain consistency test). If
there exist A C O and i ¢ A which satisfy the input negation
condition, then the earliest starting time of operation i can be
adjusted as

est; := max {esti,min{ectu}} .
ucA

Naturally, a dual conclusion exists for describing the
output negation condition.

Besides the listed theorems, there are some others, such
as the input-or-output consistency test. In the subsequent
part of the paper, the application of CP to JSSP is regarded
as an independent module, the procedure of which can be
found in [25].

4. The algorithm
4.1. The decomposition method

The decomposition scheme used in this paper can be
intuitively illustrated using a disjunctive graph like
Figure 1, in which nine operations of three jobs are to be
processed on three machines. According to the conjunctive
arcs, operations 1-3 belong to job 1, operations 4-6 belong
to job 2 and operations 7-9 belong to job 3. According
to the disjunctive arcs, operations 1, 6 and 8 are to be
processed by machine 1, operations 2, 4 and 7 are to be
processed by machine 2, and operations 3, 5 and 9 are to be
processed by machine 3. The dividing curves representing
a decomposition policy divide the operation set into three
sequential subsets: I, IT and III, each of which corresponds
to a subproblem.

L
Conjunctive arc|

€=
| Disjunctive arc

Figure 1. An illustration of the decomposition method

To be precise, the decomposition method has the following
properties: (1) If the original operation set is divided into
p subsets {O;}}_,, then U]_,O; = O, and VI # I, O;N
Oy = ©; (2) For any two operations i and j, if (i,j) € C and
i€ Oli,j S Ol]'/ then l,' < l]
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4.2. Using CP as a preprocessor for [SSP

From Section 3.2, we see that CP can derive the correct
direction of some disjunctive arcs by alternating sequence
consistency tests and domain consistency tests. The
following algorithm is designed by combining CP with
local search in an iterative fashion so that a tight upper
bound can be used to orient a sufficient number of
disjunctive arcs.

Input: The problem instance P = (O, C, D, P).

Step 1: Construct the initial solution S; based on the EDD
(earliest due date) dispatching rule. Let UB =
Lmax(S1), where Lmax(-) denotes the objective
value of a solution. Let the initial set of directed
disjunctive arcs D = @ and k = 1.

Step 2: Perform a stochastic local search starting from
Sk (employing w iterations) in order to find a
new best-so-far solution S* and update the upper
bound UB = Lmax(S*). If no improvement is
found within the w iterations, then output D.

Step 3: Add a set of new constraints “Vi € O, Ict; :=
min{lct;, UB — A}” and then call the CP module
to derive as much information as possible. The
disjunctive arc directions newly obtained in this
step are denoted as D’. If §; = @ for some
operation or C U D U D’ contains cycles, output D.
Otherwise, let D := DUD’ and k := k + 1.

Step 4: Taking C U D as the precedence constraints,
construct a new solution Sy based on the EDD rule.
If Lmax(Sk) < UB, let UB = Lmax(Sk). Go back to
Step 2.

The above algorithm can be used as a preprocessor which
is applied to a JSSP instance before we start to solve it.
The two parameters involved in this procedure are w (the
number of iterations in each run of local search) and A
(the step size when lowering the upper bound). The
resolved disjunctive arcs D will be used to determine a
decomposition policy for the JSSP instance.

4.3. Finding a decomposition policy

A decomposition policy determines the structures of all
the subproblems at a time and thus it directly affects
the subsequent optimization process. In this paper, a
simulated annealing (SA) approach is designed to search
for a satisfactory decomposition policy based on the
previously derived disjunctive arc directions.

SA searches among all possible decomposition policies
and outputs a promising policy, which divides the
operation set into p successive subsets by satisfying the
maximum number of derived disjunctive arcs. The input
parameters include the desired number of operations in
each produced subset, i.e., {Dc,}le.

