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ON THE NULLITY OF CONNECTED GRAPHS WITH

LEAST EIGENVALUE AT LEAST −2

Jiang Zhou, Lizhu Sun, Hongmei Yao, Changjiang Bu

Let L (resp. L+) be the set of connected graphs with least adjacency eigen-

value at least −2 (resp. larger than −2). The nullity of a graph G, denoted

by η(G), is the multiplicity of zero as an eigenvalue of the adjacency matrix

of G. In this paper, we give the nullity set of L+ and an upper bound on the

nullity of exceptional graphs. An expression for the nullity of generalized line

graphs is given. For G ∈ L, if η(G) is sufficiently large, then G is a proper

generalized line graph (G is not a line graph).

1. INTRODUCTION

Let G be a simple, undirected graph with n vertices. Let A be the adjacency
matrix of G, and let D be the diagonal matrix of vertex degrees of G. The matrices
D−A and D+A are called the Laplacian matrix and the signless Laplacian matrix

of G, respectively. The eigenvalues of A are called the eigenvalues of G. We use
λ1(G) > λ2(G) > · · · > λn(G) to denote the eigenvalues of G. The nullity of G,
denoted by η(G), is the multiplicity of the eigenvalue 0 of G. Let G be a set of
graphs. A set N of nonnegative integers is said to be the nullity set of G if the
nullity of each graph in G belongs to N, and for any k ∈ N there exists at least one
graph G ∈ G such that η(G) = k.

Collatz and Sinogowitz [5] posed the problem of characterizing all graphs
with zero nullity. This question is of great interest in chemistry because, if a
conjugated hydrocarbon molecule is chemically stable, then its Hückel graph has
zero nullity (see [21]). The nullity of a graph is also important in mathematics,
since it is related to the rank of the adjacency matrix. There are many results on
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the nullity of trees, unicyclic graphs and bicyclic graphs (see [1, 12, 16, 19, 20,
26]).

Let G be a graph with edge set E(G). The line graph of G, denoted by L(G),
is the graph whose vertex set is E(G) and two vertices of L(G) are adjacent if the
corresponding edges in G are incident. For any tree T, Gutman and Sciriha [17]
proved that η(L(T )) = 0 or 1. Some results on the nullity of line graphs can be
found in [2, 13, 14, 17, 18, 22, 24, 25].

Let L (resp. L+) denote the set of connected graphs with least eigenvalue at
least −2 (resp. larger than −2). It is known that L(T ) ∈ L+ for any tree T, and
that graphs in L consist of generalized line graphs and exceptional graphs (see [4,
7]). In this paper, we give the nullity set of L+ and an upper bound on the nullity
of exceptional graphs. We also give an expression for the nullity of generalized line
graphs. For G ∈ L, we show that G is a proper generalized line graph (G is not a
line graph) if η(G) is sufficiently large.

2. PRELIMINARIES

A pendant double edge (2-cycle) is called a petal. Let H be a simple undi-
rected graph with vertex set {v1, . . . , vn}. Let H(a1, . . . , an) denote the multigraph
obtained from H by attaching ai petals at vertex vi (i = 1, . . . , n). In [10],
the generalized line graph L(H ; a1, . . . , an) is defined as follows. The vertices of
L(H ; a1, . . . , an) are the edges of H(a1, . . . , an) and two vertices of L(H ; a1, . . . , an)
are adjacent whenever the corresponding edges in H(a1, . . . , an) have exactly one
vertex in common. H(a1, . . . , an) is called the root graph of L(H ; a1, . . . , an). In
particular, L(H ; 0, . . . , 0) is just the ordinary line graph L(H). An example for the
construction of a generalized line graph is depicted in Figure 1.

