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Abstract. In this paper, we establish a weighted sharp maximal function esti-

mate for the commutator associated with the singular integral operator with

general kernel. As an application, we obtain the weighted boundedness of the

commutators on Lebesgue and Morrey spaces.

1. Introduction and Results

As the development of singular integral operators (see [10][23]), their commuta-

tors have been well studied. In [6][21][22], the authors prove that the commutators

generated by the singular integral operators and BMO functions are bounded on

Lp(Rn) for 1 < p < ∞. Chanillo (see [3]) proves a similar result when singular

integral operators are replaced by the fractional integral operators. In [12][18],

the boundedness for the commutators generated by the singular integral opera-

tors and Lipschitz functions on Triebel-Lizorkin and Lp(Rn)(1 < p < ∞) spaces

are obtained. In [1][11], the boundedness for the commutators generated by the

singular integral operators and the weighted BMO and Lipschitz functions on

Lp(Rn)(1 < p <∞) spaces are obtained. In this paper, we will study some singular

integral operators as following(see [2][14]).

Definition 1. Let T : S → S′ be a linear operator such that T is bounded on

L2(Rn) and there exists a locally integrable function K(x, y) on Rn×Rn \{(x, y) ∈
Rn ×Rn : x = y} such that

T (f)(x) =

∫
Rn

K(x, y)f(y)dy
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for every bounded and compactly supported function f , where K satisfies: there is

a sequence of positive constant numbers {Ck} such that for any k ≥ 1,∫
2|y−z|<|x−y|

(|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)|)dx ≤ C,

and(∫
2k|z−y|≤|x−y|<2k+1|z−y|

(|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)|)qdy

)1/q

≤ Ck(2k|z − y|)−n/q
′
,

where 1 < q′ < 2 and 1/q + 1/q′ = 1.

Let b be a locally integrable function on Rn. The commutator related to T is

defined by

Tb(f)(x) =

∫
Rn

(b(x)− b(y))K(x, y)f(y)dy.

Note that the classical Calderón-Zygmund singular integral operator satisfies

Definition 1 with Cj = 2−jδ(see [6][10][23]).

Definition 2. Let ϕ be a positive, increasing function on R+ and there exists a

constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let w be a non-negative weight function on Rn and f be a locally integrable function

on Rn. Set, for 1 ≤ p <∞,

||f ||Lp,ϕ(w) = sup
x∈Rn, d>0

(
1

ϕ(d)

∫
Q(x,d)

|f(y)|pw(y)dy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x− y| < d}. The generalized weighted Morrey space is

defined by

Lp,ϕ(Rn, w) = {f ∈ L1
loc(R

n) : ||f ||Lp,ϕ(w) <∞}.

If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn, w) = Lp,δ(Rn, w), which is the classical

Morrey spaces (see [19][20]). If ϕ(d) = 1, then Lp,ϕ(Rn, w) = Lp(Rn, w), which is

the weighted Lebesgue spaces (see [10]).

As the Morrey space may be considered as an extension of the Lebesgue space, it

is natural and important to study the boundedness of the operator on the Morrey

spaces (see [4][7][8][15][16][19]).

It is well known that commutators are of great interest in harmonic analysis

and have been widely studied by many authors (see [21-22]). In [22], Pérez and

Trujillo-Gonzalez prove a sharp estimate for the multilinear commutator. The main

purpose of this paper is to prove a weighted sharp inequality for the commutator.
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As the application, we obtain the weighted Lp-norm inequality and Morrey spaces

boundedness for the commutator.

Now, let us introduce some notations. Throughout this paper, Q will denote a

cube of Rn with sides parallel to the axes. For any locally integrable function f ,

the sharp maximal function of f is defined by

M#(f)(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
∫
Q
f(x)dx. It is well-known that (see

[10][23])

M#(f)(x) ≈ sup
Q3x

inf
c∈C

1

|Q|

∫
Q

|f(y)− c|dy.

Let

M(f)(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy.

For η > 0, let M#
η (f)(x) = M#(|f |η)1/η(x) and Mη(f)(x) = M(|f |η)1/η(x).

For 0 < η < n, 1 ≤ r <∞ and the non-negative weight function w, set

Mη,w,r(f)(x) = sup
Q3x

(
1

w(Q)1−rη/n

∫
Q

|f(y)|rw(y)dy

)1/r

.

The Ap weight is defined by (see [10])

Ap =

{
w ∈ L1

loc(R
n) : sup

Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1
<∞

}
,

1 < p <∞,

and

A1 = {w ∈ Lploc(R
n) : M(w)(x) ≤ Cw(x), a.e.}.

The A(p, r) weight is defined by (see [17]), for 1 < p, r <∞,

A(p, r) ={
w > 0 : sup

Q

(
1

|Q|

∫
Q

w(x)rdx

)1/r (
1

|Q|

∫
Q

w(x)−p/(p−1)dx

)(p−1)/p

<∞

}
.