A directed disjunctive arc (i, ) is “satisfied” if the subset
containing operation i is not preceded by the subset
containing operation j. With respect to the previous
example (see Figure 2 here), if the disjunctive arcs (1,8)
and (6,8) have been oriented by CP, then the illustrated
decomposition policy satisfies (1,8) (because operation
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1 is in subset I and operation 8 is in subset II), but
does not satisfy (6,8) (because subset II, which includes
operation 8, precedes subset III which includes operation
6). To be precise, suppose (i,j) € D and the considered
decomposition policy (dividing the original operation set
into p successive subsets {Ol}le) indicatesi € Oy, j € Oy,
then (i, j) is satisfied only if I; <[ -

——— Directed disjunctive arc |

Figure 2. An illustration of satisfied and dissatisfied arcs

4.3.1. Encoding

A matrix B = [b]uxp is used to encode a solution,
where the element b;; denotes the number of operations
that belong to job j and have been assigned to subset O;.
According to this definition, B has to satisfy:

N
[N aghs
LN
-
Il
3
3
~
Il
—_
L
<
=
3

bj,l :al,lzl,...,p‘

M-

Il
—

]

In the above equations, m is exactly the number of
operations included by each job. Besides, since the
operations of each job are decomposed according to their
technological order, a matrix in the form of B is sufficient
for encoding a solution in the SA.

For example, the decomposition policy shown in Figure 2
should be encoded as

120
111},
021

By =

where the first row means the 1st operation of job 1 is
assigned to the subset I, the next two operations of job
1 are assigned to subset II, while no operation of job 1 is
assigned to subset III.

4.3.2. Initialization

A heuristic rule similar to EDD is used to produce the
initial solution. For each operation 7 in O, we define the
modified due date k; as:

d;, if {j:(i,j)eCuUD} =@

hi = {hj —pj}, otherwise

min
(i,j)eCuD

where d; is the due date of the job to which operation i
belongs. Just like d;, the newly defined k; also describes
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the urgency level of operation i, but in a more strict manner
than the original due date.

Then, all the operations are sorted in a non-decreasing
order of h;, yielding an operation sequence [iy, i3, . .., inm)-
After that, the p subsets are successively assigned with
operations in the order specified by this sequence.

According to the encoding scheme, the value of b;, (the
number of job j’s operations that have been assigned
to subset O;) can now be acquired, and thus, the
encoding matrix B for this initial decomposition policy
is obtained.

4.3.3. New solution generation

In order to generate a new solution from the current
solution, the algorithm randomly selects an element b;
from B and sets b;; < bj; + ¢ where { is a two-value
random variable in {+1, —1} with probability {3, 1}. For
keeping the row sum and the column sum of B constant,
the algorithm randomly selects another three elements
by, by and by (j° # j,I' # 1) from B and sets b :=
bj,l’ — C, b]'/,[ = bj’,l — C and bi’,j’ = bj’,l’ —+ C Notably, it
must be ensured that the resulting matrix elements satisfy
bj; >0,vj, 1L

4.3.4. Evaluation

The number of satisfied disjunctive arcs is adopted as
the objective function of SA in this stage. Therefore, the
evaluation of a solution is formally described as

fB)= Y z(j),

(ij)eD

where z;y = 1 if the derived arc (i, ) is satisfied and
z(;,j) = 0 otherwise.

For example, the decomposition policy shown in Figure 2
has an objective value of

f(Bo) =z(18) +Za2) +2(35) + Z(68) T 2(39) = 4

because the directed disjunctive arcs are all satisfied except
(6,8).

4.4. Solving each subproblem

In this paper, the process of solving each subproblem is
equivalent to optimizing the sequence of the operations
involved in this subproblem (O;). To this end, a simulated
annealing algorithm is designed. The main steps to solve
the [-th subproblem are described as follows.

4.4.1. Encoding

The encoding scheme is based on operation priority lists.
A solution relates each machine with a priority list of the
operations (from O;) to be processed on this machine. Note
that after the decoding process, the actual processing order
of the operations in the final feasible schedule may differ
from the priority lists.
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4.4.2. Initialization

The initial solution is provided by the EDD dispatching
rule, where the due date of each operation is taken as h;.

4.4.3. New solution generation

In order to generate a new solution from the current
solution, we must first identify a machine and then
somehow alter the operation list related with the selected
machine. Hence, machine selection is a key step in
this process. We hope to select the machines which are
scheduled not very well and therefore have relatively
larger room for further improvement.