Figure 1. Construction of a generalized line graph

Let L (resp. L+) denote the set of connected graphs with least eigenvalue
at least −2 (resp. larger than −2). It is known that (generalized) line graphs
belong to L. A connected graph G ∈ L is called an exceptional graph if G is not a
generalized line graph. There are 573 exceptional graphs in L+: 20 with 6 vertices,
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110 with 7 vertices, 443 with 8 vertices. We denote these sets of exceptional graphs
by E6, E7, E8 respectively.

A connected graph with n vertices is said to be unicyclic if it has n edges.
Clearly a unicyclic graph contains a unique cycle. If a unicyclic graph has an odd
cycle, then this graph is said to be odd unicyclic.

Lemma 2.1 ([11, 28]). Let G be a connected graph with n vertices. Then G ∈ L+

if and only if one of the following holds :
(1) G = L(H), where H is a tree or an odd unicyclic graph.

(2) G = L(H ; 1, 0, . . . , 0), where H is a tree.

(3) G is one of the 573 graphs in E6 ∪ E7 ∪ E8.

Let G ∈ L be a graph with n vertices, and suppose that G has k eigenvalues

larger than −2. The quantity
k
∏

i=1

(λi(G) + 2) is called the star value of G, denoted

by SG. If G ∈ L+, then SG =
n
∏

i=1

(λi(G) + 2). The star value is a graph invariant

introduced in [7].

Lemma 2.2 ([7, 28]). Let G be a connected graph in L+. The following statements

hold :
(1) If G ∈ E8, then SG = 1. If G ∈ E7, then SG = 2. If G ∈ E6, then SG = 3.
(2) If G is the line graph of an odd unicyclic graph, then SG = 4.
(3) If G = L(H ; 1, 0, . . . , 0), where H is a tree, then SG = 4.
(4) If G is the line graph of a tree with n vertices, then SG = n.

Let G be a graph with vertex set V (G). If µ is an eigenvalue of G of mul-
tiplicity k, then a star set for µ in G is a subset X of V (G) such that |X | = k
and the induced subgraph G −X does not have µ as an eigenvalue. The induced
subgraph G−X is called a star complement for µ in G. It is known that star sets
and star complements exist for any eigenvalue of any graph (see [8, 23]).

Lemma 2.3 ([8]). Let G be a connected graph with least eigenvalue −2. Then G
is exceptional if and only if it has an exceptional star complement for −2.

We use mG(λ) to denote the multiplicity of eigenvalue λ of a graph G.

Lemma 2.4 ([6]). Let G = L(H ; a1, . . . , an), where H is a connected graph with n

vertices and m edges, and (a1, . . . , an) 6= (0, . . . , 0). Then mG(−2) = m−n+
n
∑

i=1

ai.

Lemma 2.5 ([10]). Let H be a connected graph with n vertices and m edges. Then

mL(H)(−2) =

{

m− n+ 1 if H is bipartite,

m− n if H is non-bipartite.

The interlacing theorem for graph eigenvalues implies the following lemma.
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Lemma 2.6 ([14]). Let v be any vertex of a graph G with at least two vertices.

Then |η(G− v)− η(G)| 6 1.

Lemma 2.7 ([2, 13]). Let G be a graph such that the number of spanning trees of

G is odd. Then η(L(G)) 6 1.

Lemma 2.8 ([24]). Let T be a tree such that η(L(T )) = 1. Then the number of

vertices of T is even.

Lemma 2.9 ([13]). Let G be a graph with an odd number of vertices, and with an

odd number of spanning trees. Then η(L(G)) = 0.

For a graph G with a cut vertex u, let G1 be a component of G− u. We use
G1 +u to denote the subgraph induced by V (G1)∪{u}, where V (G1) is the vertex
set of G1.

Lemma 2.10 ([14]). Let u be a cut vertex of a graph G, and let G1 be a component

of G− u. If η(G1) = η(G1 + u) + 1, then η(G) = η(G− u)− 1.

For an n×n Hermitian matrix M, let ρ1(M) > ρ2(M) > · · · > ρn(M) denote
the eigenvalues of M.

