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Abstract. A basic Lie superalgebra g has many Dynkin diagrams, due to dif-

ferent choices of simple root systems. For g with rank 4 or lower, all its Dynkin

diagrams have already been given explicitly. To deal with g with rank higher

than 4, this article introduces a combinatorial invariant on the Dynkin dia-

grams. It enables us to recognize g from a given Dynkin diagram. In this way,

we obtain all the Dynkin diagrams of any given basic Lie superalgebra.

1. Introduction

Let g be a finite dimensional complex simple Lie superalgebra. We say that g

is basic if it has a nondegenerate invariant supersymmetric form, and its even part

is reductive [2]. Once and for all, we assume that g is not a Lie algebra, namely

its odd part does not vanish. There are distinct Dynkin diagrams of g which occur

from different simple systems. The method of odd root reflection [3][4] allows one

to produce all Dynkin diagrams of g from a given one. It has been used to find

all the Dynkin diagrams of g with rank 4 or lower [1]. It remains to do the same

for g with rank higher than 4, and this is the purpose of this article. For the

Dynkin diagrams of a given classical series, we introduce a combinatorial invariant

to distinguish among the Lie superalgebras of that series. It enables us to recognize

the Lie superalgebra from a given Dynkin diagram. We now discuss our result in

more details.

Since we only need to consider g with rank higher than 4, we may ignore F (4),

G(3) and D(2, 1;α). This leaves the classical series of basic Lie superalgebras

A(p, q), B(p, q), C(p) and D(p, q) with p − q 6= 1 [2, p.43 Theorem 1], and their

Dynkin diagrams with n vertices are all given in Figure 1 below [5]. There exist

different conventions regarding the edges of the Dynkin diagrams, and the conven-

tion used here is the one in [1], which differs from [2, p.54 Table V]. The vertices

are colored white, black or grey. Let ⊗ denote the grey vertices. Some vertices in

Figure 1 appear as half white and half grey (resp. black), it means that they can
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be either white or grey (resp. black). The vertices which are entirely white or grey

in Figure 1 can only accept their designated colors.

Two Dynkin diagrams x, y are said to be related if they represent the same basic

Lie superalgebra, and we denote this by x ∼ y. The diagrams in Figure 1 are

placed into three sections (a), (b) and (c), so that diagrams of different sections are

definitely not related.

In Figure 1, the numbers 1, 2, ..., n merely label the vertices. Given a diagram in

section (a), (b), (c1) or (c2), we denote it by (i1, i2, ..., ir), where 1 ≤ i1 < ... < ir ≤
n. It refers to the diagram whose vertices i1, ..., ir are black or gray, with remaining

vertices white. No vertex can simultaneously allow black and grey, so this notation

does not cause confusion. More generally, write

(i1, i2, ..., ir) , 0 ≤ i1 ≤ ... ≤ ir ≤ n, (1.1)

where a grey or black vertex appears odd number of times, and a white vertex

appears even number of times. The number 0 appears without any effect. This

more general notation facilitates later computations.

For computational purpose, although a diagram in section (c3) has white vertices

n− 1 and n, we insert an extra n and write

(i1, i2, ..., ir, n) , 0 ≤ i1 ≤ ... ≤ ir < n. (1.2)

Other than vertex n, a grey or black vertex appears odd number of times, and a

white vertex appears even number of times. The number 0 appears without any

effect.

For a Dynkin diagram x expressed in (1.1) or (1.2), define φ(x) ∈ N by

φ(i1, ..., ir) = ir − ir−1 + ir−2 − ...+ (−1)r+1i1 =

r∑
a=1

(−1)r−aia. (1.3)
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Despite the multiple expressions in (1.1) and (1.2), φ is well-defined.

For example, consider the two diagrams below. The left diagram is denoted by

(2, 4), (2, 2, 2, 3, 3, 4) or other methods. Then φ(2, 4) = 4−2 = 2 and φ(2, 2, 2, 3, 3, 4) =

4−3+3−2+2−2 = 2. The right diagram is denoted by (1, 2, 5), (0, 1, 2, 3, 3, 5) or

other methods. Then φ(1, 2, 5) = 5−2+1 = 4 and φ(1, 2, 5) = 5−3+3−2+1−0 = 4.

