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Abstract. In the development of thermodynamic databases for multicomponent systems using the cluster ex-
pansion–cluster variation methods, we need to have a consistent procedure for expressing the model parameters 
(CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of 
parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen-
ted in detail in this communication. Furthermore, the details of transformations required to express the model 
parameters in one basis from those defined in another basis for the same system are also presented. 
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1. Introduction 

The cluster variation method (CVM) proposed by Kikuchi 
(1951) provides a systematic hierarchy of approximations 
for obtaining configurational entropy of alloy systems by 
considering local order as accurately as desired in terms 
of increasingly larger atomic clusters. The potential of 
CVM came to be well recognized ever since van Baal 
(1973) demonstrated the effect of including tetrahedral 
multi-atom interactions (in terms of a set of adjustable 
parameters) in the configurational energy expression on 
the topology of the phase diagram of a prototypical binary 
fcc ordering system. The CVM is also shown to subsume 
many of the earlier models in its class (such as Bragg–
Williams–Gorsky and Bethe approximations, quasi-che-
mical model, etc) as lower levels of the general hierarchy of 
the method. Sanchez and de Fontaine (1978) introduced 
multi-site correlation functions that form a natural set of 
independent variables defining the dimensionality of the 
system, in terms of which, the thermodynamic potentials 
can be expressed. Sanchez et al (1984) subsequently 
proved that any function depending on atomic configura-
tion (such as configurational energy) could be rigorously 
expanded as a bilinear sum of the products of cluster 
functions (expectation values are correlation functions) 
and their respective cluster expansion coefficients (CECs), 
since the former form a set of complete and orthonormal 
basis functions at the chosen level of cluster approxima-
tion. This powerful property is utilized in the method of 
cluster expansions (CE) to obtain the configurational energy 
expression, which, when combined with CVM makes it 
very versatile and eminently suitable for optimization 

purposes as well as in the use of first principles electron 
energy calculations for the determination of phase equi-
libria (Asta et al 1993). The developments in and the applica-
tions of CVM have been extensively reviewed from time 
to time (de Fontaine 1979, 1994; Inden and Pitsch 1991; 
Saunders and Miodownik 1998). 
 In the formulation of CE–CVM for multicomponent 
systems, the correlation functions and the CECs corre-
sponding to the end member subsystems will have to be 
obtained from those defined in the basis chosen for the 
multicomponent system and vice versa in a consistent 
manner, details of which are presented in this communi-
cation. The analysis is illustrated with reference to disor-
dered ternary bcc structures in tetrahedron approximation 
of CE–CVM. Specifically, the procedure for obtaining 
ternary CECs from those of the end member subsystems 
will be illustrated. This is very useful for developing data-
bases of multicomponent systems, which are consistent 
with their subsystems. As part of this we shall also provide 
the details of the basis transformations from, say, orthogo-
nal to a nonorthogonal basis etc within a given (sub)system. 

2. Cluster algebra 

As usual in CVM, at first a motif (a set of nearby sites in 
the structure, in this case, 4 sites forming a tetrahedron) is 
chosen and atomic clusters/subclusters are obtained by 
populating these sites with the atomic species in all possible 
ways. The probabilities of occurrence of these clusters/sub-
clusters are the cluster variables. However, all of these 
variables are not independent. Such an independent set of 
variables can be obtained in terms of multi-site correla-
tion functions. A detailed procedure for obtaining these is 
given in a didactic manner by Inden and Pitsch (1991). 
For the case of a k-component system, the following basic 
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equation relates site operators s1i, s2i, …, ski and site occu-
pation operators ,A

