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Abstract In the field of machine vision, the
multi-solution problem of the perspective-three-point
(P3P) camera pose estimation problem has been widely
researched. Many researchers have tried to find unique
solutions that will enable the use of the P3P method in
practical applications such as the calibration of external
parameters of a camera. Gao found a special case that is
very simple and intuitive, but can only be used for a
camera with a very large field of view. Therefore, it did
not attract much attention. The purpose of this study
was to analyse Gao’s special case and use it for calibrating
the external parameters of an omnidirectional camera,
which is used widely because of its very large field of
view. We first verify Gao’s special case and extend its
application. We then propose an iterative method for
finding the unique solution. After this, we perform a
simulation experiment to determine the effect of the
configuration of the three control points on the accuracy
of the unique solution. Finally, we use an application to
examine the efficiency of the method.
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1. Introduction

Determining the pose of a camera given the images of
three known points in a 3D space is the classical
perspective-three-point (P3P) problem [1], which is a
sub-problem of the perspective-n-point problem. It has
gained the most attention because it requires the least
number of points of correspondence. It is widely used in
some hypothesis-and-test architectures such as RANSAC
[2], where it enhances the efficiency by reducing the
number of hypotheses. It can also be used to obtain the
original value for pose estimation using nonlinear
refining methods. However, a drawback of the P3P
method is the well-known multi-solution problem [1].
There are at most four possible positive solutions to the
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P3P problem. The multi-solution problem observably
affects efficiency because it doubles the time required to
tackle all the possible solutions equally [2].

The research on the multi-solution problem involves two
cases of the P3P problem. First, the traditional case
involves the use of three control points and three image
points to determine the pose of a camera. In this case, we
need to classify the number of solutions and determine
the appropriate solution. In the second case, three control
points are configurable in an application such as the
calibration of the external parameters of a camera. In this
case, we need to determine how to configure the control
points to obtain a unique solution.

Research on the number of solutions and the solving
method was started by Wolfe. Wolfe et al. [3] gave a
geometric  explanation of the camera-triangle
configurations that produce one, two, three or four
solutions by adopting the “canonical view.” Su et al. [4]
proposed an algebraic analysis of the necessary and
sufficient condition for a positive root number of the P3P
problem.

In relation to research on unique solutions, Gao [5]
proved that under the reality condition, if the angles
between any two of the rays
corresponding to the three control points are obtuse, the
P3P problem can have only one solution. Because this

back-projection

special case requires the camera to have a very large field
of view, it has not gained much attention. Zhou and Zhu
[6] found that when the three control points form an
isosceles triangle and the camera is within two special
regions, the P3P problem will have a unique solution.
Wang et al. [7] and Tang and Liu [8] extended the work of
Zhou and Zhu [6]. They divided the 3D space by
projecting the perspective centre on the plane that
contained the control points and found seven unique
solution regions. There were two basic assumptions in all
these works[6-8]: (1) the three control points form an
isosceles triangle, and (2) the approximate relative poses
between the control points and camera are known.

In recent years, many types of omnidirectional cameras
with large field of view (FOV) vision systems have
become widely used, which was one of the motivations
for this study. We found that although Gao’s special case
is not useful for the conventional camera, it is suitable for
an omnidirectional camera. In this study, we analyse and
expand Gao’s special case, and then propose an iterative
method for obtaining a solution. We use simulation data
to analyse the effect of the configuration of the three
points on the solution accuracy. Further, we use a
calibration application to examine the efficiency of the
method.
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2. Definition and notation

Many definitions have been proposed for the P3P
problem. Here, we use the simple version[4] shown in
Fig.1. Given three rays,7,,7,, and r,, starting from the
centre of perspective (CP) point O, try to find three points,
A,B,and C on the rays such that they satisfy the
condition  dis(A4,B)=L,, , dist(4,C)=L,. ,
and dist(B,C)= L.,

where L, , L and L, denote the original distances

ac’

between the three control points and dist(4,B) denotes
the Euclidean distance between points 4 and B . These

three points are parameterized with their distances to the

CP, denoted as lysty, and ¢ which are the only

c 7
unknown variables that need to be solved. The angle

between two rays is denoted as 6, for example.

