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GROUPIES IN RANDOM BIPARTITE GRAPHS

Yilun Shang

A vertex v of a graph G is called a groupie if its degree is not less than the
average of the degrees of its neighbors. In this paper we study the influence
of bipartition (B1, B2) on groupies in random bipartite graphs G(B1, B2, p)
with both fixed p and p tending to zero.

1. INTRODUCTION

A vertex of a graph G is called a groupie if its degree is not less than the
arithmetic mean of the degrees of its neighbors. Some results concerning groupies
have been obtained in deterministic graph theory; see e.g. [1, 5, 6]. Recently, Fer-

nandez de la Vega and Tuza [3] investigate groupies in Erdős-Rényi random
graphs G(n, p) and show that the proportion of the vertices which are groupies is
almost always very near to 1/2.

In this letter, we follow the idea of [3] and deal with groupies in random bi-
partite graph G(B1, B2, p). Our results indicate the proportion of groupies depends
on the bipartition (B1, B2). First, we give a formal definition for G(B1, B2, p) as
follows.

Definition 1. A random bipartite graph G(B1, B2, p) with vertex set [n] = {1, 2, . . . ,
n} is defined by partitioning the vertex set into two classes B1 and B2 and taking

pij = 0 if i, j ∈ B1 or i, j ∈ B2, while pij = p if i ∈ B1 and j ∈ B2 or vice versa.

Here, independently for each pair i, j ∈ [n], we add the edge ij to the random graph
with probability pij .

By convention, for a set A, let |A| denote the number of elements in A. We
denote by Bin (m, q) the binomial distribution with parameters m and q.
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2. MAIN RESULTS

Theorem 1. Suppose that 0 < p < 1 is fixed. Let N denote the number of

groupies in the random bipartite graph G(B1, B2, p). For i = 1, 2, let N(Bi) denote
the number of groupies in Bi. Then the following is true

(i) Assume |B1| = an and |B2| = (1 − a)n for some a ∈ (0, 1). If a = 1/2,
then

P

(
n

4
− ω(n)

√
n ≤ N(Bi) ≤

n

4
+ ω(n)

√
n, for i = 1, 2

)
→ 1

as n→∞, where ω(n) = Ω(lnn). If a < 1/2, then

P

(
an

2
− ω(n)

√
n ≤ N(B1) and N(B2) ≤

an

2
+ ω(n)

√
n

)
→ 1

as n→∞, where ω(n) is defined as above.

(ii) Assume |B1| = bnn and |B2| = (1 − bn)n with lnn/n ¿ 1 − bn → 0, as
n→∞. Then

P
(
N = N(B2) = |B2|

)
→ 1

as n→∞.

Proof. For (i) we take vertex x ∈ B1 and let dx denote the degree of x in
G(B1, B2, p). Denote by Sx the sum of the degrees of the neighbors of x. As-
suming that x has degree dx, we have Sx ∼ dx + Bin ((an − 1)dx, p), where ∼
represents identity of distribution. For any dx, the expectation of Sx is E Sx =
dx[1+(an−1)p]. Since Sx−dx ∼ Bin ((an−1)dx, p) and (an−1)dx ≥ a(1−a)n2p/2
when (1 − a)np/2 ≤ dx ≤ 3(1 − a)np/2, by using a large deviation bound (see [4]
pp.29, Remark 2.9), we get

P

(∣∣Sx − dxanp
∣∣ ≤ 10n

√
lnn

∣∣∣
(1− a)np

2
≤ dx ≤

3(1− a)np

2

)
≥ 1− e−2 lnn(1)

= 1− o(n−1).

Dividing by dx, we have for some absolute constant C1 > 20/[(1− a)p]

P

(∣∣∣
Sx

dx
− anp

∣∣∣ ≤ C1

√
lnn

∣∣∣∣
(1− a)np

2
≤ dx ≤

3(1− a)np

2

)
= 1− o(n−1).

Note that dx ∼ Bin ((1 − a)n, p) and a concentration inequality (see [4] pp.27,
Corollary 2.3) yields

P

(∣∣dx − (1− a)np
∣∣ ≤ (1− a)np

2

)
= 1− o(n−1).