The following is the Main Theorem of this article. It determines whether two

Dynkin diagrams x and y in the same section of Figure 1 are related.

Main Theorem.

(a) In Figure 1(a), x ∼ y if and only if φ(x) = φ(y) or φ(x) + φ(y) = n+ 1.

(b) In Figure 1(b) and 1(c), x ∼ y if and only if φ(x) = φ(y).

The diagrams in Figure 1 are of types A,B,C and D. They correspond to the

special linear and orthogonal-symplectic superalgebras as follows.

Figure 1(a) : A(k − 1, n− k) : sl(k, n+ 1− k)

Figure 1(b) : B(n− k, k) : osp(2n− 2k + 1, 2k)

Figure 1(c) : C(n), D(k, n− k) : osp(2, 2n− 2), osp(2k, 2n− 2k)

Each basic Lie superalgebra g has a Dynkin diagram with a single non-white

vertex, known as the distinguished diagram [2, p.56 Table VI] [5]. The theorem leads

to the following list of all Dynkin diagrams of each g, along with the distinguished

diagrams.

Corollary of Main Theorem.

(a) A(k − 1, n− k): {x in Figure 1(a) ; φ(x) = k or φ(x) = n+ 1− k}.
Distinguished diagrams are (k) and (n+ 1− k).

(b) B(n− k, k): {x in Figure 1(b) ; φ(x) = k}.
Distinguished diagram is (k).

(c) C(n): {x in Figure 1(c1) and 1(c2) ; φ(x) = 1}.
Distinguished diagram is (1) in Figure 1(c1).

(d) D(k, n− k): {x in Figure 1(c) ; φ(x) = k}.
Distinguished diagrams are (k) in Figure 1(c1) and (n− k, n) in Figure 1(c3).
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To illustrate the Main Theorem and its corollary, consider the above diagrams.

Diagrams u and v are not related because φ(u) = 3−2 = 1 and φ(v) = 4−2+1 = 3.

Here u represents B(2, 2), and v represents B(1, 3). Their distinguished diagrams

are respectively (1) and (3) of Figure 1(b). Diagrams x and y are related because

φ(x) = 3 and φ(y) = 4− 2 + 1 = 3. They are both represent D(3, 1).

This article is structured as follows. In Section 2, we recall the odd root reflec-

tions and study their effects on the Dynkin diagrams. In Section 3, we prove Main

Theorem (a) for the diagrams of type A. In Section 4, we prove Main Theorem (b)

for the diagrams of types B, C and D. The corollary follows immediately from the

Main Theorem, so we omit its proof.

2. Odd Root Reflections

In this section, we recall the root systems of basic Lie superalgebras, and study

the action of odd root reflections on their Dynkin diagrams.

Let g be a basic Lie superalgebra, with Cartan subalgebra h and root system

∆ ⊂ h∗. Fix a simple system Π ⊂ ∆. Its Dynkin diagram has Π as vertices, and

its edges depend on the pairings of roots under an invariant supersymmetric form

[1, (2.18)]. The form is not positive definite, so roots may have zero length. Write

∆ = ∆0 ∪∆1 for the even and odd roots. A vertex is white if it is an even root, is

black if it is an odd root of non-zero length, and is grey if it is an odd root of zero

length. We shall consider all the simple systems in h∗ in order to obtain all Dynkin

diagrams of g. Let α ∈ Π. If α is an even root, then its Weyl reflection Rα is an

automorphism on ∆0 and ∆1, so Π and RαΠ produce the same Dynkin diagram.

Therefore, to anticipate α to provide a different Dynkin diagram, we assume that

α is an odd root. Define the odd root reflection Rα as follows. Given β ∈ Π, we let

Rα(β) ∈ Π be

Rα(β) =


β − 2 (α,β)

(α,α)α if (α, α) 6= 0,

β + α if (α, α) = 0 and (α, β) 6= 0,

β if (α, α) = (α, β) = 0,

−α if β = α.