ip  ,B
ip  …, K

ip  defined for the site i. 
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 The square matrix appearing in (1) is called the basis 
matrix A for a K component system. This is obtained 
from that for a (K-1) component system by augmenting 
with the appropriate Kth row and Kth column. Note that 
the row-vectors of the above basis matrix A are orthogo-
nal, since the product of the matrix with its transpose is a 
diagonal matrix. The matrix can, however, be made or-
thogonal by suitable scaling of the row vectors. This is 
not necessary for our purposes here. We note that the 
multicomponent basis utilized by Inden and Pitsch is not 
orthogonal. It is, therefore, suggested that this basis be 
used as a standard for database purposes. Sanchez et al 
(1984) and Wolverton and de Fontaine (1994) suggested 
an orthogonal basis in terms of Chebychev polynomials. 
It may be noted that except for binary and ternary systems, 
the two bases are not the same. 
 For the case of a ternary system, we have 
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 Representing the square matrix in (2) by A and its inverse 
by R, we can write the linear relations among cluster 
variables and correlation functions (as given by Inden and 
Pitsch, in their equations (9–10)). In the formulation of 
CE–CVM for disordered ternary bcc structures under tetra-
hedron approximation, we consider a tetrahedron motif 
whose vertices are labeled by 1, 2, 3 and 4. There are four 
first neighbour pairs (viz. 12, 14, 23 and 34) and two second 
neighbour pairs (viz. 13 and 24) present in the motif. All 
the triangle submotifs (viz. 123, 124, 134 and 234) are 
crystallographically identical. The averages of the site 
operators (<s1i> and <s2i>) and their products correspon-
ding to the motif/submotif sites are called the correlation 
functions. There are a total of 18 correlation functions con-
sisting of three first neighbour pairs (typified by ut[1] = 
<s11*s12>, ut[2] = <s12*s21> and ut[3] = <s21*s22>), 
three second neighbour pairs (typified by ut[4] = <s11*s13>, 
ut[5] = <s13*s21> and ut[6] = <s21*s23>), six triangles 
(typified by ut[7] = <s11*s12*s13>, ut[8] = <s12*s13*s21>, 

ut[9] = <s11*s13*s22>, ut[10] = <s13*s21*s22>, ut[11] = 
<s12*s21*s23> and ut[12] = <s21*s22*s23>) and six  
tetrahedra (typified by ut[13] = <s11*s12*s13*s14>, 
ut[14] = <s12*s13*s14*s21>, ut[15] = <s13*s14*s21*s22>, 
ut[16] = <s12*s14*s21*s23>, ut[17] = <s14*s21*s22*s23> 
and ut[18] = <s21*s22*s23*s24>). The two point correla-
tion functions are related to composition variables in  
the following manner. ut[19] = <s1i> = – < A

ip > + < B
ip > = 

– xA + xB and ut[20] = <s2i> = – xA/2 –xB/2 + xC [see (2)]. 
Further, there are a total of 54 crystallographically dis-
tinct cluster configurations (variables) including three 
composition variables. All these cluster variables can be 
expressed as linear combinations of the correlation func-
tions and the exact nature of this linear transformation is 
dependent on A and its inverse R. 

3. Relations among ternary CECs and binary CECs 

As indicated earlier, we need to express the CECs for a 
ternary system in terms of those for its binary subsystems. 
This enables us to use the CECs of binary subsystems 
which might be obtained separately by, say, optimization 
of thermodynamic and phase equilibria data for the binary 
subsystems. The procedures for accomplishing the same 
are outlined below. We note in passing that Kikuchi 
(1977) and Kikuchi et al (1977), who first formulated 
CVM for a ternary system, use energy coefficients for all 
the clusters corresponding to the maximal motif (tetrahedron 
approximation for ternary fcc phase). Such a formulation 
determines all the cluster variables (54 in the present 
case) in the minimization step, by using ‘natural iteration 
method’, and is not very efficient compared to the deter-
mination of correlation functions (18 in the present case) 
using ‘Newton–Raphson method’. We are, therefore, pre-
senting the details necessary for the latter case in a systema-
tic manner. These can thus be extended to the general 
case of multicomponent systems. 
 At first, we obtain the enthalpy of mixing for the ternary 
phase as follows. As pointed out earlier, Sanchez et al 
(1984) have shown that any function of configuration, for 
example, internal energy U of an alloy, can be expressed 
as a bilinear sum of the products of the CECs et[i] and the 
corresponding correlation functions ut[i]. Thus 

∑
=

=
21

1

][][][
i

iutimietU . (3) 