To achieve this aim, we define an index ¥} for each
machine k to evaluate the scheduling efficiency of this

machine:
Y=Y (ci—h)",
iEOkI

where Oy; is the set of operations to be processed by
machine k in Oj; ¢; is the completion time of operation
i in the current schedule; x* = max{x,0}. VY,
reflects the scheduling performance of machine k, and
a larger value of ¥j suggests machine k is currently
scheduled less satisfactorily.  Therefore, if we focus
more of the subsequent optimization efforts on those
machines with higher ¥ values, it is more likely to
obtain improvement. So the proportional method (a.k.a.
roulette wheel selection) is adopted here for the selection
of a machine, i.e., machine k is selected with probability
PT’Obk = Wk/z;qnzl IFk.

Finally, the “SWAP” operator is used to exchange the
positions of two randomly chosen operations in the
selected machine’s priority list, and then a new solution
is produced.

4.4.4. Evaluation

The decoding process iteratively schedules the ready
operations in the current subproblem according to their
priority order indicated by the solution and as early as
possible, on the basis of the partial schedule obtained in
the previous subproblems Og,...,0;_1 (a data structure
similar to the Gantt chart is used to record the partial
schedules obtained in previous subproblems).

Taking the instance shown in Figure 2 as an example,
we can see the incremental process of solving each
subproblem. After subproblem 1 is solved, the positions
of operations 1 and 4 (light grey) should be fixed, which
form the basis for solving subproblem 2. After subproblem
2 is solved, the positions of operations 8, 2, 7, 3 and
5 (medium grey) should be fixed, which, together with
the previously fixed operations 1 and 4, form the basis
for solving subproblem 3. Once subproblem 3 has been
solved, the positions of operations 6 and 9 (dark grey)
should be fixed. Now, we could obtain a complete solution
to the original problem, as shown in Figure 3.

The evaluation of a solution is based on the local objective
function defined as
local 1
Lyax = r?:af{cwmj) — by
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M, 1 8 6
M, 4 2 7
M, 3 5 9

Figure 3. Solving the three subproblems successively

where w(j) denotes the last operation in the technological
route of job j that belongs to the current subproblem O;.
Taking the case described in Figure 3 as an example, when
we are solving subproblem 2, the local objective function
should be evaluated based on operations 3, 5 and 8, that is,
a)z(l) =3, UJz(Z) =5, w2(3) =8.

5. Computational experiments

In this section, some JSSP benchmark instances from the
OR-Library [26] are used to evaluate the performance
of DOASA. Since this research is aimed at large-scale
problems, only the instances that include no less than 300
operations are tested. These 27 instances belong to the LA,
ABZ,SWV and YN classes. Moreover, in order to adapt the
instances for the Lmax Objective function considered here,
the due date of each job is set based on its total processing
time as d; = [f x YLjcj, pi], where Yic) p; is the sum of
processing times of all the operations that constitute job j,
and f € {1.3,1.4,1.5} is the due date tightness factor.

In the computational experiments, the parameters for SA
are set as: the initial acceptance probability p, = 0.8;
the temperature reduction ratio A = 0.95; the number
of inner iterations (number of samples obtained at each
temperature) [; = 20; the number of outer iterations
(number of temperature stages) I, = 50. The parameters
for the CP-based preprocessor is set as: the local search
iteration number w = 100; the step size for locating
upper bound A = 3. Meanwhile, the number of
subproblems for each instance is fixed according to some
preliminary computational results: for the instances with
500 operations (SWV11-SWV20), p = 6 is adopted; for the
remaining instances with 300 or 400 operations, p = 4 is
adopted. Once p is fixed, the number of operations in each
subproblem is

O
11 I=1,...p-1

Ny = o)
0] = (p—1) x |34 ), 1=p

The last subproblem contains more operations in order

to facilitate the final adjustment of the schedule for

improving the objective value.