Lemma 2.11 ([10]). Let A and B be n× n Hermitian matrices. Then

ρi(A+B) > ρj(A) + ρi−j+n(B) (1 6 i 6 j 6 n).

A tree is called starlike if it has exactly one vertex of degree greater than
2. We denote by T (ℓ1, ℓ2, . . . , ℓ∆) the starlike tree with maximum degree ∆ such
that T (ℓ1, ℓ2, . . . , ℓ∆) − v = Pℓ1 ∪ Pℓ2 ∪ · · · ∪ Pℓ∆ , where v is the vertex of degree
∆ and Pℓi denotes a path with ℓi vertices. Let φQ(G, λ) denote the characteristic
polynomial of the signless Laplacian matrix of a graph G.

Lemma 2.12 ([3]). Let G = T (ℓ1, ℓ2, . . . , ℓ∆). For n > 1, φQ(Pn, λ)|φQ(G, λ) if

and only if (without loss of generality)

ℓ1 + ℓ2 ≡ −1 mod n, ℓ3, ℓ4, . . . , ℓ∆ ≡ 0 mod n.

3. MAIN RESULTS

For a graph G ∈ L of order n with k eigenvalues larger than −2, it is known

that the star value of G is SG =
(−1)n

(n− k)!
P

(n−k)
G (−2) =

k
∏

i=1

(λi(G)+2), where PG(x)

is the characteristic polynomial of the adjacency matrix of G, and P
(q)
G (x) is the

q-th derivative of PG(x) (see [7]). Since graph eigenvalues are algebraic integers, SG

is an integer. It is also known that SG is the sum of star values of star complements
of G for the eigenvalue −2 (see [7, Theorem 4]).
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Theorem 3.1. Let G ∈ L be a graph with star value SG. Then SG is divisible by

2η(G).

Proof. Since graph eigenvalues are algebraic integers, there exists an algebraic
integer α such that SG = 2η(G)α. Hence α is an integer and SG is divisible by
2η(G).

Two distinct vertices u, v of a graph G are called duplicate vertices if u, v are
not adjacent and they have the same neighbours in G. Clearly duplicate vertices
u, v in G correspond to repeated rows in the adjacency matrix of G, and η(G) =
η(G − u) + 1. A proper generalized line graph G (G is not a line graph) always
has duplicate vertices, because two edges in a petal (2-cycle) of the root graph
of G form a pair of duplicate vertices. For instance, the generalized line graph
L(H ; 1, 0, 0, 1, 0) shown in Fig. 1 has duplicate vertices a, b and g, f.

It is known that L(T ) ∈ L+ for any tree T (cf. Lemma 2.1). The nullity of
line graphs of trees is studied in [17, 22, 24, 25]. We give the nullity set of L+ as
follows.

Theorem 3.2. The nullity set of L+ is {0, 1, 2}. Moreover, we have

(1) The nullity set of G1 = {L(H)|H is a tree} is {0, 1}.
(2) The nullity set of G2 = {L(H)|H is an odd unicyclic graph} is {0, 1}.
(3) The nullity sets of E6 and E8 are both {0}.
(4) The nullity set of E7 is {0, 1}.
(5) The nullity set of G3 = {L(H ; 1, 0, . . . , 0)|H is a tree} is {1, 2}.
(6) For any graph G ∈ L+, η(G) = 2 if and only if the following conditions hold :

(6.1) G is a generalized line graph L(H ; 1, 0, . . . , 0), where H is a tree.

(6.2) Let ˜H be the tree obtained from H(1, 0, . . . , 0) by deleting one edge of

the petal. Then η(L( ˜H)) = 1.

(6.3) The number of vertices of G is even.