 Here, m[i] are the multiplicities of a motif/submotif 
corresponding to the respective correlation functions. The 
multiplicities are defined as the number of symmetry-equi-
valent motifs/submotifs per site present in the structure. 
The multiplicities for first neighbour pairs, second neigh-
bour pairs, triangles, tetrahedra and points are respectively, 
4, 3, 12, 6 and 1. For the invariant empty cluster, the mul-
tiplicity and its correlation function are unity (independent 
of the basis). The value of the CEC corresponding to the 
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empty cluster thus serves as the reference level for the 
expansion. From (2), we have for pure A, <s1i> = – 1, 
<s2i> = – 1/2; for pure B, <s1i> = 1, <s2i> = – 1/2 and 
for pure C, <s1i> = 0, <s2i> = 1. Substituting these suc-
cessively in (3) yields the internal energies UA, UB and 
UC, respectively for pure A, B and C. Thus, we can obtain 
the internal energy of mixing ∆U3 as follows. 
 
∆U3 = U – xA*UA – xB*UB – xC*UC =  

(– 8*et[1])/3 + 4*ut[1]*et[1] + (8*<s21>*et[1])/ 
3 + 2*<s11>*et[2] + 4*ut[2]*et[2] – 2*et[3] –  
2*<s21>*et[3] + 4*ut[3]*et[3] – 2*et[4] + 
3*ut[4]*et[4] + 2*<s21>*et[4] + (3*<s11> 
*et[5])/2 + 3*ut[5]*et[5] – (3*et[6])/2 –
(3*<s21>*et[6])/2 + 3*ut[6]*et[6] –
12*<s11>*et[7] + 12*ut[7]*et[7] + 4*et[8] –
4*<s21>*et[8] + 12*ut[8]*et[8] + 4*et[9] –
4*<s21>*et[9] + 12*ut[9]*et[9] –
3*<s11>*et[10] + 12*ut[10]*et[10] –
3*<s11>*et[11] + 12*ut[11]*et[11] – 3*et[12] –
9*<s21>*et[12] + 12*ut[12]*et[12] –
4*et[13] + 6*ut[13]*et[13] + 4*<s21>*et[13] + 
3*<s11>*et[14] + 6*ut[14]*et[14] –
et[15] + <s21>*et[15] + 6*ut[15]*et[15] – 
et[16] + <s21>*et[16] + 6*ut[16]*et[16] + 
(3*<s11>*et[17])/4 + 6*ut[17]*et[17] –
(9*et[18])/4 – (15*<s21>*et[18])/4 + 
6*ut[18]*et[18].                     (4) 

 
 The internal energy of mixing for the A–B subsystem 
can be obtained by making appropriate substitutions in 
this expression. The same can also be obtained directly 
from the formulation for the binary system. A term-wise 
comparison of these two expressions yields relations among 
the ternary CECs and the binary CECs for A–B sub-
system. The details are given below. 
 For the binary subsystem A–B, C

ip = 0. Thus, s2i = – 1/2. 
By making these substitutions in the definitions of corre-
lation functions, we have 

<s12*s21> = – 1/2<s12> = – 1/2(xA+xB) = – 1/2, 
<s21*s22> = 1/4, 
<s13*s21> = – 1/2<s13> = – 1/2 (xA+xB) = – 1/2, 

etc. Making these substitutions in (4), we obtain the follow-
ing expression for the internal energy of mixing for the 
system A–B. 

∆U3AB = (– 4 + 4*ut[1])*et[1] + (– 3 + 3*ut [4]) 
*et[4] + (– 12*<s11> + 12*ut[7])*et[7] + 
(6 – 6*ut[1])*et[8] + (6 – 6*ut[4])*et[9] + 
(– 6 + 6*ut [13])*et[13] + (3*<s11> –
3*ut[7])*et[14] + (– 3/2 + (3*ut[1])/2)* 
et[15] + (–3/2 + (3*ut [4])/2)*et[16].          (5) 

 In order to obtain the internal energy of mixing for the 
A–B system directly from the formulation for the binary 
system, the appropriate binary basis can be found by sett-

ing C
ip = 0 in (2). This results in an orthogonal basis 

given by 
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 There are four correlation functions (viz. uAB[1] = 
<s11*s12>, uAB[2] = <s11*s13>, uAB[3] = <s11*s12*s13> 
and uAB[4] = <s11*s12*s13*s14>), apart from the point 
correlation function <s11> = – xA + xB. The internal en-
ergy of mixing for the binary case is given by 