Figure 1. Simple model of P3P problem.

Based on this notation Gao’s Theorem 9 in paper [5] can
be expressed as follows:

Under the reality conditions, if6,;, 84., and 6, are obtuse,
then the P3P problem can only have one solution.
2ACB < 8y, 2ABC < 0,4, £BAC <
0pc,then the P3P problem has a unique solution.

Furthermore if

There are two results in Gao’s Theorem, the first one
shows that when the three angles(8,p,8,.,and 8,.) are
obtuse, the P3P problem can at most have one solution.
The second result is a sufficient condition for the P3P
problem having a unique solution.

3. Special cases of a unique positive solution

Gao [5] found the special unique solution case using a
geometrical method. However, in this section, we propose
a new definition for the special case and prove it using
basic algebra.

3.1 A. Special case of the P3P problem

Definition: If the angles between any two of the
back-projection rays ( 7,,7,, and r, ) corresponding to the
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three control points are obtuse, the problem is a special
case and is called an obtuse P3P problem.

Result 1: If an obtuse P3P problem has a positive solution,
then it has a unique solution.

Proof:

Applying the cosine theorem to triangles AAOB ,

AAOC ,and ABOC gives us
Ly =1, +t" 21,1, cos O, (1)
L. =t +t° 21,1, cos,, (2)
Ly =1+t =241, cos Oy, 3)

Using these three equations, we eliminate #, and 7.
Derived from (1)

2 2 2 . 2
(¢, -t,cos0,,) =L, —-t, sin“ @,

Because f, >0 and 6, >90°we have

. 4
t, =t,cos6, +\/Lab2 —taz sin® 0, @

Similarly, from (2)

. 5
t.=t,cosd,. + 11L082 —z‘a2 sin® @), ®)

Substitute (4) and (5) into (3), and let

f(ty) = tp? + t2 — 2tpte cos Ope — Lipc? (6)

Now, the P3P problem translates to solving the equation

f(t,)=0.

We now compute the derivative of f(z,)

df (t) dt,, dt, dt,  dt,
dta = thd—ta-i'ztcd—ta— 2 cos Hbc (tcd_ta+ tb d_ta) (7)

Then, the derivative % and %can be computed from (4)

and (5),

dt
ﬁ = c0s Oy, — tg sin? Hab/JLabz —t2sin%20,, <0 (8)
a

dt
d_tc = c0S 0, — t, Sin? Qac/\/LaC2 —t2sin?20,. <0 (9)
a
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dt,

which means there is a monotone decreasing relationship
between f(t,) and f,when ¢, >0.Thus, if the obtuse

Substitute (8) and (9) into (7), we then have <0,

P3P problem has a positive solution, which also means
equation f(¢,) =0 has a positive solution, then it has a

unique solution.

Result 2: An obtuse P3P problem has a unique positive
solution if and only if

£ACB < 0y, ZABC < 0, 2BAC < 0,
Proof:

As can be seen from Fig.1, to have physical meaning, solution
t should be between Lymin =0 and

= Min(L,,,L,.) . From the proof of Result 1, we know

a

ta max

that ¢, and f(#,) have a monotone relationship, so

When t; = tgmin =0, according to
Lap,te = Lqc-Then We have

@and(5), t, =

f D max = f(tamin)
= Lab2 + Lac2 - Lbcz — 2LgpLgccosOy, (10)
= 2LgpLg.c0s (¢BAC) — 2L,y Ly cOS0p,

If we assume Lgp < Lge, SO tamax = Lap-

When t; = tgmax = Lap, according to (4) and 6, > g

tb = LabCOS Hab + \/Labz - Labz sin? Bab

= LgpC0S By — Lgpcos By, =0

Substitutet, = 0 in (3) and t, > 0, we have t. = Ly,
So we have

[ min = f(tamax) =0 (11)

Because the monotoneproperty, if and only if
S () min <=0<= f(#,)max  the obtuse P3P problem will

have a positive solution, and the solution will be a unique
positive solution according to Result 1.