Hence, recalling the total probability formula we obtain

(2) P

(∣∣∣
Sx

dx
− anp

∣∣∣ ≤ C1

√
lnn, for every x ∈ B1

)
= 1− o(1).
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Likewise,

(3) P

(∣∣∣
Sx

dx
− (1− a)np

∣∣∣ ≤ C1

√
lnn, for every x ∈ B2

)
= 1− o(1).

We treat the following two scenarios separately.

Case 1. a = 1/2. For i = 1, 2, let N+(Bi) (resp. N−(Bi)) denote the number of

vertices in Bi, whose degrees are at least np/2 + C1

√
lnn (resp. at most np/2 −

C1

√
lnn). From (2), (3) and the definition of a groupie, it follows that

P

(
N+(Bi) ≤ N(Bi) ≤

n

2
−N−(Bi), for i = 1, 2

)
= 1− o(1).

Therefore, it suffices to prove

(4) P

(
N+(B1) ≥

n

4
− ω(n)

√
n

)
= 1− o(1)

and the analogous statements for N−(B1), N+(B2) and N−(B2).

Note that N+(B1) =
∑

x∈B1

1[dx≥np/2+C1

√
lnn ]. Since Bin (n/2, p) is flat about

its maximum, the expectation of N+(B1) is seen to be given by

EN+(B1) =
n

2
P

(
dx ≥

np

2
+ C1

√
lnn

)
=

n

4
−Θ(

√
n lnn).

Arguing as in [3], we derive V ar(N+(B1)) ≤ C2n for some absolute constant C2

and then (4) follows by applying the Chebyshev inequality. Alternatively, we may
deduce (4) by the bounded difference inequality (see [2] pp.24, Theorem 1.20)
without estimating the variance.

Case 2. a < 1/2. Let Ñ+(B1) denote the number of vertices in B1 with degrees

at least (1 − a)np + C1

√
lnn. Hence Ñ+(B1) =

∑

x∈B1

1[dx≥(1−a)np+C1

√
lnn ], and

reasoning similarly as in Case 1, we get

(5) P

(
N(B1) ≥

an

2
− ω(n)

√
n

)
≥ P

(
Ñ+(B1) ≥

an

2
− ω(n)

√
n

)
= 1− o(1).

Next, let Ñ−(B2) denote the number of vertices in B2 with degrees at most anp−
C1

√
lnn. Similarly, we have

(6) P

(
N(B2) ≤

an

2
+ω(n)

√
n

)
≥ P

(
n

2
− Ñ−(B2) ≤

an

2
+ω(n)

√
n

)
= 1− o(1).

We then conclude the proof in this case by combining (5) and (6). It is worth
noting that the upper bound on N(B1) and the lower bound on N(B2) can not be
obtained by using the above techniques.
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For (ii) we need to prove the following two statements:
(a) Almost surely none of the vertices in B1 is a groupie; and
(b) Almost surely every vertex in B2 is a groupie.

In what follows we prove (a) only, as (b) may be proved similarly.

Fix a vertex x ∈ B1 and assume that x has degree dx, we then have Sx ∼ dx+
Bin (bnndx, p). For any dx, the E Sx = dx(bnnp+1). Since Sx−dx ∼ Bin (bnndx, p)
and bnndx ≥ bn(1 − bn)n

2p/2 when (1 − bn)np/2 ≤ dx ≤ 3(1 − bn)np/2, as in
situation (i) we obtain

P

(∣∣Sx − bnndxp
∣∣ ≤ 10n

√
lnn

∣∣∣
(1− bn)np

2
≤ dx ≤

3(1− bn)np

2

)
= 1− o(n−1).

Dividing by dx we have

(7) P

(∣∣∣
Sx

dx
−bnnp

∣∣∣ ≤ 20
√
lnn

(1− bn)p

∣∣∣∣
(1− bn)np

2
≤ dx ≤

3(1− bn)np

2

)
= 1−o(n−1).

Since dx ∼ Bin ((1− bn)n, p) and lnn/n¿ 1− bn, we get

(8) P

(∣∣dx − (1− bn)np
∣∣ ≤ (1− bn)np

2

)
= 1− o(n−1)

by exploiting a concentration inequality (see [4] pp.27, Corollary 2.3). From (7)
and (8), it follows

(9) P

(∣∣∣
Sx

dx
− bnnp

∣∣∣ ≤ 20
√
lnn

(1− bn)p

)
= 1− o(n−1).