Proof. It is known that the nullity set of G1 is {0, 1} (see [17]). So part (1) holds.
For any graph G ∈ G2, by Lemma 2.7, we have η(G) 6 1. The nullity of the line
graph of an odd cycle is 0. If U is the graph obtained from a triangle C3 by attaching
a pendant edge, then η(L(U)) = 1. Hence the nullity set of G2 is {0, 1}, and part (2)
holds. By Theorem 3.1 and Lemma 2.2, the nullity of an exceptional graph with 6
or 8 vertices is always 0. So part (3) holds. For any graph G ∈ E7, by Theorem 3.1
and Lemma 2.2, we get η(G) 6 1. There are 110 graphs in E7, and 26 graphs in E7
have nullity one (these graphs are given in Theorem 3.3). So part (4) holds.

For any graph G = L(H ; 1, 0, . . . , 0) ∈ G3, where H is a tree, let ˜H be
the tree obtained from H(1, 0, . . . , 0) by deleting one edge of the petal. Then

η(G) = η(L( ˜H)) + 1. Since the nullity set of G1 is {0, 1}, the nullity set of G3 is

{1, 2}. Clearly η(G) = 2 if and only if η(L( ˜H)) = 1. Note that G and ˜H have the
same number of vertices. Lemma 2.8 implies that the number of vertices of G is
even if η(L( ˜H)) = 1.
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It follows from Lemma 2.1 that L+ = G1 ∪ G2 ∪ G3 ∪ E6 ∪ E7 ∪ E8. Hence the
nullity set of L+ is {0, 1, 2}.

All graphs in E6 ∪ E7 are listed in [9, Appendix Table A2]. It is known that
each graph in E7 has an exceptional graph in E6 as an induced subgraph (see [9]).
Let G1, G2, . . . , G110 denote all graphs in E7, where the subscript i (i = 1, . . . , 110)
is the identification number used in [9, Appendix Table A2]. For a graph Gi ∈ E7,
let

(

A b
b⊤ 0

)

be the adjacency matrix of Gi, where A is the adjacency matrix of a

graph in E6. It follows from Theorem 3.2 that A is nonsingular. Hence η(Gi) = 1
if and only if b⊤A−1b = 0. There are 20 graphs in E6. According to the equality
b⊤A−1b = 0, we use Maple to find all 26 graphs in E7 with nullity one as follows.

Theorem 3.3. The exceptional graphs in E7 with nullity one consist of G1, G3,
G5, G6, G7, G8, G10, G13, G14, G16, G25, G28, G29, G39, G40, G45, G46, G49, G63,
G64, G72, G73, G76, G84, G86, G96.

For a connected graph G, if λ2(G) = 0, then G is a complete multipartite
graph (see [10]). The cocktail party graph is the unique regular graph with 2n
vertices of degree 2n− 2. It is a generalized line graph.

Theorem 3.4. Let G be an exceptional graph with eigenvalue −2 of multiplicity r.
Then η(G) 6 min{r + 1, 6}.

Proof. By Lemma 2.3, G has an exceptional star complement H for −2. Lemma
2.1 implies that H ∈ E6 ∪ E7 ∪ E8. By Theorem 3.2 and Lemma 2.6, we have
η(G) 6 r + 1.

Since H ∈ E6 ∪ E7 ∪ E8 is a star complement for −2 and λ1(G) is a posi-
tive simple eigenvalue, we get η(G) 6 7. If η(G) = 7, then G has three distinct
eigenvalues λ1(G), 0,−2. Since λ2(G) = 0, G is a complete multipartite graph with
three distinct eigenvalues λ1(G), 0,−2. According to the eigenvalue distribution of
a complete multipartite graph (see [27]), G is the cocktail party graph, which is
not exceptional (it is a generalized line graph), a contradiction. Hence we have
η(G) 6 6.

For a graphG with n vertices andm edges, the quantitym−n+1 is called the
cyclomatic number of G. Clearly trees have cyclomatic number 0, unicyclic graphs
have cyclomatic number 1.

Theorem 3.5. For a connected graph G with cyclomatic number k, we have that

η(L(G)) 6 k + 1. If η(L(G)) = k + 1, then the following hold :
(1) For any spanning tree T of G, we have η(L(T )) = 1.
(2) For any edge e of G, if e is not a bridge, then η(L(G− e)) = k.
(3) G is bipartite and the number of vertices of G is even.