∆U2AB = (– 4 + 4*uAB[1])*eAB[1] + (– 3 + 3*uAB[2]) 
*eAB[2] + (– 12*<s11> + 12*uAB[3]) 
*eAB[3] + (– 6 + 6*uAB[4])*eAB[4].      (7) 

 Since ut[1] = uAB[1], ut[4] = uAB[2], ut[7] = uAB[3] and 
ut[13] = uAB[4], we can compare the coefficients of these 
in (5) and (7) and obtain the following relations among 
the CECs corresponding to ternary and binary systems. 
 

eAB[1] = et[1] – (3/2)*et[8] + (8/3)*et[15], 
eAB[2] = et[4] – 2*et[9] + 2*et[16], 
eAB[3] = et[7] – (1/4)*et[14], 
eAB[4] = et[13].            (8) 

 
 We can obtain relations among the CECs correspond-
ing to ternary and binary A–C and B–C subsystems in a 
similar fashion. The bases for A–C and B–C subsystems 
are found by setting respectively B

ip  = 0 and A
ip  = 0 in 

(2). For the subsystem A–C, 
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For the subsystem B–C, 
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 The relations among the CECs in both these cases are 
given below. 
 
eAC[1] = et[1] + (3/2)*et[2] + (9/4)*et[3] + 3*et[8] +  

(9/2)*et[10] + 9*et[11] + (27/2)*et[12] + (3/2) 
*et[15] + (9/2)*et[17] + (27/2)*et[18], 

eAC[2] = et[4] + (3/2)*et[5] + (9/4)*et[6] + 4*et[9] + 6 
*et[10] + 9*et[12] + 2*et[16] + 3*et[17] + 9* 
et[18], 

eAC[3] = et[7] + (3/2)*et[8] + (3/2)*et[9] + (9/4)*et[10] + 
(9/4)*et[11] + (27/8)*et[12] + (1/2)*et[14] +  
(3/2)*et[15] + (3/2)*et[16] + (27/8)*et[17] + 
(27/4)*et[18], 

eAC[4] = et[13] + (3/2)*et[14] + (9/4)*et[15] + (9/4)* 
et[16] + (27/8)*et[17] + (81/16)*et[18].  (11) 

 
eBC[1] = et[1] – (3/2)*et[2] + (9/4)*et[3] + 3*et[8] –

(9/2)*et[10] – 9*et[11] + (27/2)*et[12] + (3/2)* 
et[15] – (9/2)*et[17] + (27/2)*et[18], 
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eBC[2] = et[4] – (3/2)*et[5] + (9/4)*et[6] + 4*et[9] –
(6)*et[10] + 9*et[12] + 2*et[16] – 3*et[17] + 
9*et[18], 

eBC[3] = et[7] – (3/2)*et[8] – (3/2)*et[9] + (9/4)*et[10] + 
(9/4)*et[11] – (27/8)*et[12] + (1/2)*et[14] –
(3/2)*et[15] – (3/2)*et[16] + (27/8)*et[17] –
(27/4)*et[18], 

eBC[4] = et[13] – (3/2)*et[14] + (9/4)*et[15] + 
(9/4)*et[16] – (27/8)*et[17] + (81/16)*et[18]. 

             (12) 

 There are three first neighbour pair CECs for a ternary 
system (et[1] to et[3]) and three CECs arise from binary 
systems (eAB[1], eAC[1] and eBC[1]). The same is true 
for second neighbour pair CECs. However, there are six 
triangle CECs for a ternary system (et[7] to et[12]) while 
only three CECs arise from binary systems (eAB[3], 
eAC[3] and eBC[3]). The additional three CECs represent 
purely ternary triangle interactions. The same is true for 
tetrahedral CECs. There are three additional CECs repre-
senting purely ternary tetrahedral interactions. Hence, 
there are a total of six purely ternary interactions, the 
CECs for which must be selected to complement the com-
ponent binary interactions in a mutually consistent fashion. 
To achieve this, we note that the system of equations 
composed of (8), (11) and (12), consists of twelve equa-
tions in eighteen unknowns. The six purely ternary vari-
ables can be found from the null space vectors of the 
coefficient matrix. We treat the triangle and tetrahedral 
interactions separately. Considering triangle interactions 
first, we obtain from (8), (11) and (12)  
 eAB[3] = et[7], 
 eAC[3] = et[7] + (3/2)*et[8] + (3/2)*et[9] + (9/4)* 