So according to (10),(11) and the conditions that
0 < £ZBAC < n,g < 0y, < Twe have

f(ta)min <0< f(ta)max
& 0<0<2LgyLye cos(4BAC) — 2L gy L o050,
& cos(£BAC) = cos0Oy,,

& LBAC < 6,

Similarly, we can proveZACB < 0,4, and £ZABC < 0.
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3.2 Solving the unique solution

From the previous proof, we know that solving equation
f(t,)=0 is the key. The monotone property of f(¢,)

simplifies the solution to a great extent. We choose an
iterative root-finding method called the false position
method or regulafalsi method, which combines features
from the bisection method and secant method[9]. The
basic idea of this method

points, @, and b, , such that f(ay)and f(b,) have

is to start with two

opposite signs, which implies by the intermediate value
theorem that function f has a root in the interval
[ay,by], assuming continuity of function f . The method

proceeds by generating a sequence of shrinking intervals
[a;,b,] that contain a root of f . In our case, we choose

=0 and b, =t =Min(L,,L,.) . The

pseudo-code is as follows[10]:

ay = ta min a max

a=0;b=Min(Ly,Ly.); ¢= M ;
f(b)=f(a)
k=0;m=5;
While(k<m)
{
If(Sign(f(b)) == Sign(f(c)))

b=c;
Else

a=g
C:qf(b)—bf(a);

f(b) = f(a)
k=k+1;

Mirror

Camera

Figure 2. Model of non-central catadioptric camera.
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3.3 Discussion

In general, the two criteria used to determine whether a
P3P problem has a special unique solution case are as
follows: (1) whether it is an obtuse P3P problem and (2)
whether it satisfies the conditions of result 2. However,
for some applications with known data correspondence,
the first part is sufficient using result 1. However, these
two criteria are easy to define, for example, whether the
problem is obtuse can be determined from the sign of the
dot product of two rays. Moreover, it should be noted
that thanks to the large FOV of an omnidirectional
camera, it will be easy to satisfy these criteria, as
discussed in the following section.

4. Experimental results

In the last section, we proposed a method to determine a
unique In this section, we describe an
experiment used to determine how the configuration of
the three control points affects the accuracy of the unique
positive solution. A catadioptric camera is used, whose
system structure is shown in Fig.2. We set a world frame
with the checkerboard pattern and a camera frame at the

solution.

base of the mirror. The relative pose (represented by
rotation angles in 7ad and translation components in
mm as(6.,0

s y,Hz,Tx,Ty,TZ,)) of the camera frame to

the world frame is computed and compared with the
ground truth.

In the simulation, the configuration of the three control
points is set as shown in Fig.3, where O,,i=12,3
represent the three control points on the checkerboard
pattern, O' is the projection of CP, d is the distance
between O' and O;, h is the height of the camera

above the checkerboard pattern, and 6 is the angle

between 0'Q,and 0'Q3. Fig.4 shows the simulation
images used in the experiments.
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Figure 3. Configuration of camera and three points.

Figure 4. Computer simulated images used in experiments.
4.1 Performance in relation to noise level

In this experiment, the three control points are chosen in
the world coordinate system with d =4m, h=1m, and
0 =27/3 (red points in the first part of Fig.4), and the
ground truth of the relative pose is

(0.1489,-0.1953,0.5,265,264,1023) . Gaussian noise with

a zero mean and varied standard deviation is added to
the three corresponding image points. We vary the noise
level of the three image points from 0.1 to 4 pixels. For
every noise level, we perform 200 independent trials. The
estimated pose parameters are then compared with the
ground truth and the results shown are the average
absolute errors. Figure 5 shows that the errors increase
almost linearly with increasing noise level, and the local
small volatility of the curves is mainly caused by the
nonlinear properties of the P3P problem and the
randomness of the experiment. For o = 0.5 (which is the

www.intechopen.com

normal noise in a practical application), the error is

(0.0026,0.0024,0.0017,16.937,18.5373,11.7186) .