We have

P

(
dx ≥ bnnp− 20

√
lnn

(1− bn)p

)
≤ P

(
dx − (1− bn)np ≥ 3

2

√
(1− bn)n lnn

)
(10)

≤ e−(3/2)·lnn = o(n−1)

where the second inequality follows by an application of Theorem 2.1 of [4] (pp.26).
Consequently, (9) and (10) yield

P
(
x is a groupie

)
= o(n−1),

which clearly concludes the proof of statement (a). ¤

We remark that the assumption lnn/n ¿ 1 − bn given in Theorem 1 Case
(ii) is not very stringent, since we must have 1− bn = Ω(n−1) in our situation. The
following theorem can be proved similarly.

Theorem 2. Suppose that np2 À lnn, as n → ∞. Let N denote the number of

groupies in the random bipartite graph G(B1, B2, p). For i = 1, 2, let N(Bi) denote
the number of groupies in Bi. Then the following is true :
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(i) Assume |B1| = an and |B2| = (1 − a)n for some a ∈ (0, 1). If a = 1/2,
then

P

(
n(1− ε(n))

4
≤ N(Bi) ≤

n(1 + ε(n))

4
, for i = 1, 2

)
→ 1

as n→∞, where ε(n) is any function tending to zero sufficient slowly. If a < 1/2,
then

P

(
an(1− ε(n))

2
≤ N(B1) and N(B2) ≤

an(1 + ε(n))

2

)
→ 1

as n→∞, where ε(n) is defined as above.

(ii) Assume |B1| = bnn and |B2| = (1 − bn)n with 1 − bn = Ω(1/
√
lnn) and

bn → 1, as n→∞. Then

P
(
N = N(B2) = |B2|

)
→ 1

as n→∞.

Proof. We sketch the proof as follows. For (i) the inequality (1) holds following
the same reasoning as in the proof of Theorem 1. Therefore, we get

P

(∣∣∣
Sx

dx
− anp

∣∣∣ ≤ 20
√
lnn

(1− a)p

∣∣∣∣
(1− a)np

2
≤ dx ≤

3(1− a)np

2

)
= 1− o(n−1).

The following two large deviation statements hold similarly:

P

(∣∣∣
Sx

dx
− anp

∣∣∣ ≤ 20
√
lnn

(1− a)p
, for every x ∈ B1

)
= 1− o(1),

and

P

(∣∣∣
Sx

dx
− (1− a)np

∣∣∣ ≤ 20
√
lnn

(1− a)p
, for every x ∈ B2

)
= 1− o(1).

Case 1. a = 1/2. For i = 1, 2, let N+(Bi) (resp. N−(Bi)) denote the number of

vertices in Bi, whose degrees are at least np/2 + 20
√
lnn/[(1− a)p] (resp. at most

np/2 − 20
√
lnn/[(1 − a)p]). As in the proof of Theorem 1, in the sequel we shall

prove that

(11) P

(
N+(B1) ≥

n(1− ε(n))

4

)
= 1− o(1).

Note that N+(B1) =
∑

x∈B1

1[dx≥np/2+20
√
lnn/[(1−a)p]]. Since Bin (n/2, p) is flat

about its maximum, the expectation of N+(B1) is given by

EN+(B1) =
n

2
P

(
dx ≥

np

2
+

20
√
lnn

(1− a)p

)
=

n

4
−Θ

(√
n lnn

p

)
.

By using the assumption np2 À lnn, we may also obtain V ar(N+(B1)) ≤ C3n for
some absolute constant C3. Since ε(n) is a function tending to zero sufficient slowly,
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we have
√

n lnn/p¿ εn and 1/ε2n→ 0, as n→∞. Combining these estimations,
we get (11) by employing the Chebyshev inequality as in [3].

Case 2. a < 1/2. Let Ñ+(B1) denote the number of vertices in B1 with degrees

at least (1− a)np + 20
√
lnn/[(1− a)p] and the proof follows similarly as before.

For (ii), note that our assumptions imply lnn/n ¿ 1 − bn → 0 as n → ∞,
and the corresponding proof in Theorem 1 holds verbatim. ¤
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