Given a weight function w. For 1 ≤ p <∞, the weighted Lebesgue space Lp(w)

is the space of functions f such that

||f ||Lp(w) =

(∫
Rn
|f(x)|pw(x)dx

)1/p

<∞.
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For the non-negative weight function w and 0 < β < 1, the weighted Lipschitz

space Lipβ(w) is the space of functions b such that

||b||Lipβ(w) = sup
Q

1

w(Q)1+β/n

∫
Q

|b(y)− bQ|dy <∞.

Remark. (1). It has been known that, for b ∈ Lipβ(w), w ∈ A1 and x ∈ Q,

|bQ − b2kQ| ≤ Ck||b||Lipβ(w)w(x)w(2kQ)β/n.

(2). Let b ∈ Lipβ(w) and w ∈ A1. By [9], we know that spaces Lipβ(w) coincide and

the norms ||b||Lipβ(w) are equivalent with respect to different values 1 ≤ p ≤ ∞(see

[9][11]).

We shall prove the following theorems.

Theorem 1. Let T be the singular integral operator as Definition 1, the sequence

{kCk} ∈ l1, w ∈ A1, 0 < β < 1, 0 < η < 1, q′ < s < ∞ and b ∈ Lipβ(w). Then

there exists a constant C > 0 such that, for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#
η (Tb(f))(x̃) ≤ C||b||Lipβ(w)w(x̃) (Mβ,w,s(f)(x̃) +Mβ,w,s(T (f))(x̃)) .

Theorem 2. Let T be the singular integral operator as Definition 1, the sequence

{kCk} ∈ l1, w ∈ A1, 0 < β < min(1, n/q′), q′ < p < n/β, 1/r = 1/p − β/n and

b ∈ Lipβ(w). Then Tb is bounded from Lp(w) to Lr(w1−r).

Theorem 3. Let w ∈ A1, 0 < β < min(1, n/q′), 0 < D < 2n, 1 < p < n/β,

1/r = 1/p − β/n, Lp,ϕ(Rn, w) be the weighted Morrey space as Definition 2, T

be the singular integral operator as Definition 1, the sequence {kCk} ∈ l1 and

b ∈ Lipβ(w). Then Tb is bounded from Lp,ϕ(w) to Lr,ϕ(w1−r).

2. Proof of Theorem

To prove the theorems, we need the following lemma.

Lemma 1.([2]) Let T be the singular integral operator as Definition 1. Then T

is bounded on Lp(w) for w ∈ Ap with 1 < p <∞, and weak (L1, L1) bounded.

Lemma 2.(see [24]) Let 0 < p, η < ∞ and w ∈ ∪1≤r<∞Ar. Then, for any

smooth function f for which the left-hand side is finite,∫
Rn

Mη(f)(x)pw(x)dx ≤ C
∫
Rn

M#
η (f)(x)pw(x)dx.

Lemma 3.(see [11][17]) Suppose that 1 ≤ s < p < n/η, 1/r = 1/p − η/n and

w ∈ A(p, r). Then

||Mη,w,s(f)||Lr(w) ≤ C||f ||Lp(w).
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Lemma 4.(see [9][11]) For any cube Q, b ∈ Lipβ(w), 0 < β < 1 and w ∈ A1, we

have

sup
x∈Q
|b(x)− bQ| ≤ C||b||Lipβ(w)w(Q)1+β/n|Q|−1.

Lemma 5.([10]) If w ∈ Ap, then wχQ ∈ Ap for 1 ≤ p <∞ and any cube Q.

Lemma 6. Let 1 < q < ∞, 0 < η < ∞, 0 < D < 2n, w ∈ A1 and Lr,ϕ(Rn, w)

be the weighted Morrey space as Definition 2. Then, for any smooth function f for

which the left-hand side is finite,

||Mη(f)||Lr,ϕ(w1−r) ≤ C||M#
η (f)||Lr,ϕ(w1−r).

Proof. Notice that w1−r ∈ A1 and w1−rχQ ∈ A1 for any cube Q = Q(x, d)

by [5] and Lemma 4, thus, for f ∈ Lr,ϕ(Rn, w1−r) and any cube Q, we have, by

Lemma 2, ∫
Q

Mη(f)(x)rw1−r(x)dx =

∫
Rn

Mη(f)(x)rw1−r(x)χQ(x)dx

≤ C

∫
Rn

M#
η (f)(x)rw1−r(x)χQ(x)dx

= C

∫
Q

M#
η (f)(x)rw1−r(x)dx,

thus(
1

ϕ(d)

∫
Q(x,d)

Mη(f)(x)rw1−r(x)dx

)1/r

≤ C

(
1

ϕ(d)

∫
Q(x,d)

M#
η (f)(x)rw1−r(x)dx

)1/r

and

||Mη(f)||Lr,ϕ(w1−r) ≤ C||M#
η (f)||Lr,ϕ(w1−r).