In order to examine the effectiveness of the presented
approach, DOASA is compared with the following
methods:

* The genetic algorithm (GA) applying operation-based
encoding scheme and heuristic initialization;
e The fast TS/SA hybrid algorithm which combines the

advantages of tabu search and simulated annealing
[27];
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In the GA, the initial population is generated by applying
various effective dispatching rules, including SPT, EDD,
MDD, etc. [28]. The parameters of GA are set as:
the population size is 100, the maximum generation
number is 500 (or determined by the exogenous limit on
computational time), the crossover probability is 0.8 and
the mutation probability is 0.1. The parameters of TS/SA
are determined according to the original literature [27].

All the algorithms are implemented in Visual C++ 7 and
tested on an Intel Core i5-750 / 3GB RAM / Windows 7
platform. To make the comparison meaningful, we keep
the running time of each algorithm identical. In each trial,
we run DOASA first and record its computational time as
CT, and then run GA and TS/SA under the time limit of
CT (which controls the realized number of iterations for
each algorithm).

Table 1 presents the results for wide due date settings
(f = 1.5), Table 2 presents the results for moderate due
date settings (f = 1.4), and Table 3 presents the results
for tight due date settings (f = 1.3). In the tables,
the first two columns list the instance names and their
sizes in the format of n x m. For each instance, all the
algorithms are allowed to run 10 independent times. Since
absolute objective values are unimportant for comparison
purposes, the focus here is put on relative values. 7,
is used to characterize the improvement (in percentage)
of the best solution obtained by DOASA during the 10
runs over the best solution by the comparative method.
Formally, we define

Loest (a,T) — Lyt (DOASA, T)

my(a, 1) =
b(a. ) LEest (DOASA, 7)

7

where L5 (a,7) is the best objective value for instance 7
obtained by the algorithm a (¢ € {GA, TS/SA, DOASA})
in the 10 runs. Defined similarly, 71, denotes the
percentage improvement of the mean objective value
obtained by DOASA during the 10 runs over the mean
objective value by the comparative method (detailed
formula omitted here). The maximum lateness Lmax
remains positive even under f = 1.5 so that the relative
values (71, 7Tm) are meaningful and comparable.

The results in Tables 1-3 reveal the effectiveness of
DOASA. The following remarks can be made regarding
the algorithm’s performance.

(1) Ateach due date level, the superiority of DOASA over
the comparative methods is more significant for the
larger instances (SWV11-SWV20 with p = 6) than
for the smaller instances (with p = 4). This can
be interpreted as evidence that decomposing a large
JSSP instance into smaller subproblems will make the
search process more efficient during optimization.

(2) TItis observed that for most instances, 71, > 71, holds,
which means the improvement on mean objective
value is usually greater than the improvement on
best objective value. So it is reasonable to conclude
that the stability of DOASA in different executions
is considerably stronger than the comparative
algorithms. The robustness is an advantage brought
by the decomposition-based optimization framework
which builds the final schedule in an incremental way.
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GA TS/SA GA TS/SA