   et[10] + (9/4)*et[11] + (27/8)*et[12], 
 eBC[3] = et[7] – (3/2)*et[8] – (3/2)*et[9] + (9/4)* 

   et[10] + (9/4)*et[11] – (27/8)*et[12].    (13)  
 The null space for the above system of equations is 
given by the three vectors {0, – 9/8, – 9/8, 0, 0, 1}, {0, 0, 
0, – 1, 1, 0} and {0, – 1, 1, 0, 0, 0}. Thus, the combina-
tions of et[i] which should be used for the three purely 
ternary triangle interactions are as follows.  
 eABC[1] = – (9/8)*et[8] – (9/8)*et[9] + et[12], 
 eABC[2] = – et[10] + et[11], 
 eABC[3] = – et[8] + et[9].        (14) 
 
 A similar analysis yields the following combinations of 
et[i] for the three purely ternary tetrahedral interactions. 

eABC[4] = – (9/8)*et[15] – (9/8)*et[16] + et[18], 
eABC[5] = – (9/4)*et[14] + et[17], 
eABC[6] = – et[15] + et[16]. (15) 

 Hence, the eighteen equations in (8), (11), (12), (14) 
and (15) form an augmented system of equations relating 
the CECs corresponding to the binary systems and their 
ternary counterparts. In order to obtain the CECs in the 
ternary basis from an a priori knowledge of CECs in the 

component binary subsystem bases (as happens during 
the development of databases such that they are consis-
tent with subsystem data), the above augmented system of 
equations can be solved for et[i], the solutions of which 
are given below. 
 
et[1] = eAB[1] + (113728*eAB[4])/344763 – (54*  

eABC[1])/113 – (3*eABC[3])/4 + (9120*eABC[4])/ 
12769 + (4*eABC[6])/3 + (8*eAC[3])/113 –  
(56864*eAC[4])/344763 – (8*eBC[3])/113 –  
(56864*eBC[4])/344763, 

et[2] = 2*eAB[3] – (3*eABC[2])/2 + (6*eABC[5])/97 + 
eAC[1]/3 – eAC[3] + (53*eAC[4])/97 –  
eBC[1]/3 – eBC[3] – (53*eBC[4])/97, 

et[3] = (– 4*eAB[1])/9 – (2661280*eAB[4])/3102867 –  
(120*eABC[1])/113 + eABC[3] – (17848*  
eABC[4])/38307 – (7*eABC[6])/27 + (2*eAC[1])/9 –  
(248*eAC[3])/339 + (1330640*eAC[4])/3102867 + 
(2*eBC[1])/9 + (248*eBC[3])/339 +  
(1330640*eBC[4])/3102867, 

et[4] = eAB[2] + (39296*eAB[4])/114921 –  
(72*eABC[1])/113 + eABC[3] + (5832*eABC[4])/
12769 – eABC[6] + (32*eAC[3])/339 –
 (19648*eAC[4])/114921 – (32*eBC[3])/339 –
 (19648*eBC[4])114921, 

et[5] = (8*eAB[3])/9 + 2*eABC[2] – (8*eABC[5])/97 + 
eAC[2]/3 – (4*eAC[3])/9 + (140*eAC[4])/873 – 
eBC[2]/3 – (4*eBC[3])/9 – (140*eBC[4])/873, 

et[6] = (– 4*eAB[2])/9 – (239296*eAB[4])/344763 –  
(32*eABC[1])/113 – (4*eABC[3])/3 – (1024* 
eABC[4])/12769 + (2*eAC[2])/9 – (560* 
eAC[3])/1017 + (119648*eAC[4])/344763 + (2*  
eBC[2])/9 + (560*eBC[3])/1017 + (119648*eBC[4])/ 
344763, 

et[7] = eAB[3] – (9*eABC[5])/97 + (4*eAC[4])/291 –  
(4*eBC[4])/291, 

et[8] = (12416*eAB[4])/114921 – (36*eABC[1])/113 –  
eABC[3]/2 – (1152*eABC[4])/12769 + (16*  
eAC[3])/339 – (6208*eAC[4])/114921 – (16* 
eBC[3])/339 – (6208*eBC[4])/114921, 