This finishes the proof.

Lemma 7. Let 1 < p < ∞, 0 < D < 2n, w ∈ A1, T be the singular integral

operator as Definition 1 and Lp,ϕ(Rn, w) be the weighted Morrey space as Definition

2. Then

||T (f)||Lp,ϕ(w) ≤ C||f ||Lp,ϕ(w).

Lemma 8. Let 0 < D < 2n, 1 ≤ s < p < n/η, 1/r = 1/p− η/n, w ∈ A(p, r) and

Lp,ϕ(Rn, w) be the weighted Morrey space as Definition 2. Then

||Mη,w,s(f)||Lr,ϕ(w) ≤ C||f ||Lp,ϕ(w).

The proofs of two lemmas are similar to that of Lemma 6 by Lemma 1 and 3, we

omit the details.
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Proof of Theorem 1. It suffices to prove for f ∈ C∞0 (Rn) and some constant

C0, the following inequality holds:(
1

|Q|

∫
Q

||Tb(f)(x)|η − |T ((b2Q − b)f2)(x0)|η| dx
)1/η

≤ C||b||Lipβ(w)w(x̃) (Mβ,w,s(f)(x̃) +Mβ,w,s(T (f))(x̃)) .

Fix a cube Q = Q(x0, d) and x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

Tb(f)(x) = (b(x)− b2Q)T (f)(x)− T ((b− b2Q)f1)(x)− T ((b− b2Q)f2)(x).

Then

|Tb(f)(x)− T ((b2Q − b)f2)(x0)| ≤ |Tb(f)(x)− T ((b2Q − b)f2)(x0)|

≤ |(b(x)− b2Q)T (f)(x)|+ |T ((b− b2Q)f1)(x)|

+|T ((b− b2Q)f2)(x)− T ((b− b2Q)f2)(x0)|

= A(x) +B(x) + C(x)

and (
1

|Q|

∫
Q

||Tb(f)(x)|η − |T ((b2Q − b)f2)(x0)|η| dx
)1/η

≤
(

1

|Q|

∫
Q

|Tb(f)(x)− T ((b2Q − b)f2)(x0)|ηdx
)1/η

≤ C

(
1

|Q|

∫
Q

|(b(x)− b2Q)T (f)(x)|ηdx
)1/η

+ C

(
1

|Q|

∫
Q

|T ((b− b2Q)f1)(x)|ηdx
)1/η

+C

(
1

|Q|

∫
Q

|T ((b− b2Q)f2)(x)− T ((b− b2Q)f2)(x0)|ηdx
)1/η

= I1 + I2 + I3.

For I1, by Hölder’s inequality, we obtain

I1 ≤ C

|Q|

∫
Q

|(b(x)− b2Q)|w(x)−1/s|T (f)(x)|w(x)1/sdx

≤ C

(
1

|2Q|

∫
2Q

|b(x)− b2Q|s
′
w(x)1−s

′
dx

)1/s′ (
1

|Q|

∫
Q

|T (f)(x)|sw(x)dx

)1/s

≤ C||b||Lipβ(w)
w(Q)

|Q|
Mβ,w,s(T (f))(x̃)

≤ C||b||Lipβ(w)w(x̃)Mβ,w,s(T (f))(x̃).
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For I2, by the weak (L1, L1) boundedness of T and Kolmogoro’s inequality, we get,

similar to the proof of I1,

I2 ≤
C

|Q|

∫
2Q

|(b(x)− b2Q)f(x)|dx ≤ C||b||Lipβ(w)w(x̃)Mβ,w,s(f)(x̃).

For I3, we have

I3 ≤ C

|Q|

∫
Q

∫
(2Q)c

|b(y)− b2Q||f(y)||K(x, y)−K(x0, y)|dydx

≤ C

|Q|

∫
Q

∞∑
k=1

∫
2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b(y)− b2k+1Q||f(y)|dydx

+
C

|Q|

∫
Q

∞∑
k=1

∫
2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b2k+1Q − b2Q||f(y)|dydx

= I
(1)
3 + I

(2)
3 .