Proof. Let T be any spanning tree of G. Then T can be obtained from G by
deleting k edges of G. By Theorem 3.2, we get η(L(T )) 6 1. Lemma 2.6 implies
that η(L(G)) 6 k + 1. If η(L(G)) = k + 1, then η(L(T )) = 1, and part (1) holds.
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For any edge e of G, if e is not a bridge, then G − e is a connected graph
with cyclomatic number k − 1, and η(L(G − e)) 6 k. If η(L(G)) = k + 1, Lemma
2.6 implies that η(L(G− e)) > k, so η(L(G− e)) = k, and part (2) holds.

If η(L(G)) = k + 1, by part (1), η(L(T )) = 1 for any spanning tree T of G.
Lemma 2.8 implies that the number of vertices of G is even. Assume that G is
non-bipartite. Then G has a spanning subgraph U which is odd unicyclic, and U
can be obtained from G by deleting k − 1 edges of G. If η(L(G)) = k + 1, then
by Lemma 2.6, we get η(L(U)) > 2. Theorem 3.2 implies that η(L(U)) 6 1, a
contradiction. Hence G is bipartite, and part (3) holds.

Theorem 3.6. For a non-bipartite connected graph G with cyclomatic number k,
we have η(L(G)) 6 k. If η(L(G)) = k, then the following hold :
(1) For any spanning subgraph U of G, if U is odd unicyclic, then η(L(U)) = 1.
(2) The number of vertices of G is even.

Proof. Let U be any spanning subgraph of G such that U is odd unicyclic. Then
U can be obtained from G by deleting k − 1 edges of G. By Theorem 3.2, we
get η(L(U)) 6 1. Lemma 2.6 implies that η(L(G)) 6 k. If η(L(G)) = k, then
η(L(U)) = 1, and part (1) holds.

If η(L(G)) = k, then by part (1), η(L(U)) = 1 for any spanning subgraph U
of G such that U is odd unicyclic. Lemma 2.9 implies that the number of vertices
of G is even, and part (2) holds.

Theorem 3.7. Let G be a connected graph with cyclomatic number k. For any

connected graph H, let N be a graph obtained from G∪H by adding an edge between

G and H. The following statements hold :
(1) If η(L(G)) = k + 1, then η(L(N)) = η(L(H)) + k.
(2) If G is non-bipartite and η(L(G)) = k, then η(L(N)) = η(L(H)) + k − 1.

Proof. Suppose that N is the graph obtained from G ∪ H by adding an edge
e between G and H. Then e is a cut vertex of L(N). Note that G + e also has
cyclomatic number k.

If η(L(G)) = k+1, then by Theorem 3.5, the number of vertices of G is even.
So G+e has odd number of vertices. Theorem 3.5 implies that η(L(G+e)) 6 k. By
Lemma 2.6, η(L(G + e)) > k, and so η(L(G + e)) = k. Hence we have η(L(G)) =
η(L(G+e))+1. By Lemma 2.10, we get η(L(N)) = η(L(N−e))−1 = η(L(H))+k.
So part (1) holds.

If G is non-bipartite and η(L(G)) = k, then by Theorem 3.6, the number
of vertices of G is even. So G + e has odd number of vertices. Theorem 3.6
implies that η(L(G + e)) 6 k − 1. By Lemma 2.6, η(L(G + e)) > k − 1, and so
η(L(G+ e)) = k − 1. Hence we have η(L(G)) = η(L(G + e)) + 1. By Lemma 2.10,
we get η(L(N)) = η(L(N − e))− 1 = η(L(H)) + k − 1. So part (2) holds.