(2.1)

Theorem 2.1. [3] For any α ∈ Π, RαΠ is again a simple system. For fixed Π,

its orbit under such Rα exhausts all simple systems of (g, h). Namely if Π′ ⊂ ∆ is

another simple system, then there is a sequence Π = Π1 −→ Π2 −→ ... −→ Πa = Π′

such that each Πi −→ Πi+1 is given by Rα for some odd root α ∈ Πi.
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The above method gives a practical way to find the Dynkin diagrams related to

a given one. Since a simple system amounts to a Borel subalgebra, this method is

used to find the Borel subalgebras of g [4, p.850]. In fact it has been used to find all

Dynkin diagrams of g with rank ≤ 4 [1]. In this article, we work out this problem

for higher rank g.

We shall use Theorem 2.1 to study the effect of Rα on the Dynkin diagram when

α is a grey vertex. We can ignore Rα for black vertex α, because in that case 2α

is even and so Rα is an ordinary reflection. If β 6= α is perpendicular to α, then β

is not moved by Rα; otherwise β changes by a multiple of α. Hence the colors of

the vertices that are not adjacent to α remain the same, as do the edges attached

to these vertices. Therefore, it suffices to study the vertices which are adjacent to

α, and this is described by the next proposition.

In Figure 2 below, some half white and half grey (resp. black) vertices have

their white and grey (resp. black) parts reversed under Rα. It means that Rα

turns a white vertex to grey (resp. black), and vice versa. Formula (2.1) leads to

the following proposition.

Proposition 2.2. Let α be an odd root. Then Figure 2 below reveals the effect of

the odd root reflection Rα.
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3. Special Linear Superalgebras

In this section, we prove Main Theorem (a) for the special linear superalgebras

sl(p, q). So throughout this section, all Dynkin diagrams are assumed to be in

Figure 1(a) of the Introduction. Let 1, ..., n be the vertex labelling in Figure 1(a).

We denote a diagram by (i1, ..., ir), as in (1.1). Given a grey vertex i, let Ri be the

odd root reflection (2.1). By Proposition 2.2 on Figure 2(a,c),

Ria(i1, ..., ir) = (i1, ..., ia−1, ia − 1, ia, ia + 1, ia+1, ..., ir) for ia < n,

Rn(i1, ..., ir−1, n) = (i1, ..., ir−1, n− 1, n).
(3.1)

For example, R4(1, 4, 5, 7) = (1, 3, 4, 5, 5, 7) = (1, 3, 4, 7). Visually, R4 shifts the

grey pair 4, 5 leftward to 3, 4. We shall use this idea to shift the grey vertices. Let

φ(x) be as defined in (1.3).

Proposition 3.1. Let x be a Dynkin diagram, and i a grey vertex.

(a) φRi(x) = φ(x) for i = 1, ..., n− 1;

(b) φRn(x) = n+ 1− φ(x).

Proof: For part (a), let x = (i1, ..., ir) and let ia < n. By (3.1),

φRia(i1, ..., ir) = φ(i1, ..., ia−1, ia − 1, ia, ia + 1, ia+1, ..., ir)

= φ(ia+1, ..., ir) + (−1)r−a((ia + 1)− ia + (ia − 1))

+(−1)r−a+1φ(i1, ..., ia−1)

= φ(ia+1, ..., ir) + (−1)r−aia + (−1)r−a+1φ(i1, ..., ia−1)

= φ(i1, ..., ir).

(3.2)

For part (b), let x = (i1, ..., ir) with ir = n. By (3.1),

φRn(i1, ..., ir−1, n) = φ(i1, ..., ir−1, n− 1, n)

= n− (n− 1) + φ(i1, ..., ir−1)

= n+ 1− φ(i1, ..., ir−1, n).

This proves the proposition. �

Recall that diagrams x and y are said to be related if they represent the same

g, and we denote this by x ∼ y.

Corollary 3.2. If x ∼ y, then either φ(x) = φ(y) or φ(x) + φ(y) = n+ 1.