et[9] = (12416*eAB[4])/114921 – (36*eABC[1])/113 +  
eABC[3]/2 – (1152*eABC[4])/12769 + (16*  
eAC[3])/339 – (6208*eAC[4])/114921 – (16*  
eBC[3])/339 – (6208*eBC[4])/114921, 

et[10] = (– 2*eAB[3])/9 – eABC[2]/2 – (6*eABC[5])/97 + 
eAC[3]/9 – (89*eAC[4])/873 + eBC[3]/9 +  
(89*eBC[4])/873, 

et[11] = (– 2*eAB[3])/9 + eABC[2]/2 – (6*eABC[5])/97 + 
eAC[3]/9 – (89*eAC[4])/873 + eBC[3]/9 +  
(89*eBC[4])/873, 

et[12] = (3104*eAB[4])/12769 + (32*eABC[1])/113 –  
(2592*eABC[4])/12769 + (12*eAC[3])/113 –  
(1552*eAC[4])/12769 – (12*eBC[3])/113 –  
(1552*eBC[4])/12769, 
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et[13] = eAB[4], 

et[14] = (– 36*eABC[5])/97 + (16*eAC[4])/291 –  
(16*eBC[4])/291, 

et[15] = (– 64*eAB[4])/1017 – (36*eABC[4])/113 –  
eABC[6]/2 + (32*eAC[4])/1017 + (32*eBC[4])/ 
1017, 

et[16] = (– 64*eAB[4])/1017 – (36*eABC[4])/113 +  
eABC[6]/2 + (32*eAC[4])/1017 + (32*eBC[4])/ 
1017, 

et[17] = (16*eABC[5])/97 + (12*eAC[4])/97 –  
(12*eBC[4])/97, 

et[18] = (– 16*eAB[4])/113 + (32*eABC[4])/113 +  
(8*eAC[4])/113 + (8*eBC[4])/113.         (16) 

 
 In case the purely ternary triangle and tetrahedral CECs 
defined in (14) and (15) vanish, we obtain from (16), a set 
of ternary CECs which are functions only of the binary 
subsystem CECs. Thus, we have given a procedure for 
obtaining the complete set of ternary basis CECs in terms 
of their component subsystem CECs and an independent 
set of pure ternary CECs. It may be added that such pro-
cedures can be generalized to higher order systems in a 
straightforward manner. 

4. Basis transformations 

It must, however, be noted that the CECs for subsystems 
are defined in different bases as given in (6), (9) and (10). 
It is desirable to have CECs of all subsystems in a standard 
orthogonal basis. Thus, we must be able to evaluate CECs 
in one basis from those in another basis. In the particular 
example considered above, we require transformations 
from binary orthogonal basis [e.g. in (6)] to nonorthogo-
nal ones, such as those for A–C [in (9)] and B–C [in (10)] 
systems. In addition, we require transformations from 
orthogonal basis to dilute solution bases, as explained 
below. An orthogonal basis must be generally selected for 
determining the CECs for any materials system. However, 
such a basis is not ideal for finding internal equilibria of 
very dilute solutions. This can be taken care of by select-
ing different non-orthogonal bases for each solvent, e.g. 
for C-solvent the basis given in (10) may be chosen in the 
B–C subsystem. This results in the probabilities of all 
clusters constituted entirely of solute (or B) atoms being 
directly equal to a corresponding correlation function in 
this basis. It may be pointed out that such a choice of dilute 
solution bases is useful in obtaining certain analytical 
results for the values of correlation functions and other 
thermodynamic functions of interest in the infinite dilu-
tion limit. These results will be presented in another com-
munication. Given below are the details of transforma-
tions of CECs (or correlation functions) from one basis to 
another. 
 Since any function of configuration (such as internal 
energy) expressed as in (3) should remain invariant under 
these transformations, we can write 

∑∑
==

==
M

i
iii

M

i
iii umeumeU

1

IIII

1

II ,  (17) 

in which the superscripts I and II refer to two bases, re-
spectively and M the number of independent correlation 
functions including point and empty correlation func-
tions. This can be represented in matrix notation as 