It is known that a tree with a perfect matching has Laplacian eigenvalue 2
(see [15, Theorem 2]). Since the Laplacian spectrum and the signless Laplacian
spectrum of a bipartite graph are the same, 2 is also a signless Laplacian eigenvalue
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of a tree with a perfect matching. From [3, Lemma 2.9], we know that η(L(T )) = 1
for any tree T with a perfect matching. We can obtain the following result from
Theorem 3.7.

Corollary 3.8. Let T be a tree with a perfect matching. For any connected graph

H, let N be a graph obtained from T ∪H by adding an edge between T and H. Then
η(L(N)) = η(L(H)).

Theorem 3.9. Let T be a starlike tree. The following conditions are equivalent :
(1) η(L(T )) = 1.
(2) 2 is a (signless) Laplacian eigenvalue of T.
(3) T has a perfect matching.

Proof. From [3, Lemma 2.9], we know that η(L(T )) = 1 if and only if 2 is a
(signless) Laplacian eigenvalue of T. Now T has a signless Laplacian eigenvalue 2
if and only if φQ(P2, λ)|φQ(T, λ), where φQ(G, λ) denotes the characteristic poly-
nomial of the signless Laplacian matrix of a graph G. Lemma 2.12 implies that
φQ(P2, λ)|φQ(T, λ) if and only if T has a perfect matching.

For a graph H with vertex set {1, 2, . . . , n}, we use H [a1, . . . , an] to denote
the graph obtained from H by attaching ai (ai > 0) pendant edges at vertex i
(i = 1, . . . , n).

Theorem 3.10. Let G = L(H ; a1, . . . , an) be a generalized line graph. Then

η(G) = η(L( ˜H)) +
n
∑

i=1

ai, where ˜H = H [a1, . . . , an].

Proof. The generalized line graph G = L(H ; a1, . . . , an) has at least
n
∑

i=1

ai pairs

of duplicate vertices. For a pair of duplicate vertices u, v of G, we have η(G) =

η(G−u)+ 1. Hence we get η(G) = η(L( ˜H))+
n
∑

i=1

ai, where ˜H = H [a1, . . . , an].

Let Ia denote the identity matrix of order a.

Theorem 3.11. For a connected graph H with vertex set {1, 2, . . . , n}, let G =
H [a1, . . . , an]. Then η(L(G)) is equal to the multiplicity of the eigenvalue 0 of Q+
2E−2I, where Q is the signless Laplacian matrix of H, and E = diag(a1, a2, . . . , an).
Moreover, we have

(1) If min{a1, . . . , an} > 1 and H is non-bipartite, then η(L(G)) = 0.
(2) If min{a1, . . . , an} > 1 and H is bipartite, then η(L(G)) 6 1.

Proof. The signless Laplacian matrix of G is

M =











Q+ E J1 · · · Jn
J⊤
1 Ia1

...
. . .

J⊤
n Ian











,
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where Q is the signless Laplacian matrix of H, Jk is the n × ak matrix in which
each entry of the k-th row is 1 and all other entries are 0, E = diag(a1, a2, . . . , an).
From [3, Lemma 2.9], η(L(G)) is equal to the multiplicity of the eigenvalue 2 of
M. So η(L(G)) is equal to the multiplicity of the eigenvalue 0 of M − 2I. The rank

of M − 2I is rank(Q + E − 2I + BB⊤) +
n
∑

i=1

ai = rank(Q + 2E − 2I) +
n
∑

i=1

ai,

where B =
(

J1 J2 · · · Jn
)

. Hence η(L(G)) is equal to the multiplicity of the
eigenvalue 0 of Q+ 2E − 2I.

If H is non-bipartite, then all eigenvalues of Q are positive (see [10]). If
min{a1, . . . , an} > 1, then by Lemma 2.11, the least eigenvalue of Q+ 2E is larger
than 2. Hence η(L(G)) = 0, and part (1) holds.