Proof: If x ∼ y, then by Theorem 2.1, there exists a sequence of Dynkin diagrams

x = x1 −→ x2 −→ ... −→ xa = y such that each xi −→ xi+1 is given by an odd root

reflection. By Proposition 3.1, either φ(xi) = φ(xi+1) or φ(xi) + φ(xi+1) = n + 1.

The corollary follows. �

To prove Main Theorem (a), it remains to obtain the converse of Corollary 3.2.

This will be done by the next few statements.
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Proposition 3.3.

(a) (i1, i2, ..., ir) ∼ (i1 − 1, i2 − 1, i3, ..., ir);

(b) (i1, i2, ..., ir) ∼ (i2 − i1, i3, ..., ir);
(c) (i) ∼ (n+ 1− i).

Proof: For part (a), apply Ri1 , Ri1+1, ..., Ri2−1 consecutively to (i1, i2, ..., ir).

Namely,

(i1, i2, ..., ir) −→ (i1 − 1, i1, i1 + 1, i2, ..., ir) by Ri1
−→ ... −→ (i1 − 1, i2 − 2, i2 − 1, i2, i3, ..., ir) by Ri1+1, ..., Ri2−2

−→ (i1 − 1, i2 − 1, i3, ..., ir). by Ri2−1

This proves part (a). It shifts the pair i1 and i2 one unit leftward. By applying

part (a) inductively, we keep shifting the pair leftward and obtain

(i1, i2, ..., ir) ∼ (1, i2 − i1 + 1, i3, ..., ir).

Then apply R1, R2, ..., Ri2−i1 consecutively to (1, i2− i1 +1, i3, ..., ir) and we obtain

(i2 − i1, i3, ..., ir). This proves part (b).

For part (c), we apply Ri, Ri+1, ..., Rn to (i) and obtain (i) ∼ (i − 1, n). Then

(i− 1, n) ∼ (n+ 1− i) by part (b). This proves part (c). �

Corollary 3.4. Every diagram x satisfies x ∼ (φ(x)) ∼ (n+ 1− φ(x)).

Proof: Given a diagram x = (i1, i2, ..., ir), Proposition 3.3(b) reduces its number

of entries ia by one. We apply Proposition 3.3(b) inductively until we obtain a

distinguished diagram (i). So x ∼ (i). Clearly φ(i) = i, so by Corollary 3.2,

either φ(x) = i or φ(x) + i = n + 1. Together with Proposition 3.3(c), we have

x ∼ (φ(x)) ∼ (n+ 1− φ(x)). �

Proof of Main Theorem (a):

If x ∼ y, then by Corollary 3.2,

φ(x) = φ(y) or φ(x) + φ(y) = n+ 1. (3.3)

Conversely, suppose that (3.3) holds. By Corollary 3.4,

x ∼ (φ(x)) ∼ (n+ 1− φ(x)) , y ∼ (φ(y)) ∼ (n+ 1− φ(y)) . (3.4)

By (3.3) and (3.4), we get x ∼ y. This proves Main Theorem (a). �

We give an example to illustrate the idea. Consider diagram u = (2, 3, 5, 7)

below. We explain how it is related to the distinguished diagram z.



62 CHING-I HSIN

For diagram u, we first move the grey pair 2, 3 leftward by R2, R1. They become

a grey vertex at 1, and we obtain v. We next handle the grey pair 1, 5 of v. They

become a grey vertex at 4 after R1, ..., R4, and we obtain w. Apply R4, R5, R6 to

w and we obtain x. Compare w with x, and we see that the grey pair has moved

one unit leftward. We further move the grey pair leftward by R3, R4, R5. Repeat

this process inductively until the grey pair hits the left end, and we obtain y. Then

apply R1, R2, R3 to y, and we obtain z. In z, the location of the single grey vertex

at 3 is not surprising because φ(u) = 7− 5 + 3− 2 = 3.