Instance Size Instance Size

Ty TTm Ty Tm TTp TTm Ty TTm
LA31 30 x 10 2.13 1.99 0.65 191 LA31 30 x 10 2.93 243 0.78 2.64
LA32 30 x 10 1.80 1.92 1.40 2.73 LA32 30 x 10 2.71 2.07 1.52 3.50
LA33 30 x 10 2.27 2.16 1.84 2.16 LA33 30 x 10 2.61 2.42 2.24 2.18
LA34 30 x 10 2.12 2.33 1.99 2.71 LA34 30 x 10 2.77 2.81 2.42 3.42
LA35 30 x 10 217 244 0.22 0.56 LA35 30 x 10 247 3.19 —0.18 0.84
ABZ7 20 x 15 2.31 2.93 1.36 1.82 ABZ7 20 x 15 3.50 3.89 1.40 2.06
ABZS8 20 x 15 2.35 2.96 1.94 3.96 ABZ8 20 x 15 3.48 2.85 2.13 4.76
ABZ9 20 x 15 2.06 2.41 1.12 3.13 ABZ9 20 x 15 3.13 2.63 1.26 3.60
SWV06 20 x 15 2.46 2.73 1.14 3.50 SWV06 20 x 15 3.61 3.41 1.34 4.28
SWV07 20 x 15 2.87 3.66 2.08 2.06 SWV07 20 x 15 4.05 4.31 2.69 2.92
SWV08 20 x 15 3.22 3.06 1.74 2.34 SWV08 20 x 15 4.00 3.54 2.01 2.85
SWV09 20 x 15 3.58 3.76 —0.51 1.73 SWV09 20 x 15 4.72 3.57 0.57 2.03
SWV10 20 x 15 3.07 4.04 1.43 2.54 SWV10 20 x 15 3.69 4.57 191 3.09
YN1 20 x 20 3.76 3.63 2.08 3.16 YN1 20 x 20 4.97 5.26 2.65 3.68
YN2 20 x 20 3.43 4.18 1.74 2.66 YN2 20 x 20 3.77 5.09 2.37 3.23
YN3 20 x 20 4.15 3.73 2.66 4.01 YN3 20 x 20 5.58 5.04 3.05 5.05
YN4 20 x 20 4.23 3.79 2.53 3.29 YN4 20 x 20 5.42 5.26 2.49 4.63
SWV11 50 x 10 414 4.67 3.97 6.62 SWV11 50 x 10 6.76 5.72 4.64 9.40
SWV12 50 x 10 391 5.14 3.19 5.84 SWV12 50 x 10 5.07 6.44 3.88 6.95
SWV13 50 x 10 4.46 4.93 3.62 9.38 SWV13 50 x 10 7.64 5.52 3.84 11.31
SWV14 50 x 10 4.98 5.26 3.88 6.21 SWV14 50 x 10 5.31 6.67 4.46 7.68
SWV15 50 x 10 5.29 5.29 4.35 7.92 SWV15 50 x 10 7.47 6.40 5.03 9.05
SWV16 50 x 10 3.80 5.06 4.48 8.24 SWV1e6 50 x 10 5.34 5.48 5.29 9.55
SWV17 50 x 10 5.20 5.82 2.59 5.67 SWV17 50 x 10 5.99 5.79 2.93 6.75
SWV18 50 x 10 5.13 5.65 3.17 6.46 SWV18 50 x 10 7.33 6.62 3.52 7.49
SWV19 50 x 10 5.57 6.68 2.42 6.34 SWV19 50 x 10 8.38 6.76 2.61 8.85
SWV20 50 x 10 5.45 6.29 3.55 5.76 SWV20 50 x 10 7.04 8.41 3.72 6.15
avg. 3.55 3.94 2.25 4.17 avg. 4.81 4.67 2.61 5.11

Table 1. Relative improvement (%) of DOASA over comparative
methods under f =15

(3) By comparing the average 7, of GA and TS/SA,
we may find that TS/SA performs better than GA
in terms of the best solution quality. This can be
explained by the fact that the combination of TS
and SA significantly enhances the exploitation ability
of the search algorithm. Then, if we compare the
average 7Tm of GA and TS/SA, we find that GA
outperforms TS/SA in terms of the mean solution
quality.  Therefore, in spite of its weakness in
intensified search, GA performs more stably in
different runs due to its population-based searching
behaviour.

(4) By comparing the three tables, it is apparent that the
relative improvement of DOASA over the comparative
algorithms is larger in the case of a tighter due
date (i.e., smaller f). Such a difference in due
date robustness also reflects the effectiveness of
the decomposition procedure based on constraint
propagation. When the due dates are tighter (i.e.,
UB +d; — p; is smaller), more disjunctive arc directions
can be derived by constraint propagation, which helps
to generate a more useful and reliable decomposition

policy.

The computational time consumed by DOASA when
solving the four representative instances is shown in
Figure 4. The due date tightness affects the process of
constraint propagation and operation decomposition, so
the time needed for handling tight due dates is higher than
for wide due dates.

www.intechopen.com

Table 2. Relative improvement (%) of DOASA over comparative
methods under f =14
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Figure 4. The computational time consumed by DOASA

To test the impact of subproblem number (p) on the final
solution quality, the results obtained by DOASA under
different p values for two selected instances (SWV06 and
SWV11) are recorded and shown as relative percentage
values in Figure 5. In this figure, we define

R Lmad"(p) — L™ (p”)
’ LR ()
where L2 (p) denotes the obtained mean objective value
in 10 runs when the subproblem number is set as p, and
p* = argminycp LRg"(p) is the optimal subproblem
number within the considered range (P) of possible p
values.