If H is a connected bipartite graph, then the least eigenvalue of Q is 0, and
the other eigenvalues of Q are positive (see [10]). If min{a1, . . . , an} > 1, then by
Lemma 2.11, the least eigenvalue of Q+2E is at least 2, and the other eigenvalues
of Q+ 2E are larger than 2. Hence η(L(G)) 6 1, and part (2) holds.

We can obtain the following result from Theorem 3.10 and Theorem 3.11.

Corollary 3.12. Let G = L(H ; a1, . . . , an) be a connected generalized line graph,

with min{a1, . . . , an} > 1. If H is non-bipartite, then η(G) =
n
∑

i=1

ai. If H is bipar-

tite, then
n
∑

i=1

ai 6 η(G) 6
n
∑

i=1

ai + 1.

It is known that every connected graph with least eigenvalue at least −2 is
either a (generalized) line graph or an exceptional graph (see [4]).

Theorem 3.13. Let G be a connected graph with least eigenvalue −2 of multiplicity

r. Then η(G) 6 r + 2, and equality holds if and only if the following hold :
(1) There exists a connected graph H of order n such that G = L(H ; a1, . . . , an),
where (a1, . . . , an) 6= (0, . . . , 0).

(2) η(L( ˜H)) = k + 1, where ˜H = H [a1, . . . , an], k is the cyclomatic number of H.

Moreover, ˜H satisfies the conditions given in Theorem 3.5.

Proof. It is known that G is a (generalized) line graph or an exceptional graph. If
G is an exceptional graph, then by Theorem 3.4, η(G) 6 r + 1. If G is an ordinary
line graph L(N), by Lemma 2.5, we get

r =

{

k if N is bipartite

k − 1 if N is non-bipartite,

where k is the cyclomatic number of N. By Theorem 3.5 and Theorem 3.6, we
have η(G) 6 r + 1. If G is a generalized line graph and G is not a line graph, then
there exists a connected graph H of order n such that G = L(H ; a1, . . . , an), where

(a1, . . . , an) 6= (0, . . . , 0). By Lemma 2.4, we get r = k − 1 +
n
∑

i=1

ai, where k is the
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cyclomatic number ofH. It follows from Theorem 3.10 that η(G) = η(L( ˜H))+
n
∑

i=1

ai,

where ˜H = H [a1, . . . , an]. Note that ˜H also has cyclomatic number k. Theorem 3.5

implies that η(L( ˜H)) 6 k+1. So we get η(G) = η(L( ˜H))+
n
∑

i=1

ai 6 k+1+
n
∑

i=1

ai =

r + 2. Then η(G) = r + 2 if and only if η(L( ˜H)) = k + 1. If η(L( ˜H)) = k + 1, then
˜H satisfies the conditions given in Theorem 3.5.

4. CONCLUDING REMARKS

Research on graphs with least eigenvalue −2 is a classic topic in spectral graph
theory. The nullity of generalized line graphs and exceptional graphs is studied in
this paper. We list some problems as concluding remarks.

(1) The nullity of every exceptional graph in E6∪E7∪E8 is determined in this
paper (cf. Theorem 3.2 and Theorem 3.3). What is the nullity set of all exceptional
graphs?

(2) For a connected graph G with cyclomatic number k, we have η(L(G)) 6
k + 1 (cf. Theorem 3.5). We say that G is a maximal graph if η(L(G)) = k + 1.
Do maximal graphs have further structural properties? Theorem 3.5 implies that
η(L(T )) = 1 for any spanning tree T of a maximal graph G. Given a tree T,
there are finitely many maximal graph with T as a spanning tree. Are there some
interesting results on maximal graphs with a given spanning tree T ?

(3) For a unicyclic graph U with a cycle of length g, if η((L(U)) = 2, then g
is even (cf. Theorem 3.5). If U is a unicyclic graph with depth one, as defined in
[18], then η((L(U)) = 2 if and only if U is a cycle of order g and g is divisible by 4
(see [18]). We conjecture that the girth of a unicyclic graph U is divisible by 4 if
η((L(U)) = 2.
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