4. Orthogonal-Symplectic Superalgebras

In this section, we prove Main Theorem (b) for Dynkin diagrams of the orthogonal-

symplectic superalgebras osp(p, q). So throughout this section, all Dynkin diagrams

are assumed to be in Figure 1(b) or (c) of the Introduction. Express a Dynkin di-

agram by (i1, ..., ir) as in (1.1) and (1.2). Given a grey vertex i, let Ri be the odd

root reflection (2.1). By Proposition 2.2,

Ria(i1, ..., ir) = (i1, ..., ia−1, ia − 1, ia, ia + 1, ia+1, ..., ir) for ia < n. (4.1)

Here (4.1) follows from Figure 2, which covers all cases of Ri for i < n. We can

ignore Rn because Rn = 1 in Figure 1(b) regardless of whether vertex n is white

or black, and also Rn = Rn−1 in Figure 1(c2).

Let φ(x) be as defined in (1.3). Also, diagrams x and y which represent the same

g are denoted by x ∼ y.

Proposition 4.1. If α is a grey vertex of a Dynkin diagram x, then φRα(x) = φ(x).

Hence if x ∼ y, then φ(x) = φ(y).

Proof: Similar to the arguments in (3.2), formula (4.1) implies that φRα(x) = φ(x)

for all Rα. This proves the first statement of this proposition.
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If x ∼ y, then by Theorem 2.1, they are related by x = x1 −→ x2 −→ ... −→
xa = y, where each xi −→ xi+1 is an odd root reflection. The first statement of

this proposition says that φ(xi) = φ(xi+1), hence φ(x) = φ(y). This proves the

proposition. �

Proposition 4.1 is analogous to Proposition 3.1 and Corollary 3.2. Similarly, the

following Proposition 4.2 is analogous to Corollary 3.4.

Proposition 4.2. Every diagram x in Figure 1(b) or (c) satisfies x ∼ (φ(x)),

where (φ(x)) is in Figure 1(b) or (c1).

Proof: It suffices to show that x is equivalent to a distinguished diagram y. This

is because if y = (i), then Proposition 4.1 says that φ(x) = φ(y) = i.

We first consider a diagram in Figure 1(b). Suppose that vertex n is white.

Treat its subdiagram of first n− 1 vertices as a diagram of Figure 1(a), and apply

Proposition 3.3(a) and (b) to obtain a diagram with a single grey vertex among

the first n−1 vertices. The arguments of Proposition 3.3(a) and (b) do not involve

Rn−1, so vertex n remains white.

Next suppose that diagram x of Figure 1(b) has black vertex n. If there is no

grey vertex, we are done. If there are some grey vertices, use Proposition 3.3(a)

and (b) to move a grey pair rightward, so that vertex n − 1 becomes grey. Now

apply Rn−1, and Figure 2(b) says that vertex n becomes white. Then proceed with

the method of the previous paragraph. This proves the proposition for Figure 1(b).

Finally we prove the proposition for Figure 1(c). Proposition 2.2 says that every

diagram in (c3) is related to a diagram in (c2), and that every diagram in (c2) is

related to a diagram in (c1). Given a diagram in (c1), we again treat its first n− 1

vertices as a diagram of Figure 1(a), and use Proposition 3.3(a) and (b) to move its

grey vertices leftward until we obtain a distinguished diagram. The proof follows.�

Incidently, other than the diagrams x with φ(x) = 1 in (c1) and (c2), all the

diagrams in part (c) are also related to a diagram in (c3) with a single grey vertex.

Proof of Main Theorem (b):

By Proposition 4.1, if x ∼ y, then φ(x) = φ(y). Conversely, suppose that

φ(x) = φ(y). By Proposition 4.2, x ∼ (i) and y ∼ (j) with φ(x) = i and φ(y) = j.

It follows that i = j, so x ∼ y. �

We illustrate our results with an example. Consider the following diagram w in

Figure 1(c3). We shall use the odd root reflections to transform it to diagrams in

Figure 1(c1) and (c2).
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By applying R4, R5 to diagram w, we obtain diagram x. By applying R6 to

diagram x, we obtain diagram y. By applying R1, R2, ..., R5 to diagram y, we

obtain diagram z. By (1.2), φ(w) = 7− 4 + 3− 1 = 5, so indeed z has grey vertex

at 5, as predicted by Proposition 4.2.
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