{eI}1 × M⋅[mD]M × M⋅[uI]M × 1 = {eII}1 × M⋅[mD]M × M⋅[uII]M × 1.
 (18) 

 It should be noted that [mD]M × M is a diagonal matrix, 
whose elements are the multiplicities of the (sub)motifs 
and braces represent a row vector. Further, the cluster 
probabilities ρ also should remain invariant under these 
transformations. Thus, in matrix notation, 

[ρ]M × 1 = [BI]M × M⋅[uI]M × 1 = [BII]M × M⋅[uII]M × 1, (19) 

where [B] are the square transformation matrices corre-
sponding to any of the M linearly independent relations 
among cluster probabilities and correlation functions and 
can be found by using the R matrix defined earlier. 
 In the case of a K component system, the [B] matrices 
can be obtained by selecting any (K–1) equations from 
the set of equations for cluster variables corresponding to 
each of the symmetry-wise distinct submotifs, along with 
the one corresponding to the empty cluster, ρ0 = 1. From 
(19), it follows that 

[uII] = [BII]–1⋅[BI]⋅[uI]. (20) 

 It may be noted that the matrix product [BII]–1⋅[BI] re-
mains unchanged irrespective of the choice of this set of 
equations, even though the individual [B] matrices in both 
the bases may differ. Substituting for [uII] from (20) in 
(18) leads to 

{eI} = {eII}⋅[mD]⋅[BII]–1⋅[BI]⋅[mD]–1, (21) 

or, equivalently 

[eI] = [mD]–1⋅[BI]T⋅[BII]–T⋅[mD]⋅[eII], (22) 

in which the superscripts – 1, T and – T represent respec-
tively, the inverse, transpose and transpose of inverse of 
the matrices concerned. 
 We shall illustrate this procedure for transforming binary 
CECs in orthogonal basis [given in (6), to be represented 
by superscript II] to a nonorthogonal basis [given in (10), 
to be represented by superscript I]. To find the B matrices, 
we note that RI and RII are given by 









−

=
11

10IR , 

and 








 −
=

2/12/1

2/12/1IIR . (23) 
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 We now express the cluster variables corresponding to 
first neighbour AA pairs, second neighbour AA pairs, tri-
angle clusters of AAA triplet, tetrahedral cluster of AAAA 
quadruplet, fraction of A atoms and the empty cluster, 
respectively in terms of correlation functions in each basis. 
This yields the following B matrices. 



























=

100000

010000

001000

000100

000010

000001

IB , (24) 



























−
−−
−−
−
−

=

100000

2/12/10000

16/14/116/14/18/14/1

8/18/308/18/14/1

4/12/1004/10

4/12/10004/1

IIB . (25) 

 The diagonal matrix of multiplicities (given above) is 
written as 



























=

100000

010000

006000

0001200

000030

000004

Dm . (26) 

 Thus, from (22), we obtain the following relations 
among CECs. 
 
eI[1] = (16*eII[1] – 96*eII[3] + 2*(96*eII[3] –

192*eII[4]) + 480*eII[4])/4, 

eI[2] = (12*eII[2] + 48*eII[3] + 48*eII[4])/3, 

eI[3] = (– 96*eII[3] – 192*eII[4])/12, 

eI[4] = 16*eII[4], 

eI[5] = 16*eII[1] + 12*eII[2] – 72*eII[3] – 3*(96*eII[3] –
192*eII[4]) – 336*eII[4] – 2*(12*eII[2] –
48*eII[3] + 48*eII[4]) – 2*(16*eII[1] –
96*eII[3] + 96*eII[4]) – 2*eII[5], 

eI[6] = 4*eII[1] + 3*eII[2] + 12*eII[3] + 6*eII[4] +  
eII[5] + eII[6].         (27) 

 
 Similar procedures can be adopted for transformation 
of correlation functions from any basis to another. 

5. Conclusions 

We have given a procedure for expressing the CECs in a 
multicomponent system basis in terms of those in the 
constituent subsystems bases and the independent CECs 
representing the specific multicomponent interactions. 
This procedure is illustrated with reference to disordered 
ternary bcc structure. Further, we have given the details 
of transformations required for obtaining CECs from one 
basis to another in a given system. 
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