For I
(1)
3 , recalling that s > q′ and noting that w ∈ A1 ⊂ Ap for any p > 1, choose

u > 1 such that 1/q+ 1/s+ 1/u = 1, then by Hölder’s inequality and the condition

of Ap, we obtain

I
(1)
3 ≤ C

|Q|

∫
Q

∞∑
k=1

sup
y∈2k+1Q

|b(y)− b2k+1Q|
∫
2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|

×|f(y)|w(y)1/sw(y)−1/sdydx

≤ C

|Q|

∫
Q

∞∑
k=1

sup
y∈2k+1Q

|b(y)− b2k+1Q|

(∫
2kd≤|y−x0|<2k+1d

|K(x, y)−

K(x0, y)|qdy)
1/q

(∫
2k+1Q

|f(y)|sw(y)dy

)1/s(∫
2k+1Q

w(y)−u/sdy

)1/u

dx

≤ C

∞∑
k=1

k||b||Lipβ(w)w(x̃)w(2k+1Q)β/nCk(2kd)−n/q
′
w(2k+1Q)1/s−β/n

×Mβ,w,s(f)(x̃)

(
1

|2k+1Q|

∫
2k+1Q

w(y)dy

)1/s

×
(

1

|2k+1Q|

∫
2k+1Q

w(y)−u/sdy

)1/u |2k+1Q|1/s+1/u

w(2k+1Q)1/s

≤ C||b||Lipβ(w)Mβ,w,s(f)(x̃)

∞∑
k=1

Ck
w(2k+1Q)

|2k+1Q|

≤ C||b||Lipβ(w)Mβ,w,s(f)(x̃)w(x̃)

∞∑
k=1

Ck

≤ C||b||Lipβ(w)w(x̃)Mβ,w,s(f)(x̃).
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For I
(2)
3 , similar to the proof of I

(1)
3 , choose v > 1 such that 1/q + 1/s + 1/v = 1,

by Hölder’s inequality and the condition of Ap, we get

I
(2)
3 ≤ C

|Q|

∫
Q

∞∑
k=1

|b2k+1Q − b2Q|
∫
2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|

× |f(y)|w(y)1/sw(y)−1/sdydx

≤ C

|Q|

∫
Q

∞∑
k=1

|b2k+1Q − b2Q|

(∫
2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|qdy

)1/q

×
(∫

2k+1Q

|f(y)|sw(y)dy

)1/s(∫
2k+1Q

w(y)−v/sdy

)1/v

dx

≤ C

∞∑
k=1

k||b||Lipβ(w)w(x̃)w(2k+1Q)β/nCk(2kd)−n/q
′
w(2k+1Q)1/s−β/n

×Mβ,w,s(f)(x̃)

(
1

|2k+1Q|

∫
2k+1Q

w(y)dy

)1/s

×
(

1

|2k+1Q|

∫
2k+1Q

w(y)−v/sdy

)1/v |2k+1Q|1/s+1/v

w(2k+1Q)1/s

≤ C||b||Lipβ(w)Mβ,w,s(f)(x̃)

∞∑
k=1

kCk
w(2k+1Q)

|2k+1Q|

≤ C||b||Lipβ(w)Mβ,w,s(f)(x̃)w(x̃)

∞∑
k=1

kCk

≤ C||b||Lipβ(w)w(x̃)Mβ,w,s(f)(x̃).

These complete the proof of Theorem 1.

Proof of Theorem 2. Choose q′ < s < p in Theorem 1 and notice w1−r ∈ A1,

we have, by Lemma 1-3,

||Tb(f)||Lr(w1−r)

≤ ‖Mη(Tb(f))‖Lr(w1−r) ≤ C‖M#
η (Tb(f))#‖Lr(w1−r)

≤ C||b||Lipβ(w)(‖Mβ,w,s(T (f))w‖Lr(w1−r) + ‖Mβ,w,s(f)w‖Lr(w1−r))

≤ C||b||Lipβ(w)(‖Mβ,w,s(T (f))‖Lr(w) + ‖Mβ,w,s(f)‖Lr(w))

≤ C||b||Lipβ(w)(‖T (f)‖Lp(w) + ‖f‖Lp(w))

≤ C||b||Lipβ(w)‖f‖Lp(w).

This completes the proof of Theorem 2.
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Proof of Theorem 3. Choose q′ < s < p in Theorem 1 and notice w1−r ∈ A1,

we have, by Lemma 6-8,

||Tb(f)||Lr,ϕ(w1−r) ≤ ‖Mη(Tb(f))‖Lr,ϕ(w1−r) ≤ C‖M#
η (Tb(f))#‖Lr,ϕ(w1−r)

≤ C||b||Lipβ(w)(‖Mβ,w,s(T (f))w‖Lr,ϕ(w1−r) + ‖Mβ,w,s(f)w‖Lr,ϕ(w1−r))

≤ C||b||Lipβ(w)(‖Mβ,w,s(T (f))‖Lr,ϕ(w) + ‖Mβ,w,s(f)‖Lr,ϕ(w))

≤ C||b||Lipβ(w)(‖T (f)‖Lp,ϕ(w) + ‖f‖Lp,ϕ(w))

≤ C||b||Lipβ(w)‖f‖Lp,ϕ(w).

This completes the proof of Theorem 3.
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