Figure 5 suggests the subproblem number in DOASA can
affect the solution quality to a noticeable extent. We have
p* = 4 for the instance SWV06 and p* = 6 for the instance
SWV11. When the actual subproblem number is far less
than p*, the optimization result is much poorer because
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GA TS/SA

Instance Size

TTh TTm Ty Tm
LA31 30 x 10 2.39 2.90 2.72 5.59
LA32 30 x 10 2.47 2.87 2.94 412
LA33 30 x 10 2.34 3.21 2.14 5.06
LA34 30 x 10 2.90 3.51 4.08 5.38
LA35 30 x 10 2.92 3.49 3.00 7.54
ABZ7 20 x 15 3.16 3.35 4.40 6.53
ABZS8 20 x 15 3.50 411 5.68 7.88
ABZ9 20 x 15 3.21 4.24 1.69 5.72
SWV06 20 x 15 3.02 3.51 3.08 3.56
SWV07 20 x 15 3.67 413 2.32 4.19
SWV08 20 x 15 3.54 4.03 3.64 4.46
SWV09 20 x 15 417 4.52 2.48 416
SWV10 20 x 15 3.00 4.05 3.98 411
YN1 20 x 20 3.85 5.40 4.84 7.35
YN2 20 x 20 3.86 4.79 4.26 6.68
YN3 20 x 20 3.29 5.10 1.89 5.19
YN4 20 x 20 4.44 5.07 3.09 7.21
SWV11 50 x 10 5.67 5.70 5.40 11.90
SWV12 50 x 10 4.60 5.53 3.07 10.41
SWV13 50 x 10 5.68 6.90 5.06 8.23
SWV14 50 x 10 6.40 6.54 5.56 12.05
SWV15 50 x 10 5.57 7.58 6.65 11.29
SWV16 50 x 10 5.39 6.18 424 9.28
SWV17 50 x 10 5.84 6.96 5.84 9.14
SWV18 50 x 10 5.26 7.10 3.21 8.41
SWV19 50 x 10 6.23 7.76 7.52 9.69
SWV20 50 x 10 8.21 8.19 4.85 8.75
avg. 424 5.06 3.99 7.18

Table 3. Relative improvement (%) of DOASA over comparative
methods under f =1.3

the benefit of decomposition has not been fully utilized.
On the other extreme, if the adopted subproblem number
is unduly large, the solution quality also deteriorates
because the additional preferential order imposed by the
decomposition procedure can reduce the potential search
space, thus limiting the subsequent optimization process
for each subproblem.

3.00 1

=4=SWV06
=#-SWVI1

Figure 5. The impact of p on solution quality

6. Conclusion

A decomposition-based optimization algorithm is
proposed in this paper for large-sized job shop scheduling
problems with the maximum lateness criterion. The theory
of constraint propagation is utilized as a preprocessor
for the pending problem instance so that a number of
disjunctive arcs can be correctly oriented. Simulated

Int J Adv Robotic Sy, 2013, Vol. 10, 214:2013

annealing is adopted as the main framework in the two
optimization procedures, i.e., the search for a promising
decomposition policy and the solving of each subproblem.
Experiments have been carried out for adapted JSSP
benchmark instances. The performance of the proposed
algorithm surpasses the competing methods (under the
same computational time limit), especially for larger
instances and under tighter due date settings. The
results verify the effectiveness and efficiency of both the
decomposition procedure and the subproblem solution
procedure. In the future research, parallel computing
(e.g., based on GPU) techniques may be considered as a
method for accelerating the execution of the proposed
algorithm. In this way, the subproblems can be solved
in parallel once they have been determined by the
decomposition procedure, which will shorten the running
time considerably.
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