4.2 Performance in relation to distances of three points

In this experiment, we verify the accuracy of the unique
positive solution with respect to d . The ground truth of
the pose of the camera is (0,0,0,0,0,1024), /4 =1m, and
0 =2r7/3. Using simple geometry, we find that we
should let d > \/Eh to meet the obtuse constraint of Hy

We then vary d from 2m to 9m and also add a
Gaussian noise with 0 mean and 0.5 pixel standard
deviation to the three image points (red points second
part of Fig.4). Similar to experiment 1, we perform 200
independent trials for every d
absolute error for every parameter of the pose. Fig.6
shows that the errors of the rotation angles decrease

and measure the
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linearly with d , while the errors of the translation

components increase linearly with d . This phenomenon § 0
is as expected. According to [11], faraway calibration s 30 -
points are good for determining the direction, whereas 5
nearby points are suitable for determining the position. E E 20 1
Therefore, the average back-projection error of 441 corner 'E' ~ 10 |
points on the checkerboard pattern (blue points in second 2‘

part of Fig.4) is computed to test the integrated effect of E 0

d . Fig.7 shows that the back-projection error decreases 2 3 4 5 6 7 ] !
with d , which indicates that the faraway points are

Distance to the center{m)
better than the nearby points.

__ 003 . Figure 7. Back-projection error vs. distance to centre.
o
(2]
= 0.02 4.3 Performance in relation to angles of three rays
o —_—n
E 0.01
o —_—0 In this experiment, we examine the effect of @ on the
% 0 — accuracy of the unique positive solution. To satisfy the
2 00511.522.533.54 obtuse constrains, the value of & should be within the
< Noise level(pixels) range of
 N2(h +d? _ N2(h +d?
2 arcsm(¥), 27 —4 arcsm(¥)
2d 2d
200
€ 150 . We set d =2m,h=1m, and varied @ from 1.902 to
E 100 2.402 (red points in the third part of Fig.4). The result also
S T Tx
£ oy shows the average absolute error of closure of 200
s . Ty independent trials for every @ . In the results shown in
% 0 O (ot N W Tz Fig.8, we can see that the different values of € do not
2z © = o~ m affect the accuracy, which means we can ignore the angle
< Noise level(pixels) when configuring the three control points.
Figure 5. Error vs. noise level of image points. _. 0.006
]
(o]
+ 0.004
. 0.006 o —r
5 ¢ 0.002
X~ 0.004 e et
S —_— 2
= 0.002 s 0 —
g —_— . 182 21222324
E 0 — Value of 0 (rad)
2 23456789
o
< Distance to the center{m)
15
E
30 =10 7
€ g s T
£20 - T O .
5 e T 2 Y
£ 10 —g 0 —Tz
g g =] 18 2 21222324
5 e T <
S 2 3456 7 8 9 Value of 9 (rad)
= ¥
< Distance to the center(m)

Figure 8. Error vs. angles of three rays.

Figure 6. Error vs. distance to centre.
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5. Application

The method of this unique solution of P3P problem can be
used in two types of application. The primaryone is the
calibration of the omnidirectional camera. The second
potential application is the robot localization application
which is based on the feature map and RANSAC [2]
method using an omnidirectional camera. In fact, the P3P
method is widely used by the RANSAC method, because it
needs the least number of samples, and our unique
solution P3P method can reduce the sample number
further.

However, because in the calibration application we can
assign the configuration of the three calibration points,
which is the main concern of this paper, so a calibration
of the omnidirectional camera of soccer robot is discussed
as follows.

5.1 Calibration of omnidirectional camera for a soccer robot

The left part of Fig.9 shows a scene of the soccer robot
competition and the right is the omnidirectional image
capture by the omnidirectional camera system. Using this
omnidirectional image, the soccer robot obtains all the
needed information to determinate what to do. One of the
most important things is the real distance between the

robot and other object on the field, such as the ball, other
robots, the goal and so on. So distance mapping from the
image distance to the real distance has to be calibrated.
Usually, this calibration can be divided into two parts, the
internal parameters’ calibration and external parameters’
calibration. The internal parameters include the camera
parameters and the relative pose between camera and
mirror, whose calibration can be referred to in[12]. The
external parameters are the relative pose between the
mirror andthe field, which can be calibrated using the
P3P methodproposed in this paper.

Computer synthetic data was used, because the ground
truth was easy to obtain in a simulation environment and
the internal parameters are assumed to be known.

To make the calibration more practicable, we use a feature
point on the field, such as the cross point of the lines, to
be the calibration point. According to 4.2,enlarging the
distance between the three calibration points can decrease
the back-projection error, we choose the three points as
the red point on the left part of Fig.10, and put the robot
in the yellow point position. Notice that, according to the
4.3, the value of three angles has little influence on the
precision, so the robot need not be exactly at the centre of
the three points.

Figure 9. A scene of soccer robot competition and a sample of the omnidirectional image.

Figure 10. The calibration points and the synthetic omnidirectional image.
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The calibration flow is as follows:

Step 1.According to the image coordinates of those three
calibration points and using the internal parameters we
compute the three ray (r,, 1, 7;) in the mirror coordinate
system.

Step 2.Compute the angles ( 04,04, and8,, ) and
(£ACB, £ABC, £BAC), and then check the unique solution
condition using Result 2. For example

Bap = cos™I(rT x1y).

Step 3.Compute the external parameters using the
iterative method in 3.2

The calibration results are as follows:

The three rays are,

1, = (—0.98388,0.003501, —0.17882)
7, = (0.609586, —0.78562, —0.10589)
7. = (0.606732,0.788428, —0.10128)

The angles are,

B4y = 125.7022°,0,, = 125.1751°, and 6,, = 103.8170°
2ACB = 56.3099°, £ABC = 56.3099°, zBAC = 67.3801°

So the distribution of the three calibration points meets
the unique solution conditions as Result2.

Finally, the computed external parameters are shown in
Table 1.We can see that the errors of translation
components are relatively bigger than the errors of the
rotation components, which is the same as the
result in section 42 To show the precision of
back-projection, we add some virtual cross lines on the
soccer field, and generate an image as in Fig.11. Then we
unwarp the omnidirectional image using the calibrated
parameters. In Fig.12, the left part shows the unwrapped
result and the right part has the true lines drawn on it.
The unwrapped result shows the high precision of the
back-projection.

0, (°) 0, () 0. (%) T (mm) T, (mm) T, (mm)
Ground truth 0 0 -3.1416 -4380 0 753.8593
Calibration results 0 0.0019 -3.1416 -4403.44 0 757.3392
Absolute error 0 0.0019 23.4404 0 3.4798

Table 1. Calibration result for external parameters.

Figure 12. The unwrapped result and the unwrapped result with the true lines drawn on.

Int J Adv Robotic Sy, 2012, Vol. 9, 217:2012
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6. Conclusion

In this study, we proved and expanded Gao’s special
unique solution case for the P3P problem. This special
case applies constraints directly on the angles between
the three rays. Thus, it is very simple and intuitive, and is
especially suitable for use with an omnidirectional
camera. The iterative solving method used here is also
simple and efficient, requiring less than 20 lines of Matlab
code and less than five
Experimental results show that larger the distance of the
three points, the better is the solution accuracy, however,
the angles do not have a very large effect on the solution
accuracy.

iterations